1 EXCHANGE CURRENTS IN NUCLEI

Quas=5(i | [0(1) —0(2) 1o | ){f | 0a(1)a5(2) | i}, (A2)
Pon=8¢ | [o(1) =0 (2) 1o | /){f| [o(1)+0(2) I | 2)-
(A3)

The symbols in Egs. (A1)-(A3) have the following
meanings: |4) is the initial triplet state; |f) is the
final singlet state; S means average over the initial
spin states and sum over the final spin states.

In order to apply the standard trace procedure, we
have only to remember that we are working in the four-
dimensional representation of two spin-3 particles
(the three states of the triplet and the one of the singlet)
and to introduce the projectors P; for the triplet and Py
for the singlet, defined by

Py=i[o(1)-0(2)+3], (A4)
Pi=i1-0(1)-0(2)]. (AS)
Then we can rewrite Eqs. (A1), (A2), and (A3) in
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the following way:
Qem=3% Tr{[o(1)—0(2) ] i[1—0 (1) -a(2)]
X[o(1)—0(2)Ju-i[3+0(1)-a(2)]}, (A6)

Ques=3 Tr{[o(1)—0(2) JA[1—0(1) -0(2)]
X[oa(Dos(2) T334 (1) -0 ()T}, (A7)

Pan=} Tr{[0(1)—0/(2) Jo-21—0(1) -0(2) ]
X [o(1)+0(2) Tn-33+0(1) -0 (2) ).

The evaluation of the traces in these equations is now
obvious and the results are

(A8)

Qan=30qm, (A9)
Qqaq&: %ieqaﬂr (A].O)
Pen=0. (A11)
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The absorptive part of the optical potential is considered as a function of conserved quantum numbers
such as the total angular momentum J. This investigation results in the introduction of a smooth cutoff
in the strength of the absorptive potential as J gets larger than a certain critical value. This value is typical
of nonelastic channels, and the cutoff reflects poor matching between the angular momenta in the elastic
channel and those in the nonelastic channels. Brief consideration is also given to other conserved or ap-
proximately conserved quantum numbers such as isobaric spin and parity. The standard optical potential
is modified to include an angular-momentum dependence with a suitable cutoff, and is applied to the elastic
scattering of O by '°O nuclei. In the energy range 15-36 MeV(c.m.), such an extended optical model
gives a good description of all the gross features of the °0-%0 data. A repulsive core in the 0-1%0 potential
has been considered, but no definite evidence for it is found in the present analysis.

I. INTRODUCTION

N this paper, we demonstrate the dependence of the
imaginary part of the optical model on conserved
quantum numbers and modify the optical model
qualitatively by introducing a cutoff in the strength of
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the absorption potential for high angular momentum.
Some applications of this simple model, embodying the
principle of matching angular momentum and energy
in the entrance and exit channels, have already been
published.2 Here, we present an application to the
elastic scattering of nuclei (namely, ¥O by %0) at
energies above the Coulomb barrier.

In Sec. II, the modification of the optical model is

1A, Bisson and R. H. Davis, Phys. Rev. Letters 22, 542
(129?{9.) A. Chatwin, J. S. Eck, A. Richter, and D. Robson, in
Nuclear Reactions Induced by Heavy Ions (North-Holland Pub-
lishing Co., Amsterdam, to be published) ; J.S. Eck, R. A, Chatwin,
K. A. Eberhard, R. A. LaSalle, A. Richter, and D. Robson, ibid.

3 R. H. Siemssen, J. V. Maher, A. Weidinger, and D. A. Bromley,
Phys. Rev. Letters 19, 369 (1967).
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justified from a definition of the optical operator* in
terms of projection operators. For heavy ions, the
simple meaning of the modification is that the heavy
masses in the entrance channel may carry in a greater
angular momentum than can be carried away in any
exit channel (which typically would have no particle
heavier than an « particle). If the conserved quantum
number of the resonance can find no matching prob-
ability in any exit channel, single-particle resonances
may occur where they have hitherto been unexpected.

In Sec. III, we shall show how this model is able to
describe the major features of the *0-1°0 elastic scatter-
ing from 15 to 36 MeV (c.m.).? However, it is useful to
discuss first the relative success of other attempts®5—7
to describe the ¥0-%0 data. In Sec. III, we also give a
brief report of an unsuccessful attempt to find evidence
for a repulsive core in the %0-0O interaction. The
extended version of the optical model is able to repro-
duce all the significant features of the gross structure,
and comparisons between such modified calculations
and calculations with a standard optical model show
that (i) the excitation functions at angles less than 90°
are indeed® predominantly due to diffraction, i.e., they
correspond to the movement of a diffraction pattern
with changing energy (wavelength), but (ii) close to
90° the structures are broad resonances of single partial
waves. These resonances of large J do not suffer great
absorption because of the matching condition described
in Sec. II.

