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It is well known that the second-order ground-state correlation energy calculated in the usual random-
phase approximation (RPA) is o6 by a factor of 2. It has also been noted that there is a factor-of-2 dis-
crepancy in the correlation corrections to the Hartree-Fock occupation probabilities. The reason for these
phenomena is traced to the treatment of the exchange terms in the interaction matrix element. An illustra-
tion based on a simple single multipole interaction shows that the factor of 2 arises from a coherent sum of
small higher-order terms. Results based on the consideration of one or a few eigenmodes at a time are seen
to be free of this difficulty. The correlation energy, occupation-probability corrections, and equations of
motion are reexamined in the Beliaev-Zelevinsky boson expansion, as an illustration of clearly defined
higher-order treatments.

I. INTRODUCTION

ET us set ourselves the problem of calculating the
~ ground, -state nuclear correlation energy by looking

at the zero-point energy obtained in the random-
phase approximation (RPA) . It has been pointed out'
that if one proceeds straightforwardly, using the usual
antisymmetrized form of the two-body interaction
matrix elements, the result is in error by a factor of 2.
It has also been noted' that the RPA overestimates cor-
relation corrections to the Hartree-Fock occupation
probabilities; thus, the 2-particle —2-hole component
of the RPA ground state is too large by a factor of 2.
These are serious errors in any case. They are especially
serious if one believes that the RPA is the lowest order
of some expansion, since on the face of it, a factor of 2
does not seem to be the result of higher-order errors.
The appearance of the factor of 2 can be traced to the
use of the antisymmetrized interaction matrix element,
and if a nonantisymmetrized interaction matrix element
is used the correlation energy is correct to the extent
that exchange effects may be neglected. On the other
hand, the effects of antisymmetrized rather than non-
antisymmetrized matrix elements make only small dif-
ferences in the RPA equations of motion. This latter
behavior is compatible with the general idea of higher
orders causing small errors in the lowest order. It is the
purpose of this paper to clear up this apparent paradox.

II. RANDOM-PHASE APPROXIMATION

%e begin by reviewing the difficulties we have men-
tioned. The Hamiltonian is taken' to have the general
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form of a sum of a one-body and a two-body interaction:

&= Z ~~a'vs+ s Z V'~.sn"n~'ens (2 1)

X+1 ~ ~ ~ pm= ~m) nm =~m.

The Hartree-Pock state is denoted by ) 0), which is the
vacuum for both the particle and hole operators:
a;

~
0)=b

~

0)=0. The Hamiltonian then takes the
forIIl

II=+HF+ Q em' +m Z saba ba

+ Q (V „,„p—V „,p ) a„tbptb a
aP, mn

+ s Q (Vm. ..pnsm'b-'&a'bp'+ Vap, m.bprs. barsm)
aPmn

+ (terms with 3-particle-1-hole, 3-hole-1-particle,

4-particle —4-hole operators) . (2.2)

This can also be written with the two-body interaction
matrix elements explicitly antisymmetrized:

EI=EHF+ g e a ta„ge.b."b. —

+ Z ( ..V..- ..V.-)..b, ~b
aP, mn,

+ 4 g ( V ap mVamapa) cm ba aa , bpt

+jZ (Vap, ma Vpa, ma) bprsabaam+ ' ' . (2.3)

It will be sufhcient for our purpose to calculate in
second-order perturbation theory. The ground-state
825

It is presumed that a Hartree-Fock, rather than a
Har tree-Fock-Bogoliubov, treatment is a sufhcient
starting point, although nothing important changes if
this complexity is added. It is convenient to explicitly
introduce the Hartree-Fock particle-hole notation:

occupied orbitals, n, P ~ ~

g =b~,

empty orbitals, m, e ~ ~ ~
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correlation energy is

~ -"'= 2 [(0 I
-'2 (v-p;- —vp-;-)b-bpg-g-

I
1)(1 I -'2 (v--; p v—--.p-)g-'g-"bp"b. "

I 0)/(Fo F—r)]I
[(Vap, mn Vpamn, ) (Vmn, ap Vmn, pa)/(&a+&p &m &n) j

ap, mn,

Z [V pam ,vnm, np/a(& +a&p pm +n) j 2 Z [VpamV,nm, npa/(r' +a+p +m pn) j.
ap, mn

(2.4)

The 8 are understood to obey exact boson commuta-
tion rules:

To examine the occupation-number question, we
calculate the expectation value of the quantity
(g„tg„), again using perturbation theory. The second-
order value is straightforwardly seen to be

(g tg ) (&) —Q, (n
I

g tg
I
p(n)

[B,B pt]=b, „h,p, all others=o. (2.10)

The Hartree-Fock vacuum state
I
0) goes into the

(25
boson vacuum state

I
0):where

O'"= Z [I/(&o —&r) j I
I)

B„.
l
o)=o. (2.»)

