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For any given two-body Hamiltonian, there exists a large class of unitarily equivalent Hamiltonians
that lead to the same scattering phase shifts at all energies. The purpose of this paper is to exhibit typical
saturation curves for reasonable equivalent potentials. The binding energy per particle changes by several
MeV in either direction, and the saturation minimum shifts to higher or lower density as the binding in-
creases or decreases. Softening the potential increases the binding. The separation approximation for
the reaction matrix provides qualitative insight into these effects. Our exact calculations start with simple
local s-wave potentials with either a hard core or a Yukawa core. The binding energy per particle is cal-
culated in the Brueckner approximation with self-consistent single-particle energies below the Fermi level.
For our examples we use unitary transformations that differ from the identity by a short-range operator of
rank 2 and transformations induced by distortions of the radial scale. The latter class of transformations
alters the core radius and produces potential terms that are linear in the square of the momentum.

I. INTRODUCTION

ECENT work indicates that the Brueckner ap-
proximation to the binding energy of nuclear

matter should be a good approximation. ' 3 Numerical
computations in that approximation give only about
11 MeV per particle. 4 On the assumption that all many-
body correction terms are indeed insufhcient to raise
this number to the empirical value of 16MeV, the
question arises: What conclusion, if any, can be drawn
from such a disagreement? If we adopt a different two-

body force (but one that is still consistent with all our
empirical and theoretical understanding of the nucleon-
nucleon interaction), by how much can the calculated
equilibrium properties of nuclear matter be changedP
This question is studied in the present paper.

Nucleon-nucleon potentials are determined by the
requirement that they reproduce the two-nucleon
scattering data and the properties of the deuteron. At
large and intermediate distances, further reasonable
restrictions on the potentials follow from 6eld-theoretic
considerations. ' ' But the s-wave interaction at short
distances is not restricted by any properties other than
the two-body data. In particular, it need not be local.
These speci6cations still leave us with a large class of
two-body Hamiltonians, each of which is as good a
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phenomenological Hamiltonian as any other. For
many-body problems these Hamiltonians are, of
course, not equivalent. In particular, the binding energy
per particle in in6nite nuclear matter may vary sub-
stantially.

Our purpose is to test the size of the eGects to be
expected by detailed computations for simple potentials
and conveniently parametrized transformations. Some
qualitative insight with the separation approximation
is obtained in Sec. III. The numerical procedures and
the results of the exact calculations are described in
Sec. IV.

Similar results have been obtained by Green, by
Lomon, ' and by Miller et ut." Green obtained four
similar, velocity-dependent, central 5-wave potentials'
that give nearly the same 'So phase shift as the "stand-
ard hard-core potential" (SHCP) of Moszkowski and
Scott" up to a lab energy of 250 MeV. Green found that
the velocity-dependent potentials all gave similar
results in nuclear matter. The two main features were
the following: (1) At a given Fermi momentum kF,
i.e., at a given density, the velocity-dependent poten-
tials gave several MeV more binding than the SHCP.
(2) The velocity-dependent potentials gave no satura-
tion out to 4~=1.8 F ', while the SHCP saturates at
1.4 F '. These results were attributed by Moszkowski"
to the fact that the velocity-dependent potentials have
much smaller wound integrals than the SHCP. This
idea was supported by the detailed calculations of
Preston and Bhaduri. " Lomon computes the binding
energy of nuclear matter for phase-shift-equivalent
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boundary-condition models. In his case the implied
Hamiltonians are not unitarily related since the point
spectrum is different in diGerent models. The inter-
pretation of his results hinges on the interpretation of
this point spectrum. Miller e$ al." start with a realistic
hard-core potential and properly include the Coulomb
potential in the proton-proton potential. The 'Sp poten-
tial is then changed to a phase-shift-equivalent Sp
potential without hard core, and the resulting change
in binding is calculated at a single density.

1/r for large r F. or our purposes we shall assume that
R—r vanishes exponentially for large r. If the partial-
wave Hamiltonian is of the form

d' L(L+1)

(&)
then the transformed Hamiltonian II= UHUt is defined
by the condition that for every P in the domain of H
one has

II. EQUIVALENT HAMILTONIANS

Two HamiltoniansII and H that have the same spec-
trum are unitarily equivalent, i.e.,

H= UHU~.