In Sec. IV, we present a fit to the 0-%0 excitation
functions by use of our extension of the optical model.

Section V is a summary of the results, together with
some further remarks about the repulsive core and the
resonances. In the Appendix, a classical model of the
L-cutoff parameter is presented.

II. A NECESSARY EXTENSION OF THE
OPTICAL MODEL

The standard optical model of nuclear physics uses
the imaginary potential W (#) to describe the absorption
of the incoming waves into reaction and inelastic out-
going channels. As the incoming energy E is increased,
more such channels become available to the system.
The probability for absorption per unit volume, which
is proportional to W, must increase, on the average, as
the available energy increases. To represent this
behavior, W (7) is made a growing function of E.

" However, one important effect of nuclear physics is
not explicitly considered in this form of the optical
model: Angular momentum and energy must be simul-
taneously conserved in the reaction channels. For a

(;H.) Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287
1962).

5 B. Block and F. B. Malik, Phys. Rev. Letters 19, 239 (1967).

6 W. Scheid, R. Ligensa, and W. Greiner, Phys. Rev. Letters
21, 1479 (1968).

7R. J. Munn, B. Block, and F. B. Malik, Phys. Rev. Letters
21, 159 (1968).
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given energy E, there exists in each channel a maximum
angular momentum J.' beyond which the absorption
potential is negligible, whereas at present the optical
model implies that the absorption per unit volume is the
same for all incoming waves.

This possibility appears to be most conveniently
discussed by use of the optical operators of the Fesh-
bach formalism.* Define P, to be the projection operator
that gives elastic scattering in channel ¢ and Q,=1—P,
to be the projector onto nonelastic channels. Then the
optical operator in channel ¢ is*

PHQ. | n){n| QHP:
E.~E

Hevt(E)=PHP, Y.

+

®0 © co(‘. 4 4
8O [ WA ENE iy,
E,

T E—E

ol

in which the absorption operator is
Wt (E) = —m 32 PHQ. | v, E), E | Q.HP.,

E>E/

=0, ELE/. (2)
The states | #) and | », E') are bound and continuum
eigenstates of the operator Q. HQ, with eigenvalues E,
and F/, respectively. The sum over » allows for several
states with the same energy, and the lower limit of the
principal-value integration E,’ is the threshold energy
for the most energetically open channel a’. The operator
Hertis diagonal in total angular momentum and parity,
and the absorptive part of H°rt conserves energy in the
intermediate states |», E). Since P.HQ, conserves
angular momentum and parity, the elastic scattering
channel with a given value of J™ couples only to states
| n), | v, E') with the same value of J7 so that, in general,
H °rt is J™-dependent.

In the absorptive part of H°Pt, we notice that the
intermediate states simultaneously conserve J= and E,
whereas this is not true for the Hermitian®part of H ot
since the intermediate states are off the energy shell.
We do not make quantitative arguments about the
J™ dependence of Egs. (1) and (2), but we can deduce
certain qualitative features.

The states |», E), by construction, do not involve
any incident-channel contributions, and the degree of
overlap with the rotationally invariant operators
P.HQ, and Q.HP, is therefore viewed as a function of
the nonelastic angular momentum

V=4 4L 3)

that can be carried away in the various final states®—
provided that for the moment we restrict our discussion

8 Primed angular momenta are associated with an exit channel;
unprimed variables go with the entrance channel. Thus, we have
denoted the cutoff parameter by J., which may help avoid
confusion with the cutoff in strong-absorption models.
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to the case of two-body breakup.® As J gets larger, the
states | », E, J7) have a smaller overlap with the short-
ranged operator P.HQ. (Coulomb excitation is ignored)
as a result of the increasing repulsion of the combined
angular momentum and Coulomb barriers associated
with the increasing angular momentum L'. Conse-
quently, the strength of the optical operator correspond-
ing to absorption should decrease as J exceeds a certain
value J./, which is characteristic of the nonelastic
channels. The same argument cannot be applied to the
Hermitian part of H°rt because the intermediate states
do not have a definite energy. The arguments above are
not much affected by our restriction to two-body
channels. Multiproduct channels can be discussed in a
similar manner if L' in Eq. (3) is interpreted as the sum
of all the orbital angular momenta of relative motion
and 7,41, is replaced by the sum of all of the products.