&&(I I g ', v ...pg„—tb.tg„tbpt
I
o). (2.6)

The RPA just described has the very great advantage
that, within the approximation, exact equations of
motion are preserved. Thus, from the defining equation
for II& and the analagous one for any one-body oper-
ator I',

Then

ap, my( my, ap mn, pa)(2)—g~ gy)carr '=
apm (&a+ &p &m &n)

XVe can now compare the "exact" answers with those
given by the RPA.

The usual form of the RPA is obtained by going to a
boson approximation, in which H is replaced by a
boson Hamiltonian according to the prescription

F~= (o I
F

I o)+ (o I [b.g„, Fq I 0)B„,.&

+(0 I [F, b.'g-'j
I 0»-., (2.»)

it immediately follov s that3
H—+Hgg,

~m ~a ~~ma )

b tbp~+B tB p,

[H~, Fp]=[H, FjL). (2.13)~a~m~~ma p

g„"g„~g B .'B...
In particular, if the Hermitian one-body operator J is
a constant of the motion,

2.8a)

or, more precisely,

H„=F„F+ g (0 I [[b.g, H$, g„tbpt$
I 0)B„'B„p

mnap

+ l Z (o I I:b -, I:b- -, H j& I
o)B-'B- '

mnap

+2 g (0 I
[g„tbpt, [g tb t, Hjj I 0)B„pB, (2.8b)

mnap

Hp =EHF+ g (pm Ea) Bma Bma
ma

+ Q (V.„, p
—V.„,p )B„p B .

mnap

+ 2 g ( Vmnap Vmn, p,a) Bma Bnp
mnap

+2 Z (v-p; vp-.-)B pB - —(29)

[H, Jj=o, (2.14a)

then J~ is also a constant of the motion with respect
to H~,

[Hp, Jg]=0. (2.14b)

—g (V), ,7
—V„, ~)J )—H.c.=o. (2.14c)

It can be directly verified that the quantity in the bold
parenthesis does, in fact, vanish. 4

e can again calculate the correlation energy in
second-order perturbation theory:

Ke write out this last in expanded form for future use:

Z B.,'((.—,)~.,+ Z (V.. -—v.-.,)~ .

[z „(»g, = g [(o I
—,
' g (v, —v,....)B„,B„.

I I)(I I
-,'g (v „,—v.„,)B„.tB„p

I 0)/(z, —z,)j
I

[(Vap rnn Vpamn) ( Vmn, ap V, mn, pa) /(&a+&p &m &n) j
mv. ,ap

(2.15)

4 D. J. Thou1ess, Nucl. Phys. 21, 225 (1960).
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Comparison of (2.4) and (2.15) present us with the
factor-of-2 discrepancy. A similar calculation can be
carried through for the occupation probabilities. Again
we have to evaluate the expectation of (a~ta„) . Follow-
ing the RPA prescription (2.8),

I (.".)) -=(Z8..'8:),
the second-order of perturbation theory leads to

[(+y ~y)carr jnpA= QRpA ~ Z 8@a 8ya
~

PRpA. )q

(2.17)

The exchange term V,b &, has, naturally, an analogous
form with a and d coupled to J instead of a and c. We
can, of course, rewrite it so that a and c are coupled
together:

X g S C(j,m, ;j,—m,
~

J'M')

XC(jdmd;jb mb—
~

J'—M'),

S~ = S~ (j—j jp jb)

~y ~y corr RPA

(l ap, mp l ap, gm) (l my, ap l my, pa)

m, ap (~.+~p—~—~,)'

—2
ap, my( my, ap my, pa) (2.18)

m, ap (&a+ &p W &y)

Comparison of result (2.18) with that of (2.7) again
demonstrates a factor-of-2 discrepancy.

The paradox is that there is a factor-of-2 discrepancy
in the ground-state correlation energy and occupation
probabilities, but nothing like this in the equations of
motion. The explanation is revealed by taking a very
simple interaction as an illustration.

