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Hartree-Fock Calculations of Even-Even N=Z Nuclei*
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Hartree-Fock calculations have been performed for the even-even g =Z nuclei from A =4 to A =40. The
calculations use a velocity-dependent interaction which contains two-body spin-orbit and tensor terms, and
which was especially derived for use in HF calculations. sects of truncation are made minimal by using a
basis of Cartesiarl, harmonic-oscillator wave functions. Nuclear sizes and single-particle energies are in rea-
sonable agreement with experiment; however, total binding energies are much too small. Comparison is
made with other recent calculations,

I. INTRODUCTION

W lHE Hartree-Fock (HF) method has gained in-

.creasing popularity as a means of obtaining an
understanding of a wide variety of nuclear properties.
Since deformed nuclei produce the richest supply of
experimental data, it is natural that a large portion of
the recent HF literature has concentrated on such
calculations. ' The calculations thus far carried out may
be broadly classified according to (1) the type of
interaction employed and (2) the size of the model
space. The interaction may, in turn, be described as
being either (a) a G matrix' derived from one of the
realistic two-body potentials' which account for the free
two-nucleon scattering data or (b) an eflective potential
derived especially for structure calculations. Potentials
of the latter type may be further subdivided according
to the degree to which they relate to the free two-body
data. Thus the potentials of Refs. 4 and 5 may be
regarded as being perhaps more fundamental than
those of Ref. 6. The model space is normally taken to
be a truncated oscillator space in which either the
orbitals of (a) all of the particles or (b) only those
particles outside closed major shells are varied. Further
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distinction may be made depending upon the additional
restrictions placed upon the variational wave function.

In an effort to understand the validity of some of the
approximations made in such computations, I have
used a general two-body potential which, although
developed especially for use in HF calculations, may
yet be described in some sense as having been derived
from the free nucleon-nucleon data. Thus the calculation
is more fundamental than one which uses a, Purely
phenomenological potential, and as such may be
viewed as a standard with which to check, for example,
the validity of using an effective one-body spin-orbit
interaction. Moreover, the present calculation, in
addition to varying the orbitals of all particles, utilizes a
basis for which the e8ects of truncation are minimal so
that the deformations found are not limited by restric-
tions on the space of the HF wave function. This latter
point is more fully discussed in Sec. II under symmetries
of the HF wave function, while the former point is
amplified in Sec. III where a brief description is given
of the two-body interaction.

The structure of the remainder of the paper is as
follows. The method of calculating two-body matrix
elements is illustrated in Sec. IV, and the manner of
solving the HF equations is discussed in Sec. V. The
main results of the calculation are presented in Sec. VI,
where energy levels, binding energies, rms radii, and
quadrupole moments are given for the even-even E=Z
nuclei from A =4 to A =40. Some concluding remarks
are made in Sec. VII.

II. SYMMETRIES OF HF WAVE FUNCTION

Because it is necessary in practice to truncate the
basis in which the HF wave function is expanded, the
choice of basis is rot arbitrary. In particular, as we wish
to study nuclei which may not be axially symmetric,
it will clearly be advantageous to expand the orbitals
in a Cartesian oscillator basis

where

(x ] rt, )= )sett'2"er4!b, ] "'H„(x/b ) exp( —x'/2b ') (2)

and II„. is the Hermite polynomial given below in
76
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terms of the generating function

Sn
-p( —"+2 ~) = Z —&.(~). (3)
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1
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Even
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R,
R.
R.+
R,
R,+
R,+
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d$y

FlG. 3. Single-particle energy
levels of the ground state HF
solutions. The central column for
each nucleus contains the results
of the present calculation. The
levels of the axially symmetric
nuclei are labeled by the z com-
ponent of angular momentum k
and parity m as {2k)~; the levels
of the triaxial nuclei are labeled
by the parity alone. Occupied orbi-
tals are indicated by a dot. The
results are to be compared with
the calculations of Ripka {Ref.1}
{lefty'column) and Stamp (Ref. 9)
{right column) .