The above arguments are also only qualitative
because we have not used the energy-averaged operator
corresponding to shape-elastic scattering. The conven-
tional theoretical procedure for performing an energy
average is to replace E by the complex energy E+iF..
The result is the shape-elastic operator

A o»%(E) = P,HP,— P,HQ,
X (Q.HQo— E—iF)"1Q.HP,—iF, (4)

with an absorption operator given by

V opt — PHQ. l n){n l QHP,
W ort(E) = —F, (1—{-— zﬂ: (E—F)iF2

PHQ, | v, '), B | Q.HP,
(E—E) 172 )'“)

Now, in Eq. (5), energy is not conserved exactly in the
intermediate states, but it is conserved with an error
of order ==F.. Of course, as a simple calculation shows,
the unaveraged operator Eq. (2) is connected to Eq. (5)
through the relation

Wert(E) = lim Wert(E), (6)

Feot

+3 [Caw

v YE/

so that the arguments used above for the operator
W ert(E) will apply accurately to W o»t(E) only when
FKLE.

In order to consider the situation in which F, is not
sufficiently small, it is important to consider the reason
for introducing the quantity F,. Its role is to smooth out
any rapid variation of H°Pt( E) with energy, which may
occur in nuclear physics because of the many-body
(compound-nucleus) components of the intermediate
states. The smallest energy interval F.(E) that one
may choose should be related to the coherence width,
the amplitude, and the density of the many-body
(compound-nucleus) components in |», E) or | #); yet

? For two-body channels, the spins i/, I’ of the products are
not very large in physical systems, so that J’ in these channels
is large only when L’ becomes large.

AND SCATTERING OF

160 BY 100 797
ideally it should not be chosen so large that the one-
body potential resonances are completely smoothed
out. Conventionally, F,(E) is assumed to be independ-
ent of the total angular momentum, so that the optical-
model calculations can be compared with the energy-

averaged cross sections via the relation
(o)y=0"t+0%, (7

where ¢® is the compound-elastic contribution and
0Pt is the optical-model simulation of the shape-elastic
cross section. bak

In most situations of interest, many exit channels are
energetically allowed, so that if one ignores angular-
momentum mismatching (as in the conventional optical
model), it appears reasonable to ignore ¢% effects.
However, in the extended version of the optical model,
the number of exit channels that compete with the
entrance channel may decrease strongly as J increases
beyond J./. In this event, it is not clear that ¢* can be
ignored. On the other hand, it is unlikely that ¢® can be
usefully calculated in such situations for two reasons:
(i) The statistical assumptions usually used to calculate
compound-nucleus cross sections are expected to be
invalid for J>J//, because the level density of com-
pound states becomes too small for large J values, and
(ii) even if statistical methods are valid, the rapid
change in the number of competing exit channels in the
transition region around JA4J, makes a Hauser-
Feshbach type of calculation intractable. g

The important result of the above considerations is
that shape-elastic scattering should be calculated by use
of an absorption operator that satisfies

Wort(E)—F,, — J>J. (8)

where F, is the minimum energy interval that suffices
to smooth out the many-body features in all partial
waves.

We now investigate the importance of Eq. (8).
If the absorption is removed and one calculates the real
phase shifts for the real part of the potential, there is an
upper value J=J, beyond which the nuclear phase shift
is negligible.l® There are then two situations of interest:
(a) JJ/>Jp and (b) J./<Jo.

Case (a) is typical of most nucleon scattering
because these channels carry little orbital angular

‘momentum compared to channels with more massive

products. In these circumstances, the inclusion of a
cutoff in W °rt for partial waves with J>J,/>J; has no
effect because they already have no phase shift and
therefore cannot be absorbed.

Case (b) occurs in the elastic scattering of some
heavy ions, in those regions of energy in which the
predominant exit channels involve smaller masses than

10 The existence of a phase shift is not a necessary condition
for absorption. However, in the use of the optical model in nuclear
physics, the imaginary potential has roughly the same radial
extension as the nuclear potential. Therefore, a partial wave
begins to be absorbed at the same energy at which it begins to
feel the nuclear potential.
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the entrance channel; if the Q value of the channel is
not too large, smaller masses imply smaller charac-
teristic values of the orbital angular momenta. For
such projectiles as %0 there are three major types of
exit channels: those with equal or similar mass (e.g.,
inelastic scattering), those with a smaller mass (e.g.,
a particle), and those with many product particles.
The first type of channel leads to J,'<J, if the Q value
is negative and not negligible and intrinsic spins not too
large. If this condition holds at all, it will normally hold
at low energies since the variation of J with energy is
less rapid in the entrance channel than in the exit
channel. The moment of inertia is less in the second
type of channel, and hence J. increases less rapidly
with energy than does Jo. Even if at low energies
J/>Jy, so that the poor matching is unimportant,
there will exist a higher energy above which J,/</J,.
Finally, there will be a threshold above which the
system breaks up into many particles (as possibly
neutron evaporation, which has large total J’) and
J>J, for this energy and all higher energies.