III. CLARIFYING SIMPLE ILLUSTRATION

Let us simplify the two-body interaction by taking a
single multipole:

X( 1) jb+jq —mb —m~

XF(j.j.;j pjb)C(j.m. ;ja ma j JM)
XC(j pmp, jb mb

~
J—M),—

F(j.j.'jp jb) =F( jp jb'j.j.) (—)"'""'"
—F(j j ~jb j@)( 1)ia+A+ic+id (3 Ia)

ja jb—= (2J+1) . ( )ia+ic+J+J~ (3 I b)
jc ja

The interaction is now spread over many multipoles;
if J is small, as in a quadrupole-quadrupole interaction,
and j„jb,j„jz are large (say of order j ), then each
term in the sum (3.1b) is of the order of the direct
term (3.1a) multiplied by Sz, a small number, of the
order 1/(2j+1) '~'.

This multipole form is introduced most easily into
the Hamiltonian if we change the boson notation and
use the combinations

8(j„j.; JM)

8 C(j m;j m~ JM') (——1)' ", (3.2a)
mm pm+

which also obey boson commutation rules.

[8(j„j;JM), 8t(j „jp, J'M') j
= Sing 5~~ 8, ,;„8, ,p[1+8g,oj. (3.2b)

Then, Hp in Eq. (2.9) becomes

IJB FnF+ Q Q (t & )8 (j j.; J'M')8(j j.; J'M')+x g F(jpj.;j j.)8 (j.jp, JM)8(j j.; JM)~ JIM~ ann aPM

Q F(jpj;j„j„)Sg 8 ( j„jp,J™)8(j j;J™)
J~M~ mnaP

+-.» F(j-j-jpj-) ( 1)"+'"8'(j-j-—' JM) 8'(j-j p; J M)—
mnaPM

——:x Z Z F(j.j.;jpj.)S'( 1) p+.8t(j j.; J'M')—8&(j.j,; J' M)—
~nap

+-.x Z F(jj-;j.jp) (-1)'='-8(j;jp; J-M) 8(j.j.; JM)
tnnaPM

—kx Z Z F(j-jp j-j-)S~ ( 1)™+'8(j-j p; J' M')8(—j-j-;J'M') (3.3—)
JVg& mnaP

The exchange terms appear as small (but many) terms, each with the characteristic Sz factor.
The point is that they are small and of the same order as the higher-order terms of the boson expansion, as we

shall illustrate in Sec. IV with a specific expansion formalism —that of Beliaev and Zelevinsky. ' If one adopts this
expansionist view, then, to be consistent, all the exchange terms (those involving S~.) must be dropped. '+hat is
the effect on the second-order correlation energy of each of the two alternatives: keeping the exchange terms as
written or dropping them completely?

' S.T. Beliaev and V. G. Zelevinsky, Nucl. Phys. 39, 582 (1962).
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The second-order correlation energy is easily calculated from (3.3):

"')Rp)).= lx'(2j+1) Z ' +2X'(2J+1) Z Z S~'( j.j ' j jp)
~ (j-j -j-jp) ~(j j 'j jp)

mn. , ap 6a+ 6p &m &n mnap 6 +asap C m Cn J&

,( 1) ~ I'(j-j-;j-jp)~(j-jp'j-j-) S (. . . .
) (34)

mnnP E'a+ 6p 6m &n

The origins of the three sets of terms is readily apparent.
Dropping the exchange, SJ, terms from the Hamil-
tonian (3.3) would correspondingly drop the second
and third terms from the second-order correlation
energy (3.4) . As has been noted, for large j values the
SJ are each small. Therefore, the last set of terms in

(3.4) is indeed small. Similarly, the contribution of
each J' in the second set is also small, but the sum is
not. In fact, from the obvious sum rule

Z S~'( j-j-;j-jp) =1,

One then obtains

+p ~y gorr RPA

g('2J+ 1) g ( jm ja) jp jp)pa( '

-p (p., +~p—~—~.) '

2(2jp1) g ( jm jai jr jp)P2(

m, ap (6 +Eap Em tp)'
X QS"(j.j

we see that keeping this set of terms just doubles the
contribution of the nonexchange, the first set of terms
in (3.4). This is the source of the factor-of-2 difhculty
that we are considering, since the exact value of
E„„&') LEq. (2.4)) obtained by inserting the chosen
interaction (3.1) is

) &
~(j mj a jj&j p) I' (j mj p,j,ja)—2x (2J 1

map , (6 +Cap —an —E„)'

