Spontaneous-Fission Decay Constant of ²⁴¹Am[†]

RAYMOND GOLD AND ROLAND J. ARMANI Argonne National Laboratory, Argonne, Illinois 60439 AND

JAMES H. ROBERTS* Northwestern University, Evanston, Illinois 60201 (Received 6 October 1969)

The ²⁴¹Am spontaneous-fission decay constant has been determined with solid-state track recorders of preetched mica. Measurements have been carried out with electroplated 241Am sources. Consistent spontaneousfission-rate measurements have been obtained for a large range of fission track densities over more than a 3yr period. Systematic error due to source impurities has been established as insignificant relative to statistical error. The present experimental result for the ²⁴¹Am spontaneous-fission decay constant is $\lambda_f = (6.04 \pm$ 0.13) ×10⁻¹⁵ yr⁻¹.

I. INTRODUCTION

TECHNIQUES for precise fission-rate measurements with solid-state track recorders (SSTR) have already been established¹ and applied for the observation of very long spontaneous-fission half-lives.^{2,3} This method has been employed in the present ²⁴¹Am experiments, which utilized SSTR of pre-etched mica. These experiments have been in progress for some time and a preliminary account of this work has been reported.⁴

Since the α -to-fission rate for ²⁴¹Am is greater than 10¹¹, this isotope provides a valuable test of the ability of mica SSTR to record fission-fragment tracks in extremely high α -particle background. While surface damage to the mica was apparent in these experiments, fission-fragment tracks still stood out with distinct clarity. In one such experiment, mica was exposed to approximately $4 \times 10^{13} \alpha$ particles/cm² and although considerable surface damage resulted, the fission-fragment tracks were still recorded with good clarity. This insensitivity to background effects demonstrates the suitability of properly selected pre-etched mica for this type of measurement.

II. SOURCE PREPARATION AND CALIBRATION

In contrast with the measurement of the spontaneousfission decay constant of ^{238}U ,³ asymptotically thick sources of ²⁴¹Am are not readily available. Consequently, ²⁴¹Am sources were prepared by electrodeposition on platinum over an area of 1.96 cm². Such sources are known to be nonuniform and therefore require individual calibration.1

To examine the relative efficiency as a function of thickness μ , ²⁴¹Am sources were prepared in the region $\mu < 500 \ \mu g/cm^2$. Four independent calibration exposures were performed with these sources on the uniform flux assembly. The results of these experiments are summarized in Table I.

In these irradiations, all sources are simultaneously exposed to a uniform flux of slow neutrons.¹ Fission induced by a uniform neutron exposure of these ²⁴¹Am sources provides track data for the *relative* efficiency calibration of these sources. The first exposure was bare. whereas the remaining exposures employed cadmium covers. Since source nonuniformity effects can be counteracted to a limited extent by introducing an annular mask between the SSTR and the electroplated source, annular aluminum masks 0.008 cm thick and 0.44 cm² in area were used for the thicker ²⁴¹Am sources μ >100 μ g/cm². However, the existence of nonuniformity requires that all fission tracks be counted in each mica SSTR. In many cases, total track counts were obtained by two different observers and very good agreement was found.

To obtain an absolute scale for these relative efficiency measurements, at least one high-quality source must be obtained in the region $\mu < 100 \ \mu g/cm^2$. In this region, it has been established that the highest possible efficiency, i.e., the optical efficiency, is attained with high-quality fission sources. For mica, the optical efficiency is known to be 95%.1 Since source 2 lies in this region and consistently yielded the highest track density per µg of 241Am in all experiments, it can be assumed to possess the optimum 95% optical efficiency. All other efficiencies listed in Table I have been obtained in terms of this assignment for source 2.

In addition to the known 0.5% error in the optical efficiency,¹ the experimental error given in Table I contains independent contributions due to fission-track

[†] Work performed under the auspices of the U.S. Atomic Energy Commission.