Let us summarize these principles. There is always a
J cutoff in the absorptive term W(r). This cutoff
would not be expected to be effective in some experi-
ments such as nucleon-nucleus scattering. In the
general system of two heavy ions, there will be three
energy regions: (i) At the lowest energies (with J./>
Jo), the standard form of the optical model is valid,
(ii) in an intermediate region (where J,/<Jy), the
standard model is invalid, and the cutoff ought to be
included, and (iii) at high energies (where again
J/>Jy), the standard model is again valid. In a
particular system, either of the first two regions may
have shrunk and disappeared.

The simplest model containing a smooth J cutoff in
absorption is

W (r) =W (r) {14 exp[(J—=J) /AT" ]}, (9)

where J./ is an average characteristic cutoff in angular
momentum for the nonelastic channels, and AJ’ reflects
the physical uncertainty arising from uncertainty in L.’
and from the various possible spin values Iy, I’ which
blur the relation between J,” and L.’. If energy averag-
ing is important, then the first term in Eq. (5) must be
taken into account by adding ~F, to the right-hand
side of Eq. (9). In this way, condition (8) is properly
satisfied.

In general, the cutoff J,/ is a function of energy
because the maximum angular momentum increases
as energy increases. The simplest prescription, in view
of the above discussion, appears to be

Jc,=kc’ (E) Rc,, (10)

where k./(E) represents an average wave number for
the nonelastic channels and R,’ reflects the average size
of the Q.HQ. system. [A classical derivation of Eq. (10)
is given in the Appendix.]

When inelastic channels are important, there are two
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obvious prescriptions, each having a minimal set of
parameters. Either one can use Egs. (9) and (10), or
one can deal with the inelastic channels by a coupled-
channel calculation. In the latter, one needs an
absorption matrix having a cutoff J,’ typical of reaction
channels other than inelastic channels. This is currently
being investigated, and the results will be reported
later. In the present article, o* is ignored, and the model
of Eq. (9) is used to investigate %0-%0Q scattering.
Other calculations using Eq. (9), or some simple
variant of it, have been reported already'?; they
give considerable support to this simple model. The
absorption potential is simply an L-dependent one in
the case of scattering of a spin-zero projectile by a spin-
zero target, so that Eq. (9) becomes

WE(r) =W (r) {1+ exp[(L—J /) /AT ]} (11)

We conclude this section by noting that the absorp-
tion potential will, in general, depend on eack conserved
(or approximately conserved) quantum number when-
ever the overlap between intermediate states |», E)
and the coupling operators P.HQ., Q.HP, is a strong
function of these quantum numbers.

The most striking prediction is the possible occur-
rence of relatively pure single-particle (or single-cluster)
resonances with particular quantum numbers J, =, or
T. For total angular momenium, such resonances will
require large values of J(>J,) and a real potential
Vert that is able to support them. Such a situation is
now believed to have been observed in ¥0-%Ca scatter-
ing.2 For isospin, the phenomenon is well known from
the recent work on analog resonances in which the
T absorption strength is shown to be very small
relative to the 7'« absorption strength. This difference
mirrors the difference in the number of isospin-allowed
decay channels, and the compound-nucleus character of
the two types of states; i.e., the level density of T«
states is often a million or more times that of the 7'
states. The same type of situation may also exist for
parity, because in many nuclei the level density of states
of each parity (and perhaps a certain J) is quite
different; e.g., the first negative-parity state in even-
even nuclei may be as high as 10-MeV excitation. This
possibility is yet to be investigated.!

III. DIFFRACTION AND ORBITING

In the elastic scattering of **O ions by O, there is a
striking contrast between the excitation functions near
the Coulomb barrier and those at higher energies. The
height of the Coulomb barrier is about 11 MeV. The
experimental cross sections? are featureless near this
energy, except for the break from pure Coulomb

1A yet more general approach would consider projections
onto other subspaces—this being necessary to describe situations
different from those described explicitly here (e.g., the dipole
states in photonuclear reactions).

2D. A. Bromley, J. A. Kuehner, and E. Almquist, Phys. Rev.
123, 878 (1969).
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scattering. Above a c.m. energy of 16 MeV, gross
structure appears® with broad and deep oscillations as
well as finer structure (Fig. 1).

