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calculation. This contrasts with the usual bound-state
Inodels.

In electron scattering we calculated the transverse
form factors for 1 and 2 states because these form
factors show the importance of magnetic effects. These
results were compared with experiment, and the pre-
dicted levels are generally seen. The integrated form

.factors that can be derived from the energy spectra
show reasonably good agreement with experiment. We
have also seen that normalizing certain form factors
by the ratio of experimental to theoretically predicted
'integrated photoabsorption cross sections improves the
results, again pointing out the importance of SU(4}
to the nuclear physics of the giant resonances. The
v idths we predict for our states are in qualitative agree-

ment with experiment. This model also justices previ-
ous identification of narrow giant quadrupole states
predicted by deForest. We have also investigated why
the high-lying magnetic 1 state does not become huge
at large momentum transfers, although shell-model cal-
culations, including this one, predict a vanishing of the
giant dipole resonance for momentum transfers q~120
MeV/c due to interference between the electric and
magnetic parts of the 1 transverse operator. This is
not seen experimentally.
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The scattering matrix is derived for the scattering of nucleons by nuclei lacking one nucleon from being
doubly magic. It is assumed that an average 6eld has been determined through a Hartree-Fock procedure
(HF). The residual interaction is treated in the random-phase approximation (RPA). In contrast to pre-
vious treatments, it is not assumed that this interaction is separable. The RPA ground state of the com-
pound system is given by a correlated wave function ~%'0). It is assumed that states of the target and residual
nucleus can be described as one-hole states in this correlated ground state

~
+0). It is found that the RPA

equations allow for a proper definition of asymptotic states only if the full Hamiltonian (including the c.m.
energy) is used in the HF procedure. A general, yet explicit, expression for the 5 matrix is obtained by
applying to the channel-channel part of the residual interaction a method Qrst proposed by steinberg. The
correlations contained in ( Np) give rise to poles of the scattering matrix for real negative energies below

the energy of the lowest bound state, i.e., the ground state
~
+o ). In the energy region of physical interest,

these poles have two eBects on the scattering matrix. First, a constant background term is introduced.
Second, the partial widths Pq, for decay of a compound state (X) into an open channel (c) are complex. The
sum of the partial widths, ZJ„Fq„ is compared with the sum of the total widths, ZJ,Fq. It is found that the two
sums dier by terms of second order in the admixture of correlations in the ground state. The influence of
symmetry properties of the Hamiltonian on the RPA solutions is discussed. It is shown that the scattering
matrix derived is that in the c.m. frame, and it is completely independent of the total momentum of the
nucleus.

I. INTRODUCTION

&HE random-phase approximation (RPA) is a useful. tool for the understanding of collective properties
ef nuclear levels. ' It serves primarily as a useful model
in which the occurrence of collective modes of motion
can be theoretically understood on a microscopic basis.

*Work supported in part by the U.S. Atomic Energy Com-
mission, under Contract No. AT(30-1)-3223 and AT(30-1)-2726.

f Present address: Institut fur Theoretische Physik der Univer-
sitat Heidelberg, Heidelberg, Q'est Germany.

f On leave of absence from Heidelberg University and from the
Max Planck Institut fiir Kernphysik, Heidelberg, Germany.' M. Baranger, Phys. Rev. 120, 957 (1960); R. Arvieu and M.
Veneroni, Compt. Rend. 250, 922 (1960); T. Marumori, Progr.
Theoret. Phys. (Kyoto) 24, 331 (1960); S. T. Beliaev and V. G.
Zelevinsky, Nucl. Phys. 39, 582 (1962).

Compared with the ordinary shell-model for Tamm-
Dancoff (TD) $ treatment, the RPA offers an improved
understanding of the relationship between symmetry
properties of the Hamiltonian and the occurrence of
collective modes. ' The RPA also yields a semiquantita-
tive account of the positions and electromagnetic prop-
erties of vibrational states. '

Since the RPA has turned out to be such a useful

' D. J. Thouless, Nucl. Phys. 22, 78 (1961);D. J. Thouless and
J. G. Valatin, ibid. 31, 211 (1962).' G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22,
1 (1961); G. E. Brown, J. A. Evans, and D. J. Thouless, ibid
45, 164 (1963);A. Goswami and M. K. Pal, ibid 35, 544 (1962.);
V. Gillet and N. Vinh Mau, ibid. 54, 321 (1964);V. Gillet, A. M.
Green, and E.A. Sanderson, ibid. 88, 321 (1966);V. Gillet and E.
A. Sanderson, ibid. A91, 292 (1967).
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model for collective bound states, it is of interest to
study the nucleon-nucleus scattering problem within
the same approximation. Since the RPA is the only
microscopic model of collective motion, one may thereby
hope to gain an understanding of the properties of
collective compound-nuclear resonances. The ordinary
TD treatment of this problem has been studied rather
widely. ' The properties of the nucleon-nucleus scattering
matrix in the TDA are well understood. The RPA differs
from the Tamm-Dancoff approximation (TDA) in that,
the ground state of the nuclear system is assumed to be
a correlated wave function. Furthermore, the excited
states of the nuclear system are assumed to be given by
applying a boson operator to this correlated ground
state. We shall see in this paper that these two assump-
tions yield a scattering matrix that is different in struc-
ture from the one obtained from the TDA. We believe
that the study of this modification sheds an interesting
light on the question to what extent the analytical
properties of the scattering matrix are infiuenced by the
ground-state correlations.