XS ( j„jp,j j ). (3.6)
The exact answer is

(2) =1 2(2j+1)
mn, ap &a+ &p &m &n

—kx'(2~+1)
I'( j-j-;j- jp)I" ( j-jp j-j-)

mnap &a+ &p
—

&m
—

&n

Q(2/+ 1) Q
( jm jai jp jp)P2(

map (&a+&,p em pp)

1) ~ (j-j-j.jp) (j-jp,j.j.)—x't2J 1
(&a+ &p &m &p)

(3 7)
XSz(j.jp;j-j-) (3.~)

Suppose we discarded the exchange (Sq) terms in

(3.3), as required by consistency. Then the second-
order correlation energy would be (3.4) with each
SJ put equal to zero. This would have agreed with the
exact answer, excepting only the last term in (3.5).
That is a truly small exchange term.

The calculation for L(a„a„)ao.* )Rp)), goes through
similarly. Instead of considering the number of particles
with 6xed j„and m~, it is convenient to consider the
number of particles with a given j~ independently
of m~. The occupation number operator for a given j„is

P Bt(j,j.; JM)B( j,j.; j'M).

P4, B(j„j.; JM) j (3 g)

for some definite low values of J3I.Then, Only ore term
out of the set of exchange terms is selected with
the weighting SJ. As we have seen, this is of higher
order. The point is that there is no coherent sum that
transforms higher-order terms into a lower order.
Similarly, on diagonalizing the Hamiltonian into the

The conclusions are just the same as those gathered
from the correlation energy; the factor of 2 arises here
also from the coherent sum over the small exchange
terms.

The factor-of-2 diS.culty has been seen, then, to
arise from keeping higher-order terms —each small but
adding up to an amount just equal to the lowest order.
We can now also see why there is no trouble in the
equations of motion. These are the equations given by
forming the commutator
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IV. ILLUSTRATION OF HIGHER ORDERS IN THE
BELIAEV-ZELEVINSKY EXPANSION

Ke begin by outlining the steps of the Beliaev-
Zelevinsky expansion. ' The prescription (see Appendix)
for the various pairs of operators is

~.'~.= Z B»'B-,

b-'bp= Z B.-'Bnp

ba+m Bma 2 g B» ByaBmy+ ~ (4 1)
9 tV

It is designed to insure the correctness of the com-
mutation relations between the quadratic pairs u„tu„
b u, b tbp up to the order considered. The orders of the
expansion are in increasing powers of bosons and, more
importantly, in sums over intermediate states; when
combined with the interaction matrix elements these
extra intermediate-state sums spread a given multipole
interaction over a large number of multipoles. As in the
discussion of exchange terms in the previous sections,
this introduces a smallness parameter Sq 1/(2j+1) '~'.

Using the expansion prescription for the Hamiltonian,
the one-particle terms become

P c„a„ta ge b tb ~—g ( e.)B tB t. (4—.2)
m a m, a

The potential terms are more complicated. Assuming
that in the interaction matrix element V „, p only n
and m are importantly coupled Lin the sense of (3.1)7
to low rank moments, the expansion of

V~~,mp~~tbptba&m (4.3a)

~&a= Q ~,&,'8,+&HF+(& -)ap~,

0„=linear combination of 8, Bt,

each of the eigenenergies co„will have a small higher-
order term appended. The only coherent sum of such
terms will, however, occur in (E„„)np~.There is then
no trouble with the use of individual ~„, as we can
ignore higher-order errors.

In this simple illustration we have used a one-
multipole interaction, but clearly the same conclusions
would hold if there were a sum of multipoles of low rank
or even an infinite sum that did not weight the higher
ranks too much.

In summary, we can see that the correct procedure
is either to consistently stay in lowest order and
discard each of the exchange terms or instead to take
the higher orders into account consistently. If in an
application only the lowest order is used, it is then
necessary to take the discard alternative. Higher orders
of the RPA are a controversial subject, but in Sec.
IV, for illustrative purposes, we outline how the dis-
cussion would go for the Beliaev-Zelevinsky expansion
method. '

is given by

V-,w ( 'bp') (b-&-)

~V-,-pLB-p"—
2 Z B,p'B-, 'B„+"7

XLB..—-,'g B„tB„,B,.+" 7
q,5

= V „, pLB„pt B „+higher orders) .(4.3b)

The higher orders contain higher powers of the boson
operators, but it can be seen that even when rewritten
in normal form they do not contribute to the quadratic
term. Then,

~an, mph bp ba~m~~an, mp~np ~me

+ (higher orders involving higher
powers of boson operators written
in normal order) . (4.3c)

The exchange version of (4.3) is characteristically
different:

Van, pm+a bp bum Vaa, pm(aa +m) (bp ba)

-V-,p-C(B-,'B-,)+" 7DB.p'B.-)+" 7, (4.4 )

and, on rewriting in normal order,

Van, pmBnp Bma+ (higher orders in-
volving powers of boson operators
written in normal order). (4.4b)

The quadratic term is really a higher-order term as
far as smallness is concerned, and should, in principle,
be taken together with such higher orders in a cal-
culation of a physical quantity.