There have been several explanations of the gross
structure in these data. In this section, we shall describe
how the relative successes of each hypothesis leads one
to use the extension of the optical model described in
Sec. II.

In a previous paper,”® we showed that the conven-
tional optical model is an adequate description of the
experiments near the Coulomb barrier. Of particular
interest in that work was the possible repulsive core?:>6:14
in the interaction of the two nuclei. The effect of any
core is masked by the Coulomb barrier, by the centrif-
ugal barrier, and by the attenuation of the wave func-

120
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F1e. 1. Excitation functions for ¥0-1%0 elastic scattering. The
data points from Ref. 3 have an absolute error of =15%,. The
calculated curves show the relative abilities of the standard
optical model and of its extension in describing the data. They
are not parameter fits. The dashed curve is for the standard
optical model with U=17 MeV, R=6.8 F, ¢=049 F, and W=
0.1E. The full curve is for the L-dependent absorption, with
W=0.22E, Q=—6.7 MeV, R=6.7 F, and AJ'=0.4. The cal-
culations include no contribution from the compound nucleus.

B R. A. Chatwin, J. S. Eck, A. Richter, and D. Robson, Phys.
Rev. 180, 1049 (1969).

4 K. A. Brueckner, J. R. Buchler, and M. M. Kelly, Phys. Rev.
173, 944 (1968).
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tion inside the nucleus because of absorption into non-
elastic channels.

Does the structure of the higher-energy data contain
evidence for a repulsive core? In the excitation func-
tions, the peculiarities of gross structure that must be
considered are (a) the regular spacing of the peaks and
valleys, (b) the large peak-to-valley ratios, (c) the
flatness of the valleys at 90° (c.m.), and (d) the shift in
the angular positions of the peaks and valleys.

Two recent papers®” have proposed using a molecular
type of potential for the higher-energy data. With an
imaginary potential based on qualitative arguments,
the calculations in Ref. 6 corresponded fairly well to the
experimental oscillations. An example of a real molec-
ular potential was considered in Ref. 7. Absorption was
taken into account by cutting off the effect of all partial
waves for which L<12. The 90° excitation function
for this model has a broad oscillation with a large
peak-to-valley ratio, and also some fine-structure
peaks.

What happens to the calculated scattering when a
repulsive core is not used? Nothing essential changes.
For example, the optical model, with purely attractive
potentials, is known? to give oscillations in the excita-
tion functions. The model of Ref. 6 has similarly an
absorptive term and a potential barrier, and the two
calculations are much alike. A calculation as in Ref. 7,
but with the core removed, also shows similar struc-
ture.’® The mere production of such structure from a
calculation with a core is not sufficient evidence for a
core. The interaction in the interior of the nucleus is
masked by potential barriers and by absorption.

Our thesis is that the gross oscillations are of two
classes: (i) diffraction patterns in a cone of small
angles (0<<80° say, in the energy range of Fig. 1) and
(ii) a cone of larger angles (6 $90°) dominated by broad
orbiting'® resonances. For example, we have calculated
phase shifts and excitation functions, at angles less
than 90°, with the model of Ref. 7. The broad resonance
in the 90° calculation is produced by a phase shift that
rises at an energy near the top of the effective potential,
i.e., at the maximum of

VL(") = Vmw(r) +ﬁ2L(L+1)/2M72+ Vc(r): (12)

where
V(r)=2%/r,

=22¢(3c2—1r?) /222,

r>c

r<c (13)

is the Coulomb potential and g is the reduced mass.
The interference effects that were reported in Ref. 7 are

15 The cores used in Ref. 7 are of longer range than the attractive
potential, so that removing the core decreases the barrier height,
and shifts the structures in the calculation to lower energies.

K. W. Ford, D. L. Hill, M. Wakano, and J. A. Wheeler, Ann.
Phys. (N.Y.) 7, 239 (1959). By “‘orbiting resonance” we shall
mean the single-cluster resonance that occurs near the top of an
effective-potential barrier. Other resonances below this energy
we shall classify arbitrarily as “‘sharp resonances” because they
tend to have smaller natural widths.
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Fic. 2. Phase shifts for L>14 calculated for the real potential
of Fig. 1.

isolated sharp resonances of higher partial waves which
are below their orbiting energy: A sharp spike is
superposed on the smooth orbiting cross section.

In this model, increasing the energy does not result in
absorption of partial waves higher than L=12. There-
fore, we found that the peaks in the excitation functions
at other angles always occur at energies identical to
those of the resonances. We shall next describe the
heuristic value of these calculations after first taking a
look at the type of calculation reported by the original
experimenters.®

Davis and Aldridge” pointed out that the *0-%0
elastic scattering structures could be described as the
successive absorption of partial waves with changing
energy. They discussed only the 90° excitation function
and needed to hypothesize a resonating phase shift
for each peak. We have a hint that such resonances
might come from an orbiting phenomenon.