R, (~) I
ziiR,+&= —i

I
xiiR,+)

so that
R.(vr) I

XIIR,+)=—i(—)n
I
~IIR,").

R, ( ) I
~IIR;)=i

I
~IIR;). (6)

LI XIIR,+) transforms under R, (~) as a particle of spin
+-'„while

I
1~IIR, ) transforms as a particle of spin

—~.g The prime indicates that the sum is restricted to
those values of I, nw, e, for which (—)"*+~"*=(—)n.
Since the sums will always be restricted in this manner,
the prime will be omitted in future equations.

The states
I
XIIR.+),

I
XIIR, ) span our model space

and form a natural basis for our wave function.
Under a rotation of 180' about the y axis the state
I n, ) I n„) I

e,)x,'I' transforms as

R„(m) I e,) I e„) I e,)x,'"
=(—) "'-'I ~.& IN. & I ~.&x '". (7)

Thus, according to our assumption of ellipsoidal
symmetry, if the state

I
XIIR,+)= P C„.„„„.;"
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+C-:.-.:"2LI+(—)""0 ~ ~.& I ~w& I
~*&x-v~v'}

must also be occupied. The states
I

XIIR,+), I
AIIR, )

are thus pairwise occupied. Further we may set
C„,„,„, »2i= (—)n'C„,„„„,~". Under a rotation of 180'
about the x axis we find

R*( ) I ~*& I ~.& I ~.&x."'
= —'( —)"+'I .&I .&I .&x "', (8)

Since either both of the above states are occupied or
both of the states are unoccupied, the HF wave function
will be invariant under this rotation. We have thus
guaranteed the ellipsoidal symmetry of the HF wave
function.

Finally, under time reversal, we have

Tcx
I N. ) I sw) I

e,)x.'"= (—)"'- n*
I
tl, ) I mw& I n, )x

(10)
and
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The amplitudes C„.„„„,;~ are thus real if e„ is even and
imaginary if e„ is odd. Ke thus set C„.„,„,~~ =
(i) nwa .„,".The basis thus takes the final form

I
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TABLE II. Nuclear properties. This Table lists the binding energies, rms radii, electric quadrupole moments, and

angular momenta for the ground state of the nuclei studied. Experimental radii are taken from Ref. 11.

B.E.
(MeV)

rrms (&m)

Theor Expt
Q20

(fm'}
Qn

(fm')

4He

8ge
12C

160

~Ne
~Mg
28Si

32S

86Ar

oCa

3.30
12.0
37.4
76.3
95.3

117.
157.
190,
233.
283.

1.84
2, 32
2.45
2.53
2.77
2.82
3.00
3.12
3.16
3.20

1.67

2.42
2.71

2.98
3.04
3.12

3.50

0
39.0
17 ~ 3
0

44. 1

39.3
—63.1
—56.1
—49.8

0

0
0
0
0
0

—7.9
0

17.4
0
0

0
10.5
8.77
0

20.0
23.6
29.7
27.0
16.3
0

0.9

0.8 ILl ~gpo~valence

ci ~(ufo)
ii

0.7
oNe ZSS' 52$ Ar

FxG. 4. Contribution of valence particles to the expectation
value of the angular momentum and quadrupole moment. The
nuclei 'Ne, "Mg Si are considered as having 4, 8, and 12
valence particles, while "S and "Ar are considered as having 4
holes and 8 holes, respectively.

The coefficients a„.„„„,~ are real as will be all matrix
elements of the HF Hamiltonian between the basis
states. The fact that 2'

I
XIIR,+)=& I

XIIR,+& facilitates
the evaluation of expectation values of operators, e.g.,
(HF I QMIHF&or &HF l~'IHF&.