The other interaction terms go in the same way.
Thus,

Vma, apW ba +a bp Vmn, ap(+m ba ) (+a bp )

~V--pLB-' , 2Z B.—-'B-,'B»+ 7"
&&I B-p' :ZB,p'B-"B—, +—"7 (43 )

If we keep only the zeroth- and first-order terms, this
can be written as

Vmn, ap+m ba +n bp Vma, ap[Bma Bnp 2Baa Bmp 7

+ (higher orders involving higher powers of boson
operators written in normal order. ) (4.5b)

Again a quadratic term that is really of first order
appears, adding to the zeroth-order quadratic term.

It is worth noting that this Beliaev-Zelevinsky ex-
pansion has its drawbacks. In spite of the appearance
of expansion in a smallness parameter, there are co-
herent sums that gravely alter the apparent speed. of
convergence. Thus if we were to continue the expansion
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through just the next order (see Appendix),

~m'ba =Bma q—Q B,a Bmv Bpp
yv

—
8 {B-'(Z Bpr'Bpv)

+ Z Bp-'B-7'Bq~'BpqBqv j
uav&

The combination a ~b ~a„tbpt can be written, on rear-
rangement, as

+m ~a ~n bp = ~ma ~np 2~mp ~na 8~ma ~np

+(higher powers of bosons written in normal order)
= (0th order) + (1st order) + (2nd order) .

and first order, we have

t:(.t.)&&~. '= Z
map (&a+&p qm &p)

V-p,-.(q V-p, p-)+ (kV-p, ~) V-..-p
(6a+ qp qm 6p)

Vap, mp ( Vmp, ap Vmp, pa)

map (&a+ qp qm &p)

We can also ask about the preservation of the com-
mutation laws expressing the existence of constants of
the motion or conservation laws:

The new quadratic term is only numerically smaller
than its predecessers. For certain matrix elements the
contribution of these higher-order terms can be im-
portant. In using the expansion to obtain the contri-
bution to physically important quantities, orders must
be kept together.

Finally, then, the boson Hamiltonian that results
from this expansion prescription, keeping to zeroth-
and first-order terms, is

LH, Jj=o.
For the one-body operator,

J= g J.gg. 'gs

=gJ +g(J a tb "+J ba)

+gJ „a ta„—QJ pbptb,

(4.9)

(4.10)

(4.11)

HB z=&n~+ Z (q- q-)B-'B-—
m, a

+ g (Vanmp Van, ,pm) Bnp Bma

+ q g ( Vmn, ap 2 Vmn, pa) Bma Bnp

+ q P (Vap, mn 2 Vpa, mn) BnpBma

+(higher powers of boson operators in
normal order) . (4 6)

This is, of course, very similar to (2.9), but is im-

portantly different in the appearance of the factor ~

in the 8 tB„pt, B„pB terms.
We can again compute the second-order correlation

energy with this new formulation. We collect terms
according to the order of expansion.

V.p,mn Vmn, ap
[+carr ]B—Z 2

apmn &a+ &p, &m &n

and the Beliaev-Zelevinsky boson expansion in zeroth
and first order can be seen from the above rules to be

g Jaa+ Z Jma'{Bma 2 Z Bmy Bqa Bqy+ ' j

+ g J,{B„. ', P B„B,.B„—,+-"j
+QJ „QB tB QJp+B—ptB + ~ ~ ~ .

mn Q ap m

(4.12)

The relation (H, J)=0 must clearly hold since the
boson expansion is fixed to maintain the commutation
rules. It is, however, interesting to work out the ome-

bosoe part of this to see how it comes out. We there-
fore write out (0

~
B„(H,Jj

~
0):

&0 [ B„,LH, Jj I 0)

(&p qv) Jpy+ g ( Vpa, ym Vpa, my) Jma
Vp, „V, p

2
ap, mn qa+qp qm &n

(4.7) g Vpm, yaJam+q g Vpm ayJam+q .g Vmp, yaJam.