The extension of the RPA to the nucleon-nucleus
scattering problem was studied previously by various
authors. ' ~ In these papers, explicit solutions were
obtained only for the case of a separable two-body
interaction. This assumption is not made in the present
paper; it is hoped that one thereby exhibits those
properties of the scattering matrix that are inherent in
the RPA and thus separates them from other properties
which are due to the assumption of a separable approx-
imation.

This paper is concerned with the general solution of
the RPA equations in the continuum and with the
properties of this solution. Aside from the question
raised above, we investigate whether there is collective
enhancement of individual partial widths of nuclear
resonances; we establish sum rules for these widths; we
investigate the role of the linear-momentum operator
in the RPA and the occurrence of spurious modes of
excitation. We also give attention to the question why
the RPA equations can be solved without any real
difficulty, despite the fact that the RPA states contain
1p-1h, 2p-2h, ~ ~ ~ states, i.e., contain several particles in
the continuum, so that one might expect to run into
the complexities of the three- and the mariy-body
scattering problems.

The present study is limited to even-even doubly
magic compound nuclei, and we take into account only
nucleon channels.

In Sec. II, we give the RPA equations and discuss the
assumptions made in deriving these equations. General
properties of the S matrix are discussed in Sec. III. The

1

4 C. Mahaux and H. A. Weidenmiiller, Shel/-Morsel 3pproach to
ENclear Reactiogs (North-Holland Publishing Co., Amsterdam,
1969).' K. Dietrich and K. Hara, Nucl. Phys. A111, 392 (1968).' R. H. Lemmer and M. Veneroni, Phys. Rev. 17'0, 883 (1968);
T. Fliessbach, Z. Physik 218, 385 (1969).

7 K. Dietrich and C. Dover, Z. Physik 221, 340 (1969).

='p&c'p
I

T'I c'p)+ p 2 «.
z=1

(2)

Here and in the following, the index l extends over the
A bound states occupied in

I
C'p).

We define the creation operator a&t for a hole in
I

4p)
by the removal of a nucleon in one of the eigenstates of
hp so that Gi I 4p) =0. Deferring until later in this
section a discussion of the physical significance of those
eigenfunctions of hp that are not occupied in I @p), we
define the creation operator a„~ for a particle in an
eigenstate of hp not occupied in

I
4 p), so that a„ I

4'p) = 0.
The index p extends both over discrete and continuum

content of Secs. II and III partly parallels that of
Refs. 5 and 6. In Sec. IV, we construct the 5 matrix
explicitly for the case of no channel-channel coupling,
and we derive sum rules for the partial widths. The
channel-channel coupling is explicitly included in the
treatment in Sec. V, which follows closely the algebraic
treatment developed earlier for the TDA. Section VI
deals with the c.m. problem. Section VII contains the
conclusions.

II. RPA EQUATIONS

When applied to a spherical nucleus in which the
nucleons interact via a two-nucleon potential U, the
Hartree-Pock procedure determines a spherically sym-
metric single-particle potential eo. The single-particle
Hamiltonian hp= 3+Bp (with t denoting the operator of
kinetic energy) has a, 6nite number of bound states and
a continuum of scattering states. The energies 6 )F40
of the bound states are labeled by the principal quantum
number m, the orbital angular momentum l, and the
total spin j of the nucleon. The bound-state wave func-
tions (1/r) w„&P(r)'JJip are normalized to unity. Here,

'9U'=~'Z C(~pi; g ~, ~) I'i' '(0, 4)xi'", (1)

where I'p & is a spherical harmonic and x~/2 a non-
relativistic spin wave function. The scattering states
(1/r) n&, (r, h)'g&p correspond to the energy 5'h'/2M&0
(with HE=nucleon mass). They are normalized to a
8 function in energy. The regular radial wave functions
u&;(r, h) are chosen to be real. They are characterized
by a real phase shift 8&, (h) .

The Hartree-Fock approximation to the ground state
is given by the Slater determinant

I
Cp) obtained by

distributing the 2 nucleons over the lowest 2 bound
states of ho. In the following, we restrict ourselves to
nuclei that are doubly magic. Then,

I 4») is uniquely
dehned, except for a phase. We define the total Hamil-
tonian IJ= T+ V, with

A

2= Z~(i).
j=l

The expectation value of H with respect to
I

4'p) gives
the Hartree-Pock approximation E"~ to the total bind-
ing energy,

EHF=(c,
I PI c,)
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states. The shell-model Hamiltonian

H=PF+:Hs.'+:V:. (4)

Here, .' V: is the normal form of the interaction V. It is
the residual interaction of the Hartree-Fock procedure.
Figure 1 lists the (antisymmetrized) matrix elements
of V contributing to '.V:, together with their diagram-
Inatic representation. The graphs on the far right-hand
side of the figure stand for the antisymmetrized matrix
elements.