From Eqs. (5) and (7) it follows that

d' d'8= UHU"= —— p(v —+ —pcs
I

2 dr' dr' j
d'p dp &'- L(L+1)

The Hamiltonians II and H have repulsive hard
cores of radius b and a, respectively, an L-dependent
local potential, and a velocity-dependent potential
proportional to the square of the momentum. Special
cases of this transformation have been considered
previously. "" '8 Local hard-core potentials have often
been accepted as more real than others. Unitary trans-
formations are then model operators" introduced for
mathematical convenience. They are designed to pro-
duce equivalent many-body Hamiltonians and thus
necessarily generate many-body potentials. "It is then
required that the transformed potential be soft enough
to allow Hartree-Fock approximations, and that
induced many-body forces are negligible.

Here we assume a different point of view. For
reasonably smooth functions co(R) and Vz, (R) with
reasonable values of a&0, each equivalent Hamiltonian
of the form (7) is as good a phenomenological two-body
Hamiltonian as any other. Then, as usual, the many-
body Hamiltonian is in each case the sum of kinetic
energies plus the sum of all two-body interactions.
These many-body Hamiltonians are then, of course, not
equivalent.

Another scheme for generating equivalent two-body
interactions has been proposed by Baranger et a/. 2p It is
based on the observation that, in the absence of bound
states, instead of fitting a two-body potential V to the
scattering data it may be advantageous to fit the kernel
(k'

I
T

I k) of the operator

If they also produce the same phase shifts, then for
every state P in the Hilbert space we have

lim II (U—1) exp( —iHot)P II =0, (2)
t~+ oo

where Hp is the kinetic energy. Conversely, if the unitary
operator U satisfies Eq. (2), then H and H produce the
same phase shifts. " '~ Equation (2) is satisfied if
U —1 is completely continuous; the simplest examples
are those in which U —1 is of finite rank. It is then easy
to choose the operator U such that for all states f
with II f II =1, (U—1)f is arbitrarily small outside
some fixed radius. We can thus make sure that the
potential is modified only for short interparticle
distances.

Another useful class of unitary transformations is
induced by distortions of the radial scale. Consider the
Hilbert space of radial wave functions P(R) with
0&@&8&~, for which

«I&(R) I.

Let 8 be a function of r such that

dR/dr = IJ, '~'(r) )0,

defines a mapping of the functions f(R), a&R( ~ onto
the functions g(r), b&r( 00. With the norm

«I+(r) I',

R r~0 for large r, a—nd R(b) =a for some b&0 The.
relation

k(r) = 5 (r) 3-"VLR(r)j (5)

that mapping
P= UP (6)

is unitary. The condition (2) is satisfied if R(r) is a
smooth function and E.—r vanishes at least as fast as

'5 H. Ekstein, Phys. Rev. 117, 1590 (1960).
I G. A. Baker, Phys. Rev. 128, 1485 (1962)."P.Mittelstaedt, Acta Phys. Hung. 19, 303 (1965).

where 0 is the Mgller operator. For I
k'

I
=

I
k I, the

kernel (k'
I
T

I k) is determined by the phase shifts.
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(k I G.—G' lk) =(k
I G'(1—Q)e 'G lk)

Knowledge of T determines the M)11er operator fb, It is easy to estimate the error
i.e., the scattering states

p~&+~ =0
I k) =

I k)+ (0'/2m —IIO+ie) —'T
I k).

Orthonormality and completeness of the scattering
states gives

QtQ =QQ~=1,

which restricts the off-diagonal elements of T but does
not determine them uniquely. Once T has been chosen,
the potential V is determined by

V=TO =TQ t.

For practical purposes there are two main dis-
advantages: (1) the requirement that there be no bound
states, and (2) the difficulty in translating requirements
on the tail of the potential into restrictions on
(k'

I
T

I k). We have not used this method in our cal-
culations, but there is no doubt that the results would
follow the same qualitative pattern.

III. QUALITATIVE ANALYSIS

In this section, we extend the ideas of Moszkowski" "
to gain a qualitative understanding of the results to be
expected for different equivalent potentials. The bind-
ing energy of nuclear matter is given by

8(p) = T(p)+ ', U(p), - (10)

where p is the density, T (p) =0.3k& is the kinetic energy
per particle, and U(p) is the average potential energy I=-', (2n-)'(ko

I
e 'GP

I ko) (22)

—,
' (2~) 'p(k

I
GPe '

I k) (k I G, I k) .

(16)

The quantity (k
I
GPe '

I k) is the Fourier transform
of the defect function xq (x) that satisfies the diff'erential
equation

(-V'+ V.+7')x~(x) = (x
I

V.
I
k) (1&)

We have therefore the estimate

I
(k I

G~e 'Ik)
I

(2~)-"'fdx
I x~(x) I. (18)

For the SHCP" the relative error is about 4%%u'
"In all

cases of interest, the function xq(x) is limited in magni-
tude and range such that the error is small.