The first bracket of (4.7) is the zeroth-order term
2 g V „pB tB„pt take'n with the other zeroth term

2 g V p, „B„pB . The second bracket is the cross
term between the zeroth order, q g Vmn, apBma Bnp
and the first order (—~) g Vp, „B„pB and the
cross term between (—4) Z VmnpaBma Bnp,

„B„pB . We cannot keep higher terms with-
out involving the nonquadratic boson terms. The
expression (4.7) for (B „iq')B—z is seen to agree with
the second form (2.4) of the exact result. The occupa-
tion-probability problem can be handled similarly.
Keeping zeroth-order and cross terms between zeroth

(4.13)

We have already seen in Eq. (2.14c) that this is zero.
The origin of the last two terms is especially interesting
since it is characteristic of the difference between the
usual RPA form and the Beliaev-Zelevinsky expansion.
The last term comes from the first-order term in J
with the zeroth-order term in H, the next-to-last term
comes from the zeroth order in J, the first order in H.
They contribute equally, and combine to give just the
exchange term obtained in (2.14c), but not in quite the
same way.
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still holds, it does so only if it is understood that D is
linear in the boson operators, not a one-body operator.
The difference comes about because of the first-order
three-boson parts of the expansion of a one-body
operator. However, in practice, transition operators
and generators of symmetry operations are one-body
operators, so the above sum rule is not useful as it
stands. Fortunately, a canonical transformation can put
things in better form, removing these undesirable
aspects of the new version of the RPA.

Ke will comment first on the problem of translation
and Galilean invariance. For the total momentum P
and for the c.m. coordinate X we have the following
expansions:

P =P(o)+P(1/2)+P(1)

x=x("+x('")+x('&,

P(0)= Q (P„.B„.t+P. B. ),

P("'&= Q P„„B„tB„QP //B //tB—

(PmaBm// Bna Bn//+PamBn// BnaBm//) ~

manP

(4 15)

with similar expressions for X(') X('") and X(".%e
have assumed that P P =0. It is an important
property of the Beliaev-Zelevinsky expansion that the
commutation rule

[p, x]=—i (4 1&)

implies the following set of commutation relations:

[P(0) x(o)]

[P(0) X(1/2)]+[P(1/2) X(0)]—0

[P(" X(")y[p(') X(")+[P(""X('"&]=0 (417)

These relations are enough to insure the existence of a
canonical transformation expiS= expi(S("'&+S('&+
~ ), which removes from P and X the terms contain-
ing more than one boson, so that the transforms of P
and X are pure bosons. Ke will have

P &iSP&—iS p(0)

~iSPe—iS +(0) (4.18)

provided the operators S('") and S'" are solutions of

If one would try to diagonalize the two-bosom part
of Hn z Hs —z (2), [as given by Eq. (4.6)) one would
arrive at equations of the RPA type which, however,
have some undesirable aspects. For instance, in this
version of the RPA, the spurious states do not come at
zero energy. Further, although a sum of rule of the form

«.(0IDI/)(/ IDIo)
p,=one—boson states

= -', (0 I [D, [Hi) z (2), D]] I 0) (4.14)

[H. .. P]=o,
[Hs z, X)= iP/M—

(4.20a)

(4.20b)

Since our boson expansion preserves the commutation
relations of fermion pairs to the desired order, these
equations will follow from the symmetries of the
original Hamiltonian. As far as one-boson components
are concerned, these equations may be connected with
the usual RPA results by techniques similar to those
leading to Eq. (4.13), where the first-order term in
HB y and the first-order term in J combine to produce
the final result.

The canonical transformation simplifies these results.
From Eqs. (4.20a) and (4.20b), it follows then for the
transform Hi& z ——(expiS) Hi& z exp( —iS),

z, P"')= 0, (4.21a)

[81& z, X('&]= 2P(')/M. —(4.21b)

In particular, these equations hold for just the two-
boson part of HB z. This can be seen by considering the
one-boson part of (4.21) and noting that since P(&,
X(" are one-boson operators, only the two-boson part
of Hg z contributes. In other words, the two-boson part
of Hs z Hs z (2), is itself translation- and Galilean-
invariant, and its use leads to the correct mass. The
canonical transformation expiS actually transforms the
original expansion into a new expansion, leading to a
harmonic Hamiltonian with some of the properties of
the RPA Hamiltonian (spurious states at zero energy,
correct mass, etc.). From the present discussion it
becomes clear that Eq. (4.14) may also hold for a one-

body operator D provided it commutes with P and X,
because then it is possible to transform D into a pure
boson.