The simplest modes of excitation of the system are
the particle-hole states a„tait

I
Cs). The usual 1p-1h

p I

(o) (pl'iVI I p'), :
p' I'

p I

pl )I

(b) (p p'
I V I I I'). : +---+ +

& I I
'

I V I p p' &. : +

p I p' I'

gc ) &p'p IV I p" I &,

p'

pl
I

p' I

pi
I

p

{d) &p I-IVI I I &.

(e3 &p.p" Iv I
p'p"'&.

~ I

p
p p

Hp Q——hp( j)
j=l

is then written using second quantization,

Hp= —P eiQg Gi+ P e&Gp G~+
z z goccupMci

Z ei+:Ho: (3)
Z; occupied

The dots indicate that we take the product of the
creation and annihilation operators in normal order with
respect to the Hartree-Fock ground state

I
Cs). The

total Hamiltonian takes the form

(a„'a,t) ~A, t; (aia, )~A, if p denotes a bound
orbital,

shell model (or TDA) consists in diagonalizing H in the
space of these states. The Hartree-Fock ground state
I Cs) is stationary with respect to such excitations, i.e.,
(C's

I
Ha, tait

I Cs) =0. Thus,
I Cs) remains the ground

state of the TDA. Excited states are given as linear
superpositions of 1p-ih states. The method can be
extended to describe nucleon-nucleus scattering on
targets approximated as hole states in

I
Cs).

The TBA neglects all matrix elements of V except
those shown under (a) in Fig. 1. It consists in summing
over all ip-ih intermediate states, as shown schemat-
ically in Fig. 2(a) . The RPA goes one step further than
the TDA. It includes the matrix elements of V shown
in Fig. 1(b) as well as those shown in Fig. 1(a).
Figure 2(b) demonstrates that the RPA includes "back-
ward. -going graphs" as well as those typical of the TDA.
Inclusion of the matrix elements of Fig. 1(b) implies
that the RPA ground state differs from the TDA
ground state

I Cs). It contains 2p-2h, 4p-4h, ~ com-
ponents built on the TDA ground state

~
Cs). The

excited states are described as ip-ih excitations on this
new correlated ground state.

An illustration of a graph not included in the RPA is
given in Fig. 2(c). This graph is excluded because the
RPA summation does not include the exchange of
particle-hole lines, which do not begin from (or end at)
the same vertex. In other words, the RPA summation
keeps the bubbles intact. It has been shown' that
retaining only bubble diagrams is equivalent to assum-

ing that the particle-hole pairs a„~azt are inert, i.e., that
they behave like elementary particles. Since two crea-
tion operators for a particle-hole pair commute with
each other, the RPA is equivalent to treating each
Ip-1h pair as a boson. We therefore define boson
operators At, 3 as follows. We introduce the label 6—=

(p, /) to denote a particle-hole pair where the particle
is in a bound orbital; correspondingly, c=—(p, /) stands
for a particle-hole pair with the particle in a scattering
eigenstate of ho. Here and in the following, we pay no
attention to angular momentum coupling, since we are
only interested in the general structure of the RPA
equations and their solutions. The boson operators are

& f ) & I I "I V I
I' I'"

&,

pl
I I

phyll p p

I
~ [I )III

I"
I

J"

if p denotes a
scattering
orbital.

Fxe. 1. Components of the residual interaction '.V: of the HF
procedure. To the left, is the antisymmetrized matrix element; the
p's refer to particle states, the l's to hole states. In the center are
the Feynman-Goldstone graphs corresponding to these matrix
elements, both direct and exchange. The graph on the far right
includes both direct and exchange matrix elements at the vertex.
(a) "Forward-going" graphs included in both the TDA and RPA.
(b) "Backward-going" graphs included only in the RPA, which
give rise to correlations in the ground state. (c)—(i) Remaining
parts of the residual interaction, which are ignored in both TDA
and RPA.

E=Pks/235 —ei, (6a)

where ei and Pks/235 were defined above. For later use,
we define

—ez= &c (6b)

Correspondingly, the energy (with respect to Hp) of

The energy E in the argument of A, t(E) is defined by
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the operators Abt, Ab is

Eb= E&
—6~. (6c) ( a) + o ~ »

The boson operators are assumed to obey the usual
commutation relations

LAb& Ab' 7—ebb'& LA.(E), A"'(E') 7=~- ~(E-E'),

while all other commutators vanish.
The RPA to the Hamiltonian is obtained by dropping

the interaction terms (c—f) shown in Fig. 1 and by
replacing the 1p-1h operators in the remaining inter-
action terms by the boson operators defined above. %e
obtain

(g )
(c)QB EHF++ B+VB

Here, Ho~ is given by the RPA of the unperturbed
Hamiltonian Ho,

Fro. 2. (a) Intermediate states summed in the TDA and RPA
Intermediate p-h bubbles are kept intact. (b) Intermediate states
also included in the RPA. p-h bubbles are kept intact. (c) Ex-
ample of a diagram not included in TDA and RPA. One p-h
bubble is broken.BPR= Q EbAb"Ab+ Q dE EA,t(E)A, (E). (Sb)

b C +fc

Correspondingly, V is given by the RPA of the symmetry properties
residual interaction,

V~= Q'Ubb. AbtAb.
bb~

+bb~ ~brb j V7b, (E) =VI.b(E);

m„.(E, E') =W...(E', E). (9d)

+P dE
CC~ ec'

+—,I Q 'Kbb. AbtAb. "+H cI..

dE"U„(E, E') A, t(F) A„. (F')

bb~

dEVv b, (E)AbtA, t (E)+H.c.