Due to the above symmetries of the HF wave
function, the HF Hamiltonian must necessarily take
the form depicted in Fig. j.. Because the orbitals have
been assumed to have good parity, the matrix divides
into two blocks which operate on the even-parity states
and the odd-parity states, respectively. Because of the
assumed invariance under time reversal, each of the
two blocks further divides into two identical blocks.
That the blocks are identical is apparent, for the
eigenstates of the blocks, the states E.,+, g, , are
connected by an operator T which commutes with the
HF Harniltonian, and are thus degenerate. Up to this
point in our discussion we have suppressed mention of
the isospin quantum number. To be specific, the above
array may be thought of as operating upon the neutron
states. Then, because of the neglect of the Coulomb
force, there is an identical array which operates upon
the proton states, and each spatial state is fourfold
occupied, as stated earlier.

1.0

The benefit of the above reduction lies not in the fact
that we need only diagonalize two small arrays, e.g.,
II even E.,+ and II odd E, , but rather that in order to
calculate these arrays we need only the two-body
matrix elements

listed in Table I.Further, the matrix elements of class 7
in Table I are clearly identical to those of class 3, while-

the matrix elements of class 8 are, through time reversal.

symmetry, equal to those of class 4. Thus, only the
matrix elements of classes 1—6 need be computed. This
simplification is what makes the computation tractable.
For even with the introduction of the symmetries, we
must calculate 72 010 (independen. t) matrix elements
for the case e,+e„+n,&3.

III. TWO-BODY INTERACTION

In this work, we use a recently developed velocity-
dependent potential which was especially derived for
use in HF calculations. The explicit form of the inter-
action is

+~.(y) (p2/p)+ V y(y) S&2+V r's(y)L ~ S (]3):

where yN is the nuclear mass and r and p represent the
relative coordinate and momentum of the interacting
nucleons. L and S are the orbital angular-momentum
and spin angular-momentum operators and S~2 is the-

tensor operator. The index j labels the four spin-parity
states of the two-nucleon system, SE, SO, TE, TO.
(No spin-orbit interaction has been included in the TE
state. ) The radial dependence of all terms is Gaussian;:
however, the tensor term is additionally multiplied byr' V (r) = A;(r'/2. n') exp) (y'/2ay2—)—j. With this
choice of radial dependence, the interaction is separable
in Cartesian coordinates and the computation of two-
body matrix elements is thus greatly facilitated.
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Si PROLATE
FIG. 5. Cross sections of equidensity

surfaces cut by a plane containing
the symmetry axis for the oblate and
prolate solutions of "Si.The numerical
values refer to the fraction of maxi-
mum density: 0.26 and 0.20 fm ',
respectively, for the two solutions.

The potential saturates nuclear matter in the HI'
approximation at k~=1.38 fm ' with an energy Eo=
—15 MeV. The second-order Goldstone correction to
the energy, calculated in the effective-mass approxi-
mation, is —3.2 MeV. The low-energy scattering
produced by the potential can be summarized as

follows. The accepted values for the scattering lengths
and effective ranges are fitted to within 5%%u~, and the
deuteron binding energy and quadrupole moment are
fitted to within 10%. However, the percentage d state
in the deuteron is calculated to be 2% which is much
lower than the accepted value of approximately 6%.
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TABLE III. Single-particle binding energies in MeV. With the exception of the d5/2 level which, in the deformed nuclei is almost pure

d6/2', the energies of the deformed nuclei are labeled by (2k ); e.g., 3 indicates a state of negative parity with s component of angular

momentum 2. The experimental results are taken from Rd. 15. For ' Ca the italicized energies represent neutron levels; all other
experimental energies are for protons. For the deformed nuclei we have suggested a comparison with the state(s) which contain a

significant amount of the single-particle strength; no attempt has been made to compute the center of gravity of the levels.

16O

Theor Expt
"Ne

Theor Expt
28Sj

Theor Expt
"Ar

Theor Exp t
40Ca

Theor Kxpt

1$1/2

1P8/2

44
19 (3 )23 19, 18 (3 )38

73
46

~32
1P1/2

ids/2

2$1/2

id3/2

(1 )30, 18 12 (1 )36, 23 28
17 17

(1+)16, 2 13
22 20

41
23 ZZ

18 18
16 16

Complete details concerning this potential are given in
Nestor et al.' For calculations of the closed-shell nuclei
with this potential, see Tarbutton and Davies. '

IV. CALCULATION OF TWO-BODY
MATRIX ELEMENTS

TABLE IV. Comparison of nuclear deformations. The second

column contains the results of the present work, while the third

column contains the (major-shell mixing) results of Ripka
(Ref. 1).

Nucleus (2s' —9—y')/(x'+y'+s')

12C

20Ne

26Si oblate
28Si prolate
3'S prolate
36A

—0.48
0.57

—0.50
0.58
0.33

—0.28

—0.4/
0.59

—0.49
0.75
0.35

—0.24

s R. M. Tarbutton and K. T. R. Davies, Nucl. Phys. A120,
1 (1968).

We must calculate the antisymmetrized matrix
elements

(ninsM
I

UsT I
ni'ns'M')~ ——(ninsM I UsT I

nt'ns'M'&

—(—)s+T(n,nsM I UsT I n, 'ni'M'), (14)

where n denotes the principal quantum numbers, n=
(Ti., e„, is,), and (nin~M I UsT I

ni'ns'M') is the matrix
element for distinguishable particles, and describes the
scattering event in which particles 1' and 2' in the
harmonic-oscillator orbitals n&'n2', respectively, with
total spin S, s component of spin M', and isospin T,
are scattered into the orbitals n~, n2 with s component
of spin M. (The two-body potential conserves total
spin and isospin. )

We introduce the Talmi transformation to relative
and c.m. coordinates

I n,n, )= g (11N I nins& I nN).
nN

For Cartesian oscillator functions, the transformation is
particularly simple for the transformation bracket
immediately factors into three one-dimensional brackets
with

eg, !e2;! '/'
(N,Q,

I
gzi.pzs.

&
—( ) ni/2[(ni+ivi)/sl

e;!A,!

I
i= x, y, or s arid

is the standard binomial coefFicient. ) Computation of
the matrix element has thus been reduced to evaluation
of the sum

(n,n,M I UsT
I
ni'n, 'M')

(nin2 I
nN) (n'N

I
ni'ns'&

nNn/

&c I 1—(—)"*'+~'+"*'++ )(n(N) M
I

UsT
I
n'(N)M'&.

(17)

Note that the above sum is, in fact, over only three
variables. For if, e.g. , we fix N, then n and n' are deter-
mined by the requirement that the transformation
bracket be nonvanishing. The matrix element in
relative coordinates may be calculated very easily as
we illustrate in the case of the central forces.

For velocity-independent central forces,

(n(N) M I UsT I
n'(N) M')

~sT(~* I I exp( —~'/2~$T ) I I
ri* )

X (&s II exp( —y'/2~sT') ll ri.'&

&&(is Il «p( —s'/2~sT ) II I*'& (18)
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TABLE V. Wave functions for the oblate and prolate solutions of ~Si.

"Si (Oblate)
b~= b~= 1.877 b, = 1.514

a'Si (Prolate)
b =b„=1.684 b,=2.017

m~n, n, g

1+
—15.2

Even-parity states
3+

—14.6
]+

—10.4

000 f
«110 1'

200t
020 t'

002 t'

—101 J,

2011 J,

0.999
0.000

—0.027
—0.027
—0.028

0.005
—0.005

0.000
0.707
0.500

—0.500
0.000
0.000
0.000

0.036
0.000
0.695
0.695

—0.092
-0.110

0.110

0.000
—0.685

0.485
—0.485

0.000
—0.174
—G. 174

0.999
0.000

—0 ~ 035
—0.035

0.000
—0.012

0.012

0.004
0.000

—0.014
—0.014

0.955
0.209

—0.209

0.000
0.074

—0.052
0.052
0.000
0.703
0.703

0.011
0.000

—0.080
—0.080
—0.030

0.671
—0.671

(2k) ~ 3
—38.3

1
—36.4

Odd-parity states

23 ~ 3
3

-30.3
1

—26.0

001 t'

—100 J,
2010 J,

0.000
0.707
0.707

0.157
0.698

—G.698

0.988
—0.111

0.111

0.994
0.077

-G.077

0.000 —0.109
0.707 0.703
G.707 —0.703

with V. SOLUTION OF HF EQUATIONS

(22, I I exp( —x2/2nsr')
I I

22,') = dxu„, (x)

g exp( —x2/nsr2) u„. (x)
=-'I:&+(—)"'""j

e Ie,'Ib'/' ( ) (nn —nni)/2

x
2nn+nn~j (]+n 2/$ 2) 1/2(nn+nn~+1)

(2nsr'/4') '

2 L'2(22 —J)3 I
2(22' —~)ill(

The index l runs from the minimum of e„e,' down in
units of two to zero or one. The velocity-dependent
term requires, in addition, the evaluation of the
reduced matrix element

&~- II p' exp( —*'/2n. r')+-p( —*'/2n-') p.' ll ~.'&
= (I/b. ') I 22.+ 22.'+ I—(nor'/2f, ') (a/anar) 3

X (22, II exp( —x2/2nsr2) II 22,'), (20)

where in deriving the above we have made use of the
fact that

I 22,) is a solution of the harmonic-oscillator
equation in one dimension.

Since we have parametrized the radial form of the
interaction so that it separates in Cartesian coordinates,
the noncentral portions of the potential may be eval-
uated as readily. Details are given in the Appendix.
Thus the computation of any given matrix element
proceeds very rapidly. This obviously is an essential
condition for the present calculation since it is necessary
to compute such a vast number of matrix elements.

Because we are dealing with nonspherical nuclei, we
expect to find a multiplicity of solutions to the HF
equations, corresponding to various deformations.
There are two main methods which one may use to
explore the various solutions. The first method utilizes
the fact that the HF equations are to be solved by an
iterative technique. We pick an initial density matrix,
evaluate the HF potential I', diagonalize the HF
Hamiltonian h= 2'+ I', recompute I' with a new density
matrix determined by filling the orbitals of lowest,

energy obtained in the diagonalization of h, and iterate
until the sequence converges. Thus, all possible solutions
should be found by simply exhausting all of the ways in
which one can choose the initial density matrix. An
alternative method is to force the nucleus to change
deformation by placing it in. an external (quadrupole)
field. If the. external Geld is large compared to the self-
consistent nuclear 6eld, then the nuclear shape will be
determined by the external field and the nucleus can be
driven (discontinuously, due to shell structure) from
one solution to another. This latter method is particu-
larly useful in gaining insight into the nature of excited
states of collective nature, since it enables one to map
the energy surface in the vicinity of a true solution.
For the present, we restrict ourselves to a discussion of
the solution at the true minima and adopt the erst
method outlined above. The Cartesian basis, as it
turns out, is once again a rather natural one in that it is
fairly easy to intuitively pick initial density matrices,
which then converge to the desired results.
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VVe then proceed by choosing a density matrix

&%'2'»1&1 ~ ~n2 ~ny y

X occupied

compute the HF potential

I' .;;= Q -', (2T+1)C,ia~~sC. ..ir &~s

ngtrgnmemFS

(21)

VL RESULTS

The results presented here use a basis of oscillator
functions with n,+e„+e,&2. No significant improve-
Inent is obtained by including the set of functions with
e,+e„+n,=3. Thus, for example, if we minimize the
ground-state energy of "Si using the lower dimen-
sionality and then, without further change of the
-oscillator parameters, increase the basis, we 6nd less
than a 1% change in the total binding energy, single-
yarticle energies, and nuclear size and shape.

Our results are in general agreement with the results
of Ripka' and of Stamp. Thus, we find that the nuclei
~ Ne, "Si, and 'Ar are axially symmetric with 'Ne
prolate, and "Si and "Ar oblate, while '4Mg and "S are
triaxial. Although the shapes agree with the general
arguments put forth by Banerjee et ul. ,

" two of the
nuclei "Si and "S possess solutions of different sym-
metry which in each case lie less than 4 MeV above the
lower-energy solution.

Table II" lists some of the results of the study. In
addition to total binding energies and rms radii, we
give the (intrinsic) electric quadrupole moments Q2o,

Q» as defined by

Q2~ = Q (167r/5) 'I'(r'Fg„), (23)
protens

and also the expectation value of the angular momen-
tum (J'). As may be seen, the nuclear sizes are in
reasonable agreement with experiment. Using the
adiabatic approximation, ~ we have compared the
intrinsic quadrupole moment of "Ne with that obtained
in a shell-model calculation" and find our result of 44
fm~ in reasonable agreement with the extracted value of

9 A. P. Stamp, Nucl. Phys. A10S, 627 (1967).IM. K. Banerjee, C. A. Levinson, and G. J. Stephenson, Jr.,
Phys. Rev. 178, 1709 (1969)."R.Hofstadter and H. R. Collard, Lundolt-J3ornstein (Springer-
Verlag, Berlin, 1967).

'~ A. Bohr and B.Mottelson, Kgl. Danske Videnskab. Selskab,
Mat. -Fys. Medd. 2'7, 16 (1953).

~3 I am indebted to J.B.McGrory for a discussion of this recent
result of the Oak Ridge shell-model group.

X (nni~ I +&r I n'n2M')&p~~2'»» (22)

add to it the kinetic energy matrix

t„. ..=(na I p'/2m
I
no')

to form the HF Hamiltonian, and iterate as described
.above.

49 fm'. The shell-model calculation used an eGective
charge -', e.

The binding energy per particle is plotted versus
2 "' in Fig. 2. Note that the deformed nuclei lie above
the straight line which is drawn as a fit to the spherical
nuclei "0 and Ca and nuclear matter. Thus, higher-
order correlations omitted in HF appear to be of morc
importance for the open-shell nuclei. '4

In Fig. 3, we compare the single-particle energies of
the ground-state HF solutions with those of Ripka' and
Stamp. ' Where comparison is possible, there is qualita-
tive and, in most cases, semiquantitative agreement.
The levels of the axially symmetric nuclei are compared
with experiment in Table III,"where the agreement is
again reasonable.

Further comparison with the results of Ripka' is made
in Table IV where it may be seen that, with the excep-
tion of the excited (prolate) state solution of "Si, there
is rather remarkable agreement on nuclear shapes. The
contribution of the valence particles to the electric
quadrupole moment and to (J') is plotted in Fig. 4,
where it is seen that the core contribution to Q2, is
somewhat less than the 30% found in calculations
using a basis of spherical oscillator functions. ' In order
to obtain a more graphic representation of the varied
equilibrium shapes, we have plotted in Figs. 5(a) and
5(b) equidensity surfaces in the plane containing the
symmetry axis for the oblate and prolate solutions of
"Si. The corresponding wave functions are given in
Table V. The results for the prolate solution, B.E.= 153
MeV, r,=3.06 frn, Q,o——76.1 fm', and (J')=28.1,
may be compared with the corresponding numbers for
the oblate solution which are given in Table II. The
near identity of the rms radii for the two solutions does
not in itself provide a very valid test of the volume
conservation hypothesis, for the value of this parameter
is very heavily influenced by the nuclear surface In an.
eGort to obtain a more meaningful comparison, we
have calculated the volumes of the oblate, prolate, and-
spherical states of "Si as defined by

(24)

i.e., the volume in which the density is no less than 20%
of the maximum density. We find that the volumes
defined in this manner differ by less than 10%.A more
accurate determination of this volume might reduce the
variance to 5%.

VIL CONCLUSIONS

In looking over various efforts, nearly all nuclear
calculations yield rather similar results for the energy
levels and equilibrium shapes of the light nuclei. Thus,

' S. J. Krieger, Phys. Rev. Letters 22, 97 (1969).
'~ G. J. Wagner, Bull. Am. Phys. Soc. 14, 85 (1969);L. R. B.

Elton and A. Swift, Nucl. .Phys. A94, 52 (1967).
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although we still place a high priority on the develop-
ment of an interaction which can be used throughout
the Periodic Table, it is clear that the more phenome-
nological potentials developed for a specific region of
the table, here specifically the s-d shell nuclei, will yield
completely consistent results in that region. In particu-
lar, the eGective one-body spin-orbit interaction
appears to be an adequate approximation for the
calculation of light nuclei.

We have further shown that a basis of Cartesian
oscillator functions is extremely efficient in minimizing
the eGects of truncation. Although this advantage will

only become more pronounced when one attempts to
calculate the large deformations in the heavy fissionable
nuclei, it must unfortunately be weighed against the
huge number of two-body matrix elements which is
required in this representation.
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APPENDIX: MATRIX ELEMENTS OF
NONCENTRAL PORTION OF

INTERACTION

For the spin-orbit interaction, we must compute

&n&n2SM I V,L S
I
n~'n2'SM')

=g&ngn2 I
nN)&n'N

I n, 'n2')I 1—(—)"'+ + j
X&n II rXp[ —a, exp( —r/2u, ')g II n')

x &sM I
—;(~,+~,) I

sM'). (25)

The spin matrix element is given by

&SM I
—',(ol+o2) I

SM') =4xL(1/~2) (bM', 3E 1+bM', M+1)~—
(&/~2) (bM', M-1 bM', M+ 1)p+ Mba's$ ) (26)

and the x component of the reduced matrix element in

coordinate space by

* &n II rXp exp( —r'/2u') [in'&

= &n, I I exp( —x'/2u, ')
I [

n ') f -', i[ (b„/b, ) —(b,/b„) g

X(n„[I (y/b„) exp( —y'/2 ) I[ n„')

X &n, I[ (s/b, ) exp( —s'/2u') [[ n ')

+i[ (n.+» "'(b*/b. ) &n* II (s/b. ) exp( —s'/2u, ') ll n*'&

X (n„+1 I I exp( —y'/2u')
I I

n ')
—(n*+1)'"(4/b*) &n. II (y/4) exp( —y'/2u ') ll n. '&

X&n,+1 [[exp( —s'/2u') [I n, ')]}. (27)
The reduced matrix element

&n. [[ y exp( —y'/2uP) [[ n.')
( n ln ~f )&/~ (—) k(ny —w —o(u.&/b &)

I 2ny+nyi 1j L—]+(u 2/b 2)j (ny+np~+2)

~ ~ ~( L-,'(n„—1—l)g!L(n„'—i))!i! 1+1 b„

The matrix element as given above is for ~z„'(n„and.
e„', e„of opposite parity. The sum over / runs from n„'
down in units of 2 to 0 or 1.For the tensor interaction, ,

we must compute

&ngn2SM
I V~Sgg

I
n$ n2 SM )Q

I c.

g &n~n2 I nN) (n'N
I

n~'n2'&
nNn~

XI 1 ( )n+s+rj(24'. /5)

X (n [ [ V2(r) I
—2;(r'/2u ) exp( —r'/2u, ') j [ [

n')

&SM I 2'2(&1 ~2) I
SM'& (29)

The spin-matrix element is given by"

&SM I Tp, (ay, o'g)
I
SM') =bag(20/3) '12C~,~"' (30)

The reduced matrix element in coordinate space re-
quires, in addition to the elements which we have dis-
played previously,

&n. II y' exp( —y'/2u ) II n.')
=u,'(~/~u;) &n. II exp( —y'/2') II n.') (31)

Note that the matrix elements are given between
HOWF's which do rot include the additional phase
factors included in the definition of our basis states.
"D. M. Brink and G. R. Satchler, Angular 3IIomentum (Claren-

don Press, Oxford, 1968). It is amusing to note that, with the ex-
ception of the spin--', Clebsch-Gordan coef'6cients which appeared
in the expression for the HF potential, this is the only vector
coupling coe@.cient to appear in the entire calculation.