I.et us now consider the RPA Hamiltonian Hg
[see Eq. (2.9)).%e can easily derive

[H, P«)]=0,

[H/), X( )]= ip(0)/M. —
(4.22a)

(4.22b)

Here, Eq. (4.22a) is for translations the analog of Eq.
(2.14b) for rotations. (Note that P"&=Pr/, X("=X/).)
The connection with the expansion method is straight-
forward —analogous to Eq. (4.13). First we work with

the following equations:

2[S(1/2) X(0))+Xo/2) =0

i[S(1/2) P(0))+P(1/2) —0

2[S(1) X(0)]+X(1)+i[S(1/2) X(1/2))

[S(1/2) [S(1/2) X(0)))—0

[S(" P"')+P'"+ '[S'"" P"'")
—-'[S('/» [S('/2) P«)]]=0. (4.19)

Now, from the translation and Galilean invariance
properties of the whole IIg z, we have
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the untransformed expansion of HB z. Since I', X are
one-body operators, the contribution of the cross term
between the first order in I', X, zeroth order in H~ z
is just equal to the cross term between zeroth order in
I', X, first order in HB z, and the sum can be seen to
be equal to the exchange term from H~. Thus, both
the usual RPA and the expansion give the correct
mass. Next consider the transformed equations in-
volving H& z, (4.21). From the similarity between
Eqs. (4.21) and (4.22) we may ask if the two-boson
part of Hs z, Hs z(2), is not identical with Hp. The
answer is that it is not. The difference between EIs z (2)
and II~ commutes with X( & and X~0), but it does not
commute with most bosons. In general, the eigenmodes
of Hli differ from the the eigenmodes of Hs z(2) by
higher-order contributions.

We have seen that both the usual RPA and the ex-
pansion method give the same, correct mass. What of
the moment of inertia? The Thouless-Ualatin" value
follows from equations very similar to (4.22):

L~im iinq +y ~q) +m &qbnp iiy &n~mq (Ai)

are preserved to all orders by the prescription of Kq.
(2 5),

b tbp Q——B tB p,

imam iin= Z Bma Bna. (A2)

It is therefore enough to include higher-order terms in
the expansion for b a; we then write

hap'm= Bma q g Bpv ByaBmv Xmas (A3)

where y is to be regarded as a second-order quantity.
For the commutation relation

APPENDIX

In this Appendix, we wish to explicitly derive the
expression for the second-order term in the Beliaev-
Zelevinsky expansion. ' First of all, we remark that
commutation relations of the kind

$HIi, Jiij= 0,

PHp, 4 pj= iJii/8, —

pi, c'~j= —i. (4 23)

Lb a, a„tbptj=b pb „a„ta 5 p
—bptb b „—(A4)

to be satisfied up to second order, the quantities x
must be such that

Lx-, B-p'j+I:B-,x-p'j
However, we cannot proceed with J, C as we did with
I', X, since we do not know about the higher orders of
C and so cannot assume that C is a one-body operator.
Then, we are not guaranteed, as we were for the mass
equation, that the exchange terms from H~ and from
the expansion methods are exactly equal. Therefore,
the moment of inertia deduced from Hn z(2) can
differ by high-order terms from the moment of inertia
as given by the Thouless-Ualatin formula.

= —
qL + Bnv"Bu B v Z B p'B q'B,qj. (A5)

When we compute the commutator in the right-hand
side of Eq. (A5), we find

{ Q B„,tB„B,P B,ptB„itB qj
= Q B~ptB„B„qtB q+b, p Q B~vtB„qtB~qB„v

V. SUMMARY

We have thus exposed the relation between the usual
RPA and the expansion-based procedures. The relation
is very close and, except for some unfortunate co-
herences, gives much the same results. In general, the
differences amount to adding a higher-order quantity
to a lower-order result. This holds if we work. with one
eigenmode at a time or, equivalently, with low-lying
excitations. It unfortunately breaks down in the
ground-state correlation energy because of the coherent
addition over the zero-point energies of all the eigen-
modes. There is a similar coherent sum in the correlation
effects on the occupation probabilities. The discussion
above indicates how, in a given calculation, one can
tell whether such a coherence occurs and what to do
about it.
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=B.p'B..+&..r.p g B„tB„„
+& p Z BuvtB q'B,qB v+6 .g B„'B,p'B„.B„

tB tB

i.e., the commutator contains terms which, effectively,
are of lower order. However, these terms obviously
have their origin in coherent sums of many high-order
terms, and, for consistency, should be regarded of high
order. Equation (A5) is easily solved for x, and one
finally obtains