+ Q dE vb. (E)AbtA, (E)+H.c.
b, c ec

The factors —,
' appearing in front of the fourth and sixth

term of the right-hand side of Eq. (Sc) are to avoid
double counting. The Hamiltonian (8) is a, quadratic
form in the boson operators. indeed, the RPA can be
thought of as a harmonic expansion of the Hamiltonian
about the minimum found in the Hartree-Fock proce-
dure. The eigenvalues and eigenvectors of (8) ca,n be
found by constructing the operators Q„t, which are the
normal modes of H~, that is, which satisfy the equa-
tions

00+-
C&C~ Ec

dE dE'%'...(E, E')
ccf

L&' Q.'7= E.Q.',

I Q., Q.'7=~..'
(ioa)

(104)

)&A,t(E) A, ." (E')+H.c. . (Sc)

Ub'b Ubb' j ~„,(E E') =~...(E' E) .

'U,b(E) ='Ub. (E). (9b)

The matrix elements denoted by V7 are those given in

Fig. 1(b); e.g. ,

~bb, = (pp' I v
I lP). if p, p' bound. (9c)

The mat, rix elements denoted by 'U correspond to the
1p-1h matrix elements shown in Fig. 1(a) . For instance,

'Ubb = (Pp I
v

I
p'/&. if p, p'bound. (9a)

Bemuse of our choice of phases, all matrix elements are
real. Hence,

(At the present time, we do not concern ourselves
with eigenbosons of the Hamiltonian that are related.
to svmmetry properties of H~, like the operator of total
linear momentum, etc. Such bosons are dealt with in
Sec. VI.) I.et

I 4b& be the wave function of the (nonde-
generate) ground sta, te of HR, ERP" the corresponding
eigenvalue,

QB
I
@ ) ERPA

I
+ &

1n the following, we choose E~p~ as the zero of energy,
ERPa= 0. It follows from Kq. (10a) that excited states
are given by

I +.&=Q." I +o&, (12a)

and that their excitation energy is E„.Since I 4'»& is the
ground state by definition, it also follows from Eq.
(10a) that

These matrix elements are easily seen to have the Q„ I ~,&=0. (12b)
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Once the operators Q„t have been found, Kq. (12b)
determines

~
%0), whereupon Kq. (12a) can be used to

construct the states
~

4'„).
The normal mode operators Q„t are written as linear

combinations of the basic boson operators,

Q.'= Z I Y.(b) A~' Y.—(b) A~I

solutions of Kqs. (11) then is that the states Q„t
~
40),

when taken in coordinate representation, have asymp-
totically an incoming wave only in channel c and out-
going waves in channel c and all channels c'Nc. This
boundary condition can be incorporated into Kqs. (11)
by rewriting the latter in the form of a Lippmann-
Schwinger equation. We take the commutator of Eq.
(10a) with the boson operator Ai, and use Kq. (13).
This yields

C

dEIZ, (~, E)A'(E) Z. (~—, E)A (E)I.
I Ai„BIO, Q„'7jyLAi, fU', Q„'jj=+E,Y,(b) (14a)

The amplitudes Y„(b), Y„(b), Z„(c, E), Z„(c, E) are
determined from the eigenvalue equation (10a) and
from the orthonormalization condition (10b). These
equations yield a finite number of discrete solutions,
corresponding to the excited bound states of H~. The
Kqs. (10) also yield a continuum of scattering states.
It is these states with which the present paper is mainly
concerned. Such scattering states are fully defined only

- if proper boundary conditions are imposed in the asymp-
totic region, r~ ~ . We determine these boundary condi-
tions in the following way.

We assume that the states of the target, and of the
residual nucleus, are obtained by removing one particle
from the correlated ground state

~
%o) of Kq. (11),more

precisely, by operating with c& on
~
Vo). It is thus

postulated that a hole in the correlated ground state is
an eigenstate of the Hamiltonian for the (A —1)—
particle system. Aside from the basic RPA assumptions
introduced above, this is the main assumption of the
present approach. It implies, for instance, that the
Hartree-Pock. fields for the A-particle system aiid for
the (A —1)-particle system are the same, within the
accuracy in which the other assumptions made above
are valid. Furthermore, the assumption implies that the
ground-state correlations are unchanged when a hole is
made. This is in keeping with t'he basic RPA assump-
tions. Finally, the assumption implies that we restrict
ourselves to a subset of all the states of target and
residual nucleus, since we do not consider, for instance,
states composed of one particle and two holes. Hence,
this assumption is rather stringent. It can only be
removed, however, at the expense of considerable addi-
tional complications. In the light of the remarks made
in the Introduction, we view the present paper essen-
tially as a model for a theory with ground-state cor-
relations and therefore do not want to consider such
complications.