From Eqs. (12) and (13) it follows that

U(p) = U.(p)+ U~(p). (19)

The density dependence of U, (p) may be approximated
as follows. Consider the identity

U. (p) = L4~&~'j 'fdp—fdp'

&&LU(p)+ U(p') j(k I
e 'G.'

I k), (20)

and note that the last factor in the integrand is approxi-
mately constant. "Thus

U. (p) = pU(p) I—, (21)

(11) is approximately constant. Since

U(p) = U*(p)+ Ui(p),

U(p) =3k' ' dp p'U(p).

For Serber forces the single-particle potential energy ss

given in the Brueckner approximation by

U(p) =lfdp'(k I G(&) Ik), (12)

where k=-', (p —p'), P= (p+p'), and G is the reaction
matrix averaged over spin and isotopic spin.

A qualitative insight into the density d.ependence of
8 may be conveniently obtained from the separation
approximation for G."Following Bethe et a/. ,

' we put

it follows that

U(p) = Ui(p)/(1+ pI) (24)

Let 8(p) and Go(p) be the binding energies from two
equivalent Hamiltonians and consider only transforma-
tions that do not produce significant changes in U~. We
may then eliminate U& (p) from the equations for 8 and
Gp and find

G G+Vt, , (13) ~(p) 80(p) = 5~0(p) T(p) 3p(Io I)/(1+ pI) (25)

where V~ is the long-range part of the potential and G,
is the reaction matrix obtained from the short-range
potential V, by

G,= V.—V,Qe 'G, .

For G, the reference-spectrum approximation G,~ is
defined by

G,"=V,—V,e 'G,~.

"H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963), Sec. 10.

Thus, to the extent that our approximations are valid,
the saturation curves are a one-parameter set depending
only on I. Using Eq. (25), we have plotted in Fig. 1 the
family of saturation curves obtainable from potentials
that are equivalent to the SHCP. The curve labeled
I= Ip is the result of an exact self-consistent Brueckner
calculation. The other curves, corresponding to diferent
values of I, are calculated from Eq. (25) .

Since I is the Fourier transform of the defect function
xq(x), we expect increased binding for safter potentials.
This expectation is borne out by the exact calculations
described in the next section.
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2 I =O. I43
3 7=0.555
I I =ID=0.804
6 I= l.44
7 I= I.73

FIG. 1. Approximate satura-
tion curves computed with Eq.
(25). For so(p) we used the
exact result for the untrans-
formed SHCP (8 waves only)
shown in curve 1 of Fig. 3. For
Io we use the approximation
Io ——4~a' (suggested in Ref.
21). The values of I&ID are
chosen to give agreement at
k~ ——1.4 F ' with some of the
exact calculations shown in
Fig. 3.
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Specihcally, we choose

«g (r)g'(r) =~". (28)
V, (r) = Vo,L4 exp( —2p,,r) —exp( —p,r)7/p, r, (26)

where s= 0, 1 denotes the spin, Voo= 2307 MeV,
V0~=3991 MeV, p0=2.07 F ', pq=2. 31 F '. For this
potential which we assume acts on s states only, " the
transformation to the momentum representation is
easily done in closed form.

A unitary transformation for which U —j. is of rank
2 is a rotation in a two-dimensional subspace. It may be
parametrized such that

g&(r) =n'"r exp( —-', nr),

gs(r) = (3n') '~'»(1 —snr) exp( —snr). (29)

Their Fourier transforms

2)1/2 ao

g;(k) = —
I

«sinkrg;(r) (30)
o

are easily obtained analytically. Thus the momentum
representation of the new potential V=—II—T may also
be readily obtained in closed form.

We have computed the binding energy per particle
as a function of the density by solving the integral

(»'
I

U —l
I

») = —
I (l —«») Lgt(r') gt(r)+go(") gs(») 7

+ sin8I gq (r') gs (r) —
gs (r') gq (r) 7 I, (27)

"F.Coester and E. Yen, Nuovo Cimento 3Q, 674 (1963}.