Present address: Physics Department, Macalester College, St. Paul, Minn. 55101. ¹ R. Gold, R. J. Armani, and J. H. Roberts, Nucl. Sci. Eng. **34**,

^{13 (1968).}

¹ R. Gold, R. J. Armani, J. H. Roberts, and A. Behkami, Bull. Am. Phys. Soc. 11, 825 (1966). ⁸ J. H. Roberts, R. Gold, and R. J. Armani, Phys. Rev. 174,

^{1482 (1968)}

 ⁴ J. H. Roberts, R. Gold, and R. J. Armani, in Proceedings of the International Topical Conference on Nuclear Track Regis-tration in Insulating Solids and Applications, 1969, Vol. 2, Chap. VIII, p. 15 (unpublished).

Exposure	Source ^a			Total	$Tracks/\mu g$	
No.	No.	μg ²⁴¹ Am	μ^{b}	tracks	²⁴¹ Am	Efficiency
1 (Bare)	1	93.926	47.9	7 472	79.55	$0.907{\pm}0.014$
	2(p)	159.962	81.5	13 330	83.33	0.950 ± 0.005
	3(m, p)	77.818	176	6 162	79.18	0.903 ± 0.015
	4(m)	177.57	403	11 926	67.16	0.766 ± 0.011
	5(m)	210.97	479	14 006	66.39	$0.757 {\pm} 0.010$
2 (Cd)	1	93.926	47.9	9 327	99.30	$0.950 {\pm} 0.014$
	2(<i>p</i>)	159.84	81.5	15 878	99.30	0.950 ± 0.005
	3(m, p)	77.818	176	7 315	94.00	0.899 ± 0.014
	4(m)	177.57	403	13 340	75.12	0.719 ± 0.009
	5(m)	210.97	479	16 398	77.73	$0.744{\pm}0.009$
3 (Cd)	1	88.713	45.3	6 905	77.80	$0.940{\pm}0.015$
	2(p)	158.904	81.1	12 490	78.60	0.950 ± 0.005
	3(m, p)	76.985	175	5 860	76.12	0.920 ± 0.016
	4(m)	177.309	403	11 060	62.38	$0.754{\pm}0.011$
	5(m)	207.981	473	13 344	64.16	0.775 ± 0.011
4 (Cd)	2(p)	158.94	80.2	3 192	20.09	0.950 ± 0.005
• •	3(p)	161.44	81.5	3 125	19.36	0.915 ± 0.024
	4	950.42	480	16 243	17.09	0.808 ± 0.017
	5	760.27	384	12 862	16.92	0.800 ± 0.016

TABLE I. Efficiency measurements for the ²⁴¹Am sources.

^a *m* denotes a mask has been used; p denotes the source has been obtained from the second ²⁴¹Am purification. ^b Source thickness in units of μ g/cm² of ²⁴¹Am. ⁶ Source No. $2(\phi)$ has been assigned an optical efficiency 0.950 ± 0.005 , and all other efficiencies are obtained in terms of this assignment.

Source thickness in units of μ g/cm² of \cdots Am.

counting. The applicability of Poisson statistics in estimating random fission-track counting errors has already been established.¹

III. ²⁴¹Am SOURCE PURITY

A principal source of systematic error in the measurement of long spontaneous-fission half-lives is the presence of contaminants of much shorter half-life. The ²⁴¹Am used in these experiments was prepared by slow neutron capture in ²⁴⁰Pu and was obtained as pure ²⁴¹Am.⁵ Consequently, impurities of plutonium or curium are of great concern.

Mass spectroscopic analysis of this 241 Am source revealed no evidence of either plutonium or curium isotopes within the detection sensitivity of the spectroscopy system. These detection limits are one part in 10^7 and one part in 10^6 for plutonium and curium isotopes, respectively. Since the expected 241 Am spontaneous-

T	ABLE	п.	²⁴¹ Am	spontaneous-	fission	track	data
---	------	----	-------------------	--------------	---------	-------	------

Source No.ª	μg ²⁴¹ Am	μ^{b}	Efficiency	Exposure time°	Observed tracks	$T_f^{\mathbf{d}}$	
2 (Cd, p)	160	81.5	0.950 ± 0.005	79 243	367	1.08 ± 0.06	
3 (Cd, m, p)	77.8	176	0.907 ± 0.009	79 273	179	1.03 ± 0.08	
4 (Bare)	965	492	0.808 ± 0.017	8 419	179	1.21 ± 0.09	
4 (Bare)	962	491	$0.808 {\pm} 0.017$	51 506	1136	1.16 ± 0.04	
4 (Cd, m)	177.6	403	$0.745 {\pm} 0.006$	50 381	213	1.03 ± 0.07	
5 (Cd)	811	413	0.800 ± 0.016	159 758	2909	1.17 ± 0.03	
5 (Cd)	777	396	0.800 ± 0.016	51 597	943	1.12 ± 0.04	
5 (Cd, m)	211.0	479	0.758 ± 0.006	50 370	274	0.97 ± 0.06	
. , ,				We	ighted average ^e :	1.147 ± 0.024	

^a m denotes a mask has been used; p denotes the source has been ob-

tained from the second 241Am purification.