A channel is thus defined by the energy and other
quantum numbers of the target or residual nucleus, and
by the orbital angular momentum and spin of the
nucleon in the continuum, i.e., by the set of quantum
numbers labeled c in the relations (5) . Since we have
chosen the zero of energy by putting E "=0, the
threshold energy for channel c is given by e.&0, defined
in Kq. (6b). The boundary condition on the continuum

The first commutator on the left-hand side can easily
be evaluated. We find

LA~, EU' Q.'jj= (E.—E~) Y.(b) (14b)

Corresponding equations are derived by taking the
commutator of Kq. (10a) with Ait, A, t(E), and A, (E),
respectively. This gives

I:A~", LU' Q.'2= (E.+E~) Y.(&), (14c)

LA, (E), LU, Q„)g= (E„E)Z„(c,—E), (14d)

EA '(E), LU', Q.'jj= (E+E )Z. (~, E) (14e)

We solve these equations for the coefficients Y„(b),
Y„(b), Z„(c,E), Z„(c, E). A problem arises when we
divide Kq. (14d) by E—E„;it is here that the boundary
condition comes into play. We are presently only
interested in scattering solutions. These are specified in
terms of an incoming wave with energy E in channel c.
To denote such solutions, we replace the index p by the
pair of indices c, E; for instance,

We write

Z„(c', E')~Zs (c', E') .

Q 1'~Q (+)t(E)

to indicate the creation operator for a boson corre-
sponding to the boundary condition just given. Equa-
tion (14d) takes the form

Z (c', E') = exp(zc, )S„.S(E—E')

+I 1/(E' —E')3LA" (E'), EU, Q.""(E)13. (14f)

Since Z~'(c', E') occurs only under the integral sign in
Kq. (13), Kq. (14f) implies that we have an incoming
wave only in channel c. The phase factor exp(i8, )
appears because the wave functions mi, (r, k) were
chosen real. Here, 8,—=8~;, where l, j are the quantum
numbers of the continuum particle in channel c. In-
serting all this into Kq. (13), we find the Lippmann-
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Schwinger equation

e.+'(~) = p('b. )~.'(~)+ Z tL1/(~-~)]L~, I
U', Q.""(E)]]~'

d~'}Ll/(&' —~')]3~"(E') LU' Q ""(@]]—L1/(E+Ep)]LAp, I U, Q, + (E)]]Ap}+ Q
c~ e&;~

&~. "(&')—L1/(~+~') ]L~"'(&'), LU', Q.'+"(~)]]~"(&') } (15)

(Y. (b') ) „(~...-(z', ~") ~...., (~, z") ) (Z. (c",z")
l

I+ Z ~~"I
I/ I

(16b)
EYn'(b') J "' ""

E—~""(&', ~") —0""%', &"))EZe'(c", E"))

Equation (15) can equivalently be expressed as a, Lippmann-Schwinger equation for the amplitudes Ye'(b),
Ye'(b), Zg'(c', E'), Z~'(c', 8'). The latter is obtained by taking the commutator of Eq. (15) with the boson
operators and by working out the values of the commutators appearing in Eq. (15).We find

(Y (b)) ((a ~) 0 'l ( V„~„)(Y(b))
I ZI

EY~'(b)) E o (E+&p) ') "
~
—~» —U» J EYe'(b'))

( ~,... (Z') ~„,(Z') ) fZ;(c', Z'))
+Z

Wb„—(&') —0p„(Z')) km' (c', Z'))

(Z (",e)) (-p('b, )b(Z —e)~„.
r

((Z+-e)- 0 ) ( ~. , (e)
I+I

(Z '(", E')) E o ) E o (&+~') ') .
"

E—~" (&') —U" P'))

Equations (16) constitute a coupled system of integral
equations. The structure of the solution to these equa-
tions is exhibited in Secs. IV and V. The sca,ttering
state

I
@z'&+&& corresponding to Q,&+it(E) is given by

I +."'(&))=Q.'""(&)
I

+o& (»)
From Eqs. (13) and (16), it is easily verified (see the
Appendix) that

LQ.&"&(&),Q"""(&')]=~-~(&-&'), (» )

I:Q ' '(E), Q""'(&')]=0=I:Q.'""(~) Q"""(&')].
(18b)

Equations (18) express the orthonormality properties of
solutions of the Lippmann-Schwinger equation for the
bosons. Instead of the operators Q,&+'t(E) defined by
Eq. (15), we could have defined operators Q, & &t(E)
by replacing on the right-hand side of Eq. (15) the
denominator (Z+ E') by (E Z'), an—d exp(i8, ) by-
exp( —i8,) . The scattering states

I
+ ' '(~) &=Q ' "(&)

I +o& (17')

have an outgoing wave only in channel c, a,nd incoming
waves in all channels. It can be shown that the operators
Q, & &(E) also obey the commutation relations (18).The
ground state

I %p& obeys both relations:

Q."'(&)
I +o)=0=Q.'-'(&)

I +o& (19)

This is because the operators Q, & &(E) can be written
as linear combinations of the operators Q,&+'(E), and.
conversely.