&-&-=B - qZ Bnv'B~pB-v—
—-',

I QB tB„,B + g Bq tB qtB B vB,qI. (A6)
uv ~v~&

It appears that this expansion converges very poorly.
It may be, however, that the expansion will converge
better for physically interesting quantities. We give
here an example of how this may happen. To ord.er v in
the expansion we may write

~A bp +p+wa +np pv~mp ~na
+ (higher powers of boson operators in normal order).
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We have already obtained the following values: x0=1,
$0 0 j s& 1 p] g j x2 8y p2 g We will now show that

limx„= iimy„= i/(2) 't2,

which indicates a poor convergence.
To prove this, we note that the products

(o I (bpa ) (b a ) (a 'b.') (a 'bp')
I o) = ~

(o I (b a-) (b-a-) (~'b-') (a.'bl ')
I o)= —&

may be calculated with the help of the commutation
relations for the particle-hole operators, However,
those scalar products may also be calculated by making
use of the expansions for (a tb t) (a„tbpt) and
(a tbpt) (a„"b t) . One then finds

physically interesting quantity, we consider the second-
order energy. Disregarding consistency, we obtain

g i2) 1(x 2+ 2)
Vp, „V„,p

apma ea+ ep Sm ea

pam, a m tip a,

apma pa+ ep em ea

and it happens that even for v=2 both (x 2+y„2) and
2x„y„are already quite near 1, although the equality is
only attained for v= ~. We remark finally that the
relation

a„&b.&a„&bpt
I 0)

= Li/(2) "'3(&-'&-p' —&-p"&-')
I o)

2$~$~= 1q

so that

2+y 2 —$ arising in an infinite order Beliaev-Zelevinsky ex-
pansion, is contained in Marumori's prescription~ for
mapping a many-fermion Hilbert space into a many-

= -=&/(2)"'. boson Hilbert space.x~=p~= 1/ 2
7 T. Marumori, M. Yamamura, and A. Tokunaga, Progr.
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Excitation of T =i Particle-Hole States in C" by Inelastic
Electron Scattering*
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The T=1 single-particle-hole states of C" are considered on the basis of the harmonic-oscillator shell
model in the particle-hole formalism developed by Lewis and Walecka. Configuration mixing is included
via a Serber-Yukawa residual interaction. Resulting mixed states lying close in energy are grouped together
into complexes whose inelastic-electron-scattering form factors are then compared with recent experimental
data. This comparison is done mainly at large momentum transfers and large scattering angles, where
the transverse excitations (and consequently the T= 1 states) dominate, and where the excitation spectrum
contains only a few strongly excited features (to be related here to collective single-particle-hole states).
By working at high momentum transfer, the contributions from transitions of high multipolarity can be
strongly enhanced. Here all possible T= 1 single-particle-hole states of all allowed angular momenta are
considered in a basis including single-particle states up to the 2s-id shell. A simple square-well shell model
is used to account for the quasielastic cross section in the giant-resonance region. All of the gross features
of the experimental excitation spectrum for excitation energies between 14 and 30 MeV can be accounted
for on the basis of this simple model.

I. INTRODUCTION

"NEIASTIC electron scattering provides a powerful.. means for obtaining information about the charge
and current distributions of nuclei. For an excitation
at a given energy loss, data taken as a function of
three-momentum transfer, in principle, provide the
Fourier transforms of the charge and current distribu-
tions, i.e., provide the inelastic form factors. In practice,

*Research sponsored by the Air Force Office of Scientific
Research, Office of Aerospace Research, U.S. Air Force under
AFOSR Contract No. F44620-68-C-0075.

f National Research Council of Canada Postdoctoral Fellow.
Present address: Department of Physics, University of Toronto,
Toronto 181, Ontario, Canada.

some model for the nucleus is generally used to provide
the nuclear four-current and the resulting model form
factors are compared with experiment. ' ' By working at
large electron scattering angles, where the strongly
angle-dependent tarP( —', 8) factor in the cross section
becomes large, states excited by transverse multipoles
can be enhanced over longitudinal excitations. The
transition operators for electron scattering contain
isoscalar and isovector terms and consequently allow
only states of T=O and T=1, respectively, to be

' R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
~T. deForest, Jr. , and J. D. Walecka, Advan. Phys. IS, 1

(1966).