IV. NUMERICAL RESULTS where n(8(»r, and the —two functions gt(r) and
I+I gq r form an orthonormal set, i.e.,We start with a simple spin-dependent Yukawa-core

potential



VARIATION IN NUCLEAR-MATTER BINDING ENERGIES

FIG 2. Saturation curves for the
Yuicawa-core potential (YCP) (S waves
only). The eGects of transformations of
rank 2 and radial distortions are il-
lustrated. Untransformed VCP: curve 1.
Radial distortions: curve 2. s=0.2, a=
0.5, P=0.05: curve 3. s= —1.2, a=0.6,
p=0.4, Rank-2 transformations, curve 4.
a=32.64, cose=0.2(8(0): curve 5. n=
32.64, cosg =0.2: curve 6. cx =21.76,
cos0=0.9:curve 7. o.=32.64 cos8= —0.2:
curve 8. a=32.64, cos9= —1.0: curve 9.
m=21.76, cos0=0.8: curve 10. a=21.76,
cos8=0.6. Except where indicated, 0'&0.
For the transformations of rank 2, the
binding is always decreased.

-M
I.O

l

l.2
l

l.6 I.8
l

2.2 2.4

FERMI MOMENTUM

equation for the reaction matrix

G= V—VQe 'G (31)

in the momentum representation. We have used
Gaussian quadratures after mapping the infinite-
momentum interval into a fine range by an appropriate
rational function. The single-particle energy above the
Fermi level is purely kinetic; below the Fermi level the
single-particle energies are computed self-consistently.

The projection operator Q is treated exactly. Since we

consider only s-wave interactions, only the angle average
of the operator Q occurs in the exact expression.

As a check on the numerical accuracy, we verified in

all cases that the phase shifts are independent of 0. and

0. Computations were done for 0.=21.76 F ', 32.64 F ',
and 43. 52 F ', and several angles 0. For the largest
value of u, the range of the transformation is so short
that there is no significant effect on th satueration
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RADIAL DISTORTIONS
3 b=0.O, P=0.2
5 b=0.2, /=0. 2
I b=04
6 b=0 6, /=0.2
2 b=0.0, / =0.4
4 b=O 2 P =0.4

0.4

K
LLI -I

Fro. 3. Saturation curves for the
SHCP. The effects of unitary
transformations induced by radial
distortions are illustrated.

I.O
I I

l. 2 l.4 I.6 I.B
FERMI MOMENTUM

I I

2.0 2.2
k, (F )

24

curves. Typical results for other values of the param-
eters are given in Fig. 2.

We have also considered the unitary transformations
induced by the radial distortions

where the reference-spectrum reaction matrix G~ is
obtained from the expression

(k'
~

CP
~
k) = (4/m)fdr sink'rV(r)gI, (.r) (34)

R= r+s Lexp( —r/n) —exp( —r/P) j (32) after solving the differential equation

G= G —G (Qe '—e,—') G, (33)

"H. S. Kohler, Nucl. Phys. A128, 273 (1969).

for s=0.2 F, n=0.5 F, 39=0.05 F and for s= —1.2 F,
a=0.6 F, P=0.4 F. For the transformed potentials the
momentum representation is not available in closed
form. In that case we compute the reaction matrix by
solving the equation"

(H+y02) PI, (r) = (lP+yo') sinkr (35)

for P&(r). The quantity po is a axed parameter. Thus
e=k'+p' and eo

——k'+&0' are usually different. Equation
(33) is exact for all values of yo. The generalization to
velocity-dependent potentials is straightforward. Again
we have checked the invariance of the phase shifts. The
saturation curves are shown in I"ig. 2. We see that the
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O. l 4—

O. I 2
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SFOR MED YCP
ORTIONS
c =0.5, /=0.05
a=0.6, P =OA
NSFORMAT IONS

, cos 8=0.9
, cos 8 =0.2(8&0)
, cos 8 =06

I'IG. 4. Healing parameter g
for (a) the Yukaw'a-core
potential, and (b) the SHCP.
In (b), curves 3 and 4 are in-
distinguishable.
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binding may be either increased or decreased, depending
on the choice of a transformation.

As a simple example with hard core, we take the S-
wave part of the SHCP given by

P(p) =+ eo

+ (1+Se r///) t/2—
R—a=r b+2P1n—

1+(1+se '/~)"' ' (37)

The transformations are induced by the] radial dis-
tortions"

The reaction matrices G" and G were obtained asfor r&u,
before. The results are shown in Fig. 3.

where a=0.4 I, pa=2.083 F ', and Vo ——260.16 MeV. As a by-product we have also computed the healing
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parameter g, de6ned'4 by

rt
—3L2(2sr)spj

—iftEk fdlrfdP
~

(Q
~

Qe iQ(P)
~
Q) (2

The results are given in Fig. 4.