We conclude this section with two remarks. The
Hartree-Fock procedure determines the A single-par-
ticle wave functions needed to form the uncorrelated
Hartree-Fock ground state

I
Cp). In the frame of the

Hartree-Fock procedure, the states a„t
I 0) have no

d.istinct physical meaning. The HF procedure only
defines the single-particle states that are occupied in
the HF ground state

I
4'p). Any unitary transformation

in the space of single-particle states a„t
I 0) would not

change the Hartree-Fock results and. would, therefore,
lead to an equally acceptable starting point for the
RPA. We therefore expect that our RPA results are
invariant against such transformations. We now show
that this is indeed. the case. Clearly, the ansatz (13) is
invariant in form under any transformation that leaves
unchanged the states occupied in

I Cp) and only trans-
forms the set of single-particle states not occupied in

I
C'p) onto itself. Such a transformation would only

modify the expansion. coefficients Yz'(b), Yz'(b),
Z~'(c', E'), Zii'(c', E'). The same remark applies to
the Hamiltonian He given in Eqs. (8). Inasmuch as
Eqs. (16) are a consequence of Eqs. (8) and (13), they
must have the same property. The only additional fact
used in deriving Eqs. (16) is that the states apt I%'p)
are eigenstates of the (A —1)-particle Hamiltonian, with
eigenvalues e~. Both statements refer to properties of
states occupied in

I Cp) and are therefore unchanged
und. er the transformation. We emphasize, in particular,
that the energies e& are completely determined through
the Hartree-Fock procedure. They determine, through
Eq. (2), the binding energy ZH~ of the nucleus in the
Hartree-Fock approximation. We are therefore not
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allowed to change the zero of energy of the quantities e&.

This zero of energy determines, however, the threshold
for the various channels and is the only additional piece
of information used in the derivation of Eqs. (16).

We finally comment upon the possibility of using the
RPA for the calculation of scattering states. In classical
mechanics, the RPA has an analog. It is the expansion,
up to second order in the displacements and their time
derivatives, of the Hamiltonian around a, static equilib-
rium position. This expansion is, of course, only valid
for small displacements. One may wonder whether the
RPA is applicable to a scattering problem, since infinite
distances between particles and holes are involved.
However, the expansion coe%cients in quantum theory
are not the displacements but rather the coeKcients of
the particle-hole admixtures in the correlated ground
state. These coefficients are individually assumed to be
small in the RPA. It is therefore as meaningful to use
the RPA to calculate nucleon-nucleus scattering proc-
esses at low bombarding energies as to use the RPA for
the determination of properties of nuclear levels in the
same energy region.

III. DEFINITION AND GENERAL PROPERTIES OF
THE SCATTERING MATRIX

In this section, we write down the formula for the
scattering matrix and discuss unitarity, symmetry, and
RPA symmetry of this ma, trix. By the latter, we mea~
a symmetry of the matrix that is due to the special
approximations of the random-phase procedure; this
symmetry has interesting consequences for the analyt-
ical properties of the 5 matrix. These consequences are
discussed in the following sections.

Using the state vectors
l
4;(+)(E)) and

l

0', ( )(E) )
introduced in Sec. II, we write the scattering matrix
$. .(E) in the form

~(E-E)$".(E) =(~. -(E) l~..(E» (20)

For convenience, we have taken the factor 8(E E')—
out of the ordinary definition of S(E).Using Eqs. (17)
and (19) we find that the right-hand side of Eq. (20)
equals the expectation value of LQ. ( )(E'), Q, (+)t(E)7
with respect to

l %p). Since the commutator is only a
c number, we obtain

~(E—E') S" (E) = l:Q"' '(E'), Q.""(E)7 (21)

In the Appendix, we show that the right-hand side of
Kq. (21) can be simplified, yielding

S, ,(E) = exp(i8, +i8, ) L8„.—2ivrT, .,(E)7, (22a)

where

&" (E) = exp( —i~.)Ll:A' (E) I' 7 Q.'+"(E)7 (22b)

As shown in the Appendix, the unitarity of the S matrix
follows from the fact that the eigenmodes of H~ form
a complete set of bosons. It is known that time-reversal
invariance of the Hamiltonian implies symmetry of the
scattering matrix. In the present context, this can be

Q (+)&( E)—
Q (+)(E)

Q."'(-E)—=Q.""(+E),
(25a)

E)0. (25b)

We define the matrix S;,( E) by Lsee Eq. (2—1)7

~(E—E') S."(—E) —=LQ"' '(—E') Q.'+"(—E)7

Using Eqs. (25), we obtain

S;,( E) =$...(+E). —

(26)

(27)