The optical model includes diffraction and orbiting in
a general way. If the absorptive term W (7) is infinite
for all radii »<7,, say, the resulting scattering will be
pure diffraction of waves on a black ball of radius 7. If
W (r) is finite, there is also a probability for transmis-
sion and reflection in the real potential. This is the
physical significance of the optical-model description of
the data in Ref. 3. They used the standard Woods-
Saxon optical potential with parameter set 1, namely,
U=17MeV, R=68F, a=049F, and a volume
absorption W (r) of the same radius. Such a shallow
potential was suggested by Block and Malik® and has
been shown® to be consistent with the elastic scattering
data from 10 to 14 MeV (c.m.). Using W=0.1E, .
(chosen because W=1.3 MeV gave an excellent fit®®
to the 13-MeV angular distribution) leads to a good
description of the gross structure in the excitation
functions (Fig. 1) in the range 15-36 MeV (c.m.).
The valleys in the cross sections are too shallow, but the
angular dependence is reproduced. We have set the
Coulomb parameter ¢=35.0 F, which is twice the rms

77, P. Aldridge and R. H. Davis, discussed by R. H. Davis,
J. Phys. Soc. Japan Suppl. 24, 264 (1968).
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radius of proton centers for %0 nuclei. (Small changes
in this Coulomb parameter do not affect the optical-
model calculations.) As an estimate, absorption begins
for that partial wave which reaches the top of the effec-
tive barrier in V(7). The maxima occur at some radius
7m just outside the Woods-Saxon half-strength radius
R, say at

R+ 2a. (14)

Now, V.(#) has a maximum value of 21.7 MeV for
L= 16, so the separation between the absorption of that
partial wave and that due to the next one (L=18) is
given by

ApRV 14a(rm) =V 1(1m) =F*(2L+3) /ura?,  (15)

which gives a diffraction-peak spacing Ap=3 MeV.
This compares well with the calculations in the optical
model (Fig. 1), and supports the physical interpreta-
tion given above.

Figure 2 shows some of the phase shifts for (real)
potential set 1. There are no resonances other than for
orbiting, because the potential well is too shallow to
support any. The orbiting amplitudes give rise to the
oscillations at 90°, in competition with the absorption
effects described above. The spacing of these resonances
is given by

ARNVL_’Q(TM) - VL(i’m) =Ap. (16)

Absorption takes place soon after a partial wave begins
to resonate.

As expected from Ref. 3, we find that a description
of ¥0-%0 elastic scattering by the standard optical
model can successfully represent the broad peaks at
various angles. However, the valleys at 90° cannot be
made low enough relative to the peaks, because the
absorption of the orbiting partial waves averages out
the resonances, thus filling up the valleys.

Then, the two types of calculation, the one of Ref. 7
and the other of Ref. 3 (a standard optical model), give
complementary results. The former (using real ampli-
tudes) gives large peak-to-valley ratios at 90°; the
latter gives the correct variation of the major structures
with changing angle. The experimental data, therefore,
require that there be (i) normal absorption of the low
partial waves, which dominate the lower-angle diffrac-
tion patterns, and (ii) little absorption of the orbiting
partial waves, which dominate the resonances at 90°.
The principle of angular-momentum matching that we
have included in an extended version of the optical
model (Sec. IT) is suitable for this situation.

Let us approximate Eq. (11) by

T =L/ = (2u/12) 2R(E+Q)™, (17)

where & and —@ represent some average values of the
radius and the effective threshold for the predominant
nonelastic channels. The choice R=6.7F and Q=
—6.7 MeV yields J,/=16 at 21.8 MeV and J,/=18 at
25.8 MeV. Then, part of the L=16 and L=18 reso-
nances (Fig. 2) will contribute to the two broad peaks
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at 20.5 and 24.5 MeV in the 90° excitation function.
Other particular values of J.' obtained with Eq. (17)
are J/=14 at 18.3 MeV, J./=20 at 30.3 MeV, and
J/=22 at 35.3 MeV. Physically, one would expect
several channels to successively open and become im-
portant in Eq. (10) as the energy varies over the range
15-36 MeV (as discussed in Sec. II). Thus, the single
choice of B and Q will not be realistic throughout this
energy range. In particular, we have not yet attempted
to fit the data; instead, we leave the real potential of
Ref. 3 unchanged (set 1) and vary the absorption W
in direct proportion to the c.m. energy E to correct the
magnitude of the cross sections.