V. CONCLUSIONS

We have seen that equivalent two-body Hamiltonians
can give widely diferent results for the binding energy
and equilibrium density of nuclear matter. However,
these large changes in energy and density tend to be
correlated in an interesting way: An increase in binding
energy is accompanied by an increase in equilibrium

'4 F. Coester and H. KOmmel, Nucl. Phys. 17, 477 (1960).
Brandow's parameter It. (defined in Ref. 3) is related to 77 by
~=227. See also F. Coester, in Lectures irl, Theoretica/ I'hysics,
edited by K. T. Mahanthappa (Gordon and Breach, Science
Publishers, Inc. , New York, 1969), Vol. XI.

density. Our rough calculation in the separation approxi-
mation shows why this is true. The saturation curves
form a one-parameter family. The parameter charac-
terizes the distortion of the wave function. Thus the
softer of two equivalent potentials, which produces less
distortion in the wave function, will give a larger bind-
ing energy and density. Exact values of the healing
parameter g, which is a measure of the distortion in the
wave function, have been calculated. These values
support the idea that smaller distortion implies larger
binding energy and density.

The wide range of results obtainable from equivalent
two-body Hamiltonians suggests that nuclear-matter
calculations might help to pin down the nature of the
nucleon-nucleon potential. Theoretical error bounds on
the higher-order corrections to the Brueckner approxi-
mation would be essential for that purpose. It is im-
portant to emphasize additional theoretical speci6ca-
tions for acceptable potentials and to scrutinize the justi-
fication of these speci6cations.
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Nonconservation of Isospin in the i4N(d, d')i4N Reaction*
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The "N(d, d') "N reaction to the first excited state oi "N(2.31 MeV, 0+, 1) ivas investigated for isospin
nonconservation. Angular distributions were taken for nine incident deuteron energies between 5 and 10
MeV. The symmetries observed in the angular distributions indicate a predominantly compound-nuclear
reaction mechanism. The observed violation arises most probably from "Coulomb mixing" in the "0
compound nucleus. The measured cross-section ratio of the first to the second (3.95 MeV, 1+, 0) excited
state of "N varied from 3 to 1 j& for deuteron energy. increasing from 6 to 10 MeV. The region of excitation
of "0 between 26,0 and 31.0 MeV was investigated by measuring the excitation function for inelastic
deuteron scattering to the second excited state of '4N for deuteron energies between 5.9 and 12.2 MeV
at a laboratory angle of 60'. Gross structure was observed at excitation energies of 27.2 and 29.6 MeV
in "O. The presented data are compared with photoabsorption data for this range of excitation energy.

I. INTRODUCTION

THIS work was undertaken to study the effects of
isospin nonconservation in the '4N(d, d')'tN reac-

tion. Previous deuteron inelastic scattering experi-
ments' ' involving light nuclei showed no direct evi-
dence of the reaction proceeding to states whose forma-
tion is forbidden by isospin conservation. Comparison
with the yields to nearby states for which isospin is

*Work supported in part by the U.S. Once of Naval Research
under contract Xo. Nonr 1623(05) and based upon portions of
a thesis submitted by J. R. Duray to the Graduate School of
the University of Notre Dame in partial fulfillment of the require-
ments for the Ph. D. degree.

f Present address: The Ohio State University, Columbus, Ohio.
~ C. K. Bockelman, C. P. Browne, W. W. Buechner, and A.

Sperduto, Phys. Rev. 92, 665 (1953).' D. W. Miller, B, M. Carmichael, V. C. Gupta, V. K. Rasmus-
sen, and M. B.Sampson, Phys. Rev. 101, 740 (1956).' B.H. Armitage and R. E. Meads, Nncl. Phys. 33, 494 (1962).

conserved typically gave upper limits on the order of a
few percent or less.

Preliminary investigations of the "N(d, d') "N reac-
tion indicated the feasibility of directly observing the
inelastic deuterons that populate the first excited state
at 2.31 MeV (J"=0+, T= 1). The primary goal of this
study was to find the shape of the angular distribution
of the 2.31-MeV level and to measure the cross section
as a function of incident deuteron energy. Interest in
the energy dependence of the angular distribution of
this isospin-nonconserving reaction was stimulated by
work done on the "C(d, cr)'oB (1.74 MeV, 0+, 1) reac-
tion4s and more recently on the "O(d n)' N (2.31

4 L. Meyer-Schutzmeister, D. von Ehrenstein, and R. G.
Alias, Phys. Rev. 14'7, 743 (1966).

~ J. W. Janecke, T. Yang, W. S. Gray, and R. Polichar, Phys.
Rev. 1'l3, 1301 (1968).