^d Units of 1014 yr.

 $^{\rm e}$ The source 5 (Cd, m) measurement has not been used in the formation of this statistically weighted average, since this result lies more than 2 standard deviations from the mean.

⁵ Purchased from Isotope Sales Division, Oak Ridge National Laboratory, Oak Ridge, Tenn.

^b μ g/cm² of ²⁴¹Am.

^o Minutes.

FIG. 1. The cadmium-covered source-holder assembly used for the ²⁴¹Am spontaneous-fission half-life measurements. Sourceholder assemblies, without cadmium, were also used for bare ²⁴¹Am spontaneous-fission half-life exposures.

fission half-life is roughly 1014 yr, whereas the halflives of possibly troublesome plutonium isotopes are about 10¹¹ yr, then no significant systematic error can arise from plutonium impurities. This conclusion did not hold, however, for curium isotopes since the latter have spontaneous-fission half-lives around 10⁶ yr, and

therefore curium impurities of as little as one part in 10^8 could be serious.

An α pulse-height spectrum analysis also failed to reveal the presence of either ²⁴²Cm or ²⁴⁴Cm. Unfortunately, this method did not possess a sufficiently high sensitivity to rule out troublesome quantities of ²⁴²Cm and ²⁴⁴Cm. Hence, further precautions against curium contaminants were necessary. To this end, after the first set of ²⁴¹Am spontaneous-fission half-life exposures, the ²⁴¹Am was chemically repurified by a method due to Ryan and Pringle.⁶ In this repurification process, curium and plutonium impurities are reduced by a factor of roughly 105. To test for the effects of these contaminants, further spontaneous-fission half-life exposures were carried out with these repurified sources.

IV. RESULTS

The ²⁴¹Am sources were pressed against selected preetched mica SSTR as shown in Fig. 1. Exposures were carried out with and without annular masks as well as with repurified sources (No. 2 and No. 3). Bare and cadmium-covered packages were placed in the same shielded low-level neutron environment used for the measurement of the ²³⁸U spontaneous-fission decay constant.³ The experimental track data obtained from these exposures are summarized in Table II.

The efficiencies used for sources 3 (Cd, m, p), 4 (Cd, m), and 5 (Cd, m) have been obtained from statistically weighted averages⁷ of the calibration exposures 1 (bare), 2 (cadmium), and 3 (cadmium) displayed in Table I. The experimental error assigned to each half-life measurement in Table II consists of independent contributions due to efficiency error and track-counting statistics.

Comparison of bare and cadmium-covered exposures in Table II reveals that neutron-induced fission events can be neglected. Table II also discloses good agreement between measurements obtained from both the repurified and original ²⁴¹Am. It can, therefore, be concluded that plutonium and curium contaminants were also negligible in the original ²⁴¹Am.

The final statistically weighted average of the halflives listed in Table II is $(1.147\pm0.024)\times10^{14}$ yr, or a corresponding spontaneous-fission decay constant of $(6.04\pm0.13) \times 10^{-15} \text{ yr}^{-1}$.

ACKNOWLEDGMENTS

The authors wish to thank Louise Kenworthy, Betty Hellrich, Shirley Linfield, Jan Zaluda, and Monica Zappardo for their care and patience in track counting. In addition, the authors are indebted to Dale Smith for general assistance with the experiment and to Frances Lyon for assistance in ²⁴¹Am source preparations.

⁶ V. A. Ryan and J. W. Pringle, Dow Chemical Company, Rocky Flats Plant, R.F.P. Report No. 130, 1960 (unpublished). ⁷ In the formation of a statistically weighted average the weights

are taken as proportional to the total number of observed tracks.