The parameter AJ’ was chosen to be 0.4. Calculations
showed that the cross sections were not sensitive to
variations in this value. For o-?Si scattering, the trans-
mission coefficients rise quite rapidly with E in the
range from L=16 to 18, and since such a channel is
likely to be dominant at L~16-18, this value of AJ’
is easily justified.?

The calculated and experimental excitation functions
are shown in Fig. 1. The two calculations, with and
without the L dependence, of the cross sections at
49.3°, 60.0°, and 69.8° c.m. differ little, i.e., the ex-
tended optical model has retained the description of the
diffraction structures. This can be better seen in a
comparison of angular distributions calculated in the
two models (Fig. 3). Up to about 75° the diffraction
patterns are similar, and any difference is not obviously
significant. But from 75° to 90° and in a minimum of
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F16. 3. Three angular distributions for the 160-1%0 elastic
scattering. The calculated curves are for the standard optical
model (dashed line) and for the optical model with an L-dependent
absorption (solid line), as in Fig. 1.
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F1c. 4. Detail of the calculated and experimental excitation
functions in Fig. 1.

the 90° excitation function (22.3 MeV), the conven-
tional optical model and the extended version that we
propose do not give the same results. Figure 4 is a
magnified picture of part of the cross sections at 80.3°
and 90° c.m. At these angles, the extended optical
model gives a much better description of the main
features of the data than does the standard model.
In particular, the peak-to-valley ratios are large, and
the valleys at 90° are flat. This completes what we set
out to show: The information carried in the gross
structures of the 0-%0 elastic scattering can be
described with an angular-momentum cutoff in W (7).

In Fig. 4, the calculated structures are slightly out of
phase with the data. This appears to be a sensitive test
of the height of the barrier for these high L values. If the
real potential were changed to make the barrier slightly
higher, the orbiting resonances (which cause the rise in
the 90° cross sections) would occur at higher energies.

IV. DESCRIPTION OF THE !%0-'%0
ELASTIC SCATTERING

Now that we have seen what the new calculations
have changed and what is left unchanged from the
standard optical model, we have attempted to fit (by
eye) all the excitation functions from 15 to 36 MeV.
First, the real potential U was changed to position the
resonances at 90°. The new parameters are U=16 MeV,
R=06.8 F, a=0.49 F. The imaginary potential was left
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Fic. 5. Fit to the excitation functions of Ref. 3 using angular-
momentum matching in the optical model. Parameters for the
calculation are given in the text, Sec. IV.

with unchanged radial dependence, but with a new
energy dependence W=0.5E;m.—7. The relatively
minor parameter AJ’=0.4 was not altered. Figure 5
shows a fit to the data, with J,/ a continuous and in-
creasing function of E defined by Eq. (17), and

R=54F, Q=1.7MeV

for 15. <Eem.<23.8 MeV,
R=69F, Q=-—8.1MeV

for 23.8< E,1.<29.7 MeV,
R=90F, @Q=—17MeV

for 29.7< E,1m.<36. MeV.

The calculation is quite faithful to the observed struc-
ture over the whole energy range.!

18 The diffraction peaks at 49.3° have the correct structure both
in the present calculation and in the regular optical model (Ref.
3). However, both calculations are out of phase with the data;
changing the real potential or the cutoff in W (r) does not affect
this detail. These are the two parts of the optical model that we
wished to investigate in this work.

ROBSON, AND RICHTER 1

Splitting up the energy dependence of J, into the
three domains is in accord with the remarks of Sec.
IT about the dominance of the three sorts of reac-
tion channels. In particular, the average channel radius
R and the average threshold —@ increase with energy.
Also, the J dependence is most significant in and around
the central domain; at the highest and lowest energies,
there is no significant improvement over the standard
optical model.

In our calculations, a single partial amplitude domi-
nates the peaks at 21, 25, 29, 32, and 35 MeV with
J=16, 18, 20, 22, and 24, respectively.

V. CONCLUSIONS

The results of this work on 0-%Q scattering well
above the Coulomb barrier, and of theoretical studies'
of the data near the Coulomb barrier, show that no
obvious effects of “molecular” potentials can be seen
in the gross structure of the excitation functions. For
that reason, one should not use such potentials @ prior:
in a phenomenological description of the data. An
a priori choice of a molecular potential has been used
recently? in a phenomenological description of the first
small structure in the data, i.e., the oscillation at
15-17 MeV. It is interesting that the result is no worse
when one uses no repulsive core but only the standard
attractive potentials of the optical model (Fig. 1).
The success of a shallow®?® interaction (only 17 MeV
deep) in fitting the data at all these energies may point
indirectly to the existence of a repulsive core.