We emphasize that $...( E) as defined by—Eq. (26) is
diferent from the value obtained by continuing
S.,(+E) analytically on the physical sheet from E)0
to 8&0. Therefore, the analytic continuation of S.,
studied in Secs. IV and V does not have the property
(27). However, the property (24) of the solutions also
has interesting consequences for this analytical con-
tinuation. Indeed, for the cases studied in this paper, it
is found. that singularities. of S;,(E) located on the cut
physical E plane occur symmetrically with respect to
E=0, the energy of the RPA ground state. We postpone
a discussion and interpretation of this interesting result
until Sec. IV.

shown as follows. Since we assume H to be time-reversal
invariant, we can choose all matrix elements appearing
in Eq. (8) to be real. Since we have chosen our scatter-
ing states real, we have also A,*(E)=A, (E), A p*(E) =
Ap(E), etc. It then follows from Kq. (15) that

(exp( —~~.) Q.'+"(E) l*= (exp(~~.) Q.' "(E)l (23a)

We use this relation in the commutator appearing on the
right-hand side of Eq. (21), taken for E=E'. We first
notice that the commutator, being a c number, can be
replaced by its transposed value (in Hilbert space, not
in the space of channel wave functions):

l Q, , (—) (E) Q, (+)t (E)7 = LQ, , (—) (E) Q,(+)&(E)7&

=LQ.'+'*(E) Q ' "(E)7
=LQ.( '(E) Q.' '*'(E)7

=LQ ' '(E) Q.""(E)7 (23b)

The equality of the first and the last terms in Eq. (23b)
establishes the symmetry of the S matrix.

The scattering matrix obtained in the frame of the
RPA has an additional symmetry property. We write
Eq. (10a) for a continuum solution Q,t (E) in the form

Q (6)t (E)7 =EQ, (k) t (E) (24a)

Taking the transpose of this equation, we 6nd, using
the symmetry of H~,

L&' Q")*(E)7=L&' Q' '(E)7= —EQ(+)(E).

(24b)

A comparison of Eqs. (24a) and (24b) suggests the
definition
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IV. ANALYTIC PROPERTIES) POLE DECOMPOSI-
TION, AND SUM RULES FOR THE 8 MATRIX

WITHOUT CHANNEL-CHANNEL COUPLING

In this section. , we simplify the basic equations (16)
for the amplitudes 7, F, Z, Z. We assume that those
matrix elements of V connecting the channels directly
with each other can be neglected, i.e., that the last term
on the right-hand side of Eq. (16b) is zero:

'U, ... (E', E")=0; %..."(E',E")=0. (28)

This assumption is introduced only for pedagogical
reasons. Using Kqs. (28), we shall see that Eqs. (16)
can easily be solved explicitly and that the resulting
scattering matrix can easily be written down. This will
make it possible to focus on those properties of S, ,(E)
that are mentioned in the title of this section. Ke
emphasize that, in many cases, it is not justified to use
Eqs. (28). Then, the solution of Eqs. (16), although
still feasible, is much more complicated, as shown in the
following section. Once the solution has been con-
structed, however, the methods developed in the present
section can be employed to d.erive, in the general case,
results very similar in form to those obtained. for the
case when Eqs. (28) hold. The situation is thus very
similar to that encountered in the TDA, where it is also
found that the form of the scattering matrix obtained
in the general case is not very different from the one
valid if the first of Eqs. (28) applies. '

Evaluating the commutator in Eq. (22h) and using

The matrix D is a 2M&2' matrix, where M is the
number of bound 1p-1h states. It can be written as

D=]E—N, (30c)

where the matrix N is given by

(x„,
—&bb ')

(30d)

Eqs. (28), we find

".( )= p( —')Z{ "( ) '()
+'K,.b(E) Y'~'(b) }. (29)

We now solve Kqs. (16) for F and Y', again. using Kqs.
(28) . Inserting the result into Eq. (29), we obtain

&".(E) = Z ('U"b (E) ~"b (E) )

(Mg~b Mb~b ) ( 'Ub~(E)

X/ I
I. (30a)

(Mb. bb M, b4) (—~b.(E))
In addition to the summation over b and b', the right-
hand side of Kq. (30a) also contains a 2X2 matrix
product. The matrix M is defined by

(Mb'b M 'bb)
(30b)

~~bb' Eb~bb'+ Ubb'+ Z

+bb' Eb~bb'+Ubb' Z
c/

, 'Ub:(E')'0, b(E')
E+ E'—

dE', &b" (E') U'b (E')
E+E'

%b, (E')VP;b (E')
dZ/

c/ E+E~

dE', mb, (E )'N, b (E )
jv+

(30e)

(30f)

+bb' //bb'+ Q dZ/
'Ub, (E')%, b. (E') de %"b, (E')'U, b (E')

E+E' (3og)

It is obvious from Eqs. (30c)—(30g) that the ma, trix

0)

is symmetric. This shows that Eq. (30a) yields a sym-
metric T matrix, in agreement with the results obtained
in Sec. III.

We now discuss the analytical properties of T;,(E)
as a function of the complex energy 8. The integral

dE',
'Ub" (E') U"b (E')

31
8—E'

Defines, in the complex 8 plane, cut from e, to ~, a
holomorphic function of 8. Similarly, the integral

dE , 'Ub;(E')'Ub, (E')
32

8+E'

defines, in the complex 8 plane cut from —e, to —~,
a holomorphic function of 8. All integrals occurring in
Eq. (30c) for D are either of type (31) or of type (32).
This shows that the matrix elements of D are holo-
morphic functions of 8 in the complex 8 plane, cut from
e, to ~, with c= 1, ~ ~ ~ A (A is the number of channels),
and. also cut from —e, to —~, with c= 1, ~, h.. The
functions defined by Eq. (31) have a branch point at
G=e, . This leads to the cut from c.. to ~. Conversely,
the functions defined by Eq. (32) have a branch point
at 8= —c. . This leads to the cut from —e, to —~.
The occurrence of branch points at 8= e„with c= 1, ~ ~ ~,

A., is a well-known phenomenon. These branch points
are kinematic singularities, caused by the existence of
thresholds. However, the energies —e„c=1, ~ ~, A do
not correspond to threshoMs. The branch points at
these energies have a dynamical, rather than a kine-
matical, origin. They are caused by a specific symmetry
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of the matrix D due to the RPA. It is easy to see that

(»& (0 1&
lD(8) I

~= —D( —8). (33)
&1 Oi

This symmetry is typical of RPA equations. It shows
that if an. element of D has a singularity (a branch
point) at 8= v„ there must also be a matrix element of
0 with the same singularity at 8= —~„ in accord with
the statements made above. The symmetry (33) implies
a further statement. Excited bound states of the com-
pound system correspond to zeros of the function
det(D) for 8)0. This can easily be seen by writing
down Eq. (10a) for a Q„t creating a bound excited state.
The corresponding homogeneous equation for the
amplitudes I", F, Z, Z has a nontrivial solution only if

det[D (8)]= 0. (34)

Conversely, by the same reasoning we can show that
zeros of Eq. (34), with 8)0, correspond to bound states
of the compound system. It is clear from Eq. (30) that
every zero of Eq. (34), if located in the region of
rneromorphy of T;,(8), causes a pole of T;,(8) to
occur. We thus retrieve the well-known statement that
bound states of. the system produce poles in the scat-
tering matrix at the energies of the bound states. The
symmetry (33) implies that the zeros of det(D) occur
in pairs in the cut 8 plane, since

det[D (8)]= —det[D (—8)]. (35)

Hence, to each pole of T...(8) at 8=Ei)0 caused by a
bound state there corresponds a pole at 8= —E~, if

(—Ei) is in the region of meromorphy of T;,(8). This
symmetry property is related to the symmetry (24)
and originates in the fact that in the RPA, the boson
creation and annihilation operators are treated on an
equal footing, as displayed in Eqs. (8) and (13). Since,
by definition, the RPA ground state has energy ER "=
0, it is clear that the poles at energies 8&0 are not
associated with bound states of the system. They occur
because, if there exists a creation operator Qit for a
bound state at energy E~)0, there also exists a destruc-
tion operator of this bound-state boson, with energy
—E&&0. We thus see that the symmetric appearance
about 8=0 of both branch points and poles of D ' is
caused by the symmetric treatment of creation and
annihilation operators in the RPA.

In the RPA, the singularities of D ~ occurring for
8&0 are also singularities of the T matrix. These T-
matrix singularities arise from the inclusion of the back-
ward-going graphs shown in Fig. 2(b). Such graphs lead
to a boson-boson interaction, i.e., an interaction between
the unperturbed boson operators defined in Eq. (5),
which is different from the interaction included in the
TDA. This offers the following interpretation for these
singularities. We remind the reader that branch points
and poles (the latter not associated with bound states
of the system) arise at negative energies in the analyt-

ically continued scattered amplitude already for the
simple case of elastic scattering by a superposition of
exponential potentials. In high-energy physics, it is
well known that singularities on the "left-hand cut" are
associated with the forces between the particles. We
may therefore say that the inclusion of backward-going
graphs leads to an inter-boson force, which produces the
singularities found at 8&0. These singularities have
some influence on the scattering cross section in the
physical region. In this way, the backward-going graphs
produce a nonzero background scattering cross section
outside the physical resonances, as shown in Eq. (48)
below. The poles and branch points at 8&0 are rather
far away from the region of physical scattering processes
(we have chosen ERP"=0!). Hence, we expect the
numerical eGect of these singularities on the S matrix
in the physical region to be rather small. It is quite
likely, in fact, that this eGect is smaller than the uncer-
tainties inherent in the RPA, so that these singularities
have more of an academic interest. Their occurrence
does show, however, that the inclusion of backward-
going graphs can lead to a behavior of the S matrix not
encountered in the TDA. Here, we believe, lies the main
interest of these singularities.

Can there be zeros of det[D(8)] in the cut physical
8 plane other than those associated with bound states
of the compound system and their mirror images about
K=OP We show that this is not the case. Suppose that
det[D(8) 7 had a zero at g=gi on the cut 8 plane, with
Immit/