The gross structure of the excitation functions at
higher energies is fairly well described by the standard
optical model® but neither the large peak-to-valley
ratios of the data nor the broad valleys appear in the
calculated cross sections until an L-dependent absorp-
tive potential is introduced.

This L-dependent imaginary term is not an arbitrary
extension of the optical model, but has a physical origin
related to the angular momentum of the reaction
channels. Moreover, it is expected to apply to all cases
of nuclear scattering, though the effects of it should be
most easily observed in heavy-ion scattering involving
spherical nuclei.

Resonant phase shifts for L=16, 18, and 20 con-
tribute large amplitudes to the elastic scattering in the
energy ranges 19.5-22.0, 23.0-25.5, and 27.5-31.0 MeV,
respectively. These regions are where orbiting occurs;
the two nuclei spend a long time close together, and
therefore enhance the probabilities of any reaction or
inelastic process. This single-particle (or single-cluster)
phenomenon might be called an orbiting giant reso-
nance.

If W(r) is a very strong absorptive potential, an
orbiting resonance will be smeared out too much to be
seen. Otherwise, the criterion for the appearance of such
giant resonances is the coincidence of absorption and

L. Rickertsen, B. Block, J. W. Clark, and F. B. Malik, Phys.
Rev. Letters 22, 951 (1969).
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orbiting [expressed by Eq. (16) ]. This is satisfied if the
radii of the real and absorptive potentials are equal, as
one would expect for nuclei that are not easily deformed.
If the absorptive potential has a larger range than the
real potential, then a partial wave will be absorbed
before orbiting can occur.
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APPENDIX: CLASSICAL MODEL OF ANGULAR-
MOMENTUM MATCHING

Let each nonelastic channel a consist of two uniform
spheres with mass, charge, and radius (m, ¢, 1) and
(m2, @2, 72). When they are touching, their moment of
inertia about the center of mass is

g=4d1t+9+pR? (A1)
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where
and  go=Zmars,

n= mlmz/ (m1+m2) .

— 2
g1= Zmyre?,
R=r1+r,

In the c.m. system, the separation velocity v of the
two spheres is given by

uPRE+-Q—qigo/ R, (A2)

where —Q is the threshold energy of channel o and I
is the available (c.m.) energy of the incoming beam.
Semiclassically, the maximum angular momentum
that the channel « can carry away is

L (a) ~gv/R,

i.e., the classical angular momentum when the vector R
is perpendicular to the vector v. Finally,

L/ ()= (1/hR)S[(2/p) (E+Q—qge/R) . (A3)

Then the cutoff L. for absorption into any nonelastic
channel is

L/= max L/(a). (A4)
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Polarization in n-d Scattering at 7.8 MeV*
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Asymmetries produced in the scattering of 7.8-MeV polarized neutrons have been measured to an accuracy
better than =:0.020 for 12 angles ranging from 58° to 165° (c.m.). The ?Be(«, #o) reaction was employed
as a neutron source with a polarization of 0.539+0.012. The measured asymmetries agree with the 8-MeV
data for the charge-symmetric p-d scattering, indicating that the Coulomb effects are indeed small at this
energy. The data also follow the trend of the 9-MeV calculation of Purrington and Gammel.

I. INTRODUCTION

S the two-nucleon problem becomes better under-
stood, more interest is being directed to the three-
nucleon problem, both experimentally as well as theo-
retically. The complexity in describing the three-nucleon
problem accurately is much larger because the experi-
ments use the deuteron, a particle with spin 1 and with a
ground state having around 4% D-state admixture.
Thus, many parameters, e.g., phase shifts and mixing
coefficients, are involved in the representation of
nucleon-deuteron scattering. Also, if one is looking for
possibly weak effects, such as the three-nucleon force or
charge-dependent interactions, one needs a wealth of
data from a variety of polarization experiments. Work
along these lines is now proceeding for the p-d inter-
action. The most straightforward polarization experi-
* Work supported by the U.S. Atomic Energy Commission.

t National Defense Education Act Fellow.
I Woodrow Wilson Fellow.

ment, the scattering of polarized protons from deuterons,
has been performed recently at many energies above
4 MeV with the high accuracy attainable with a charged-
particle polarized-ion source.r® In contrast, no major
experimental contribution to the neutron-deuteron
polarization problem has been made for energies below
20 MeV since the survey reported six years ago by
Walter and Kelsey who presented polarization angular
distributions at five energies.”

Theoretical calculations of the polarization phe-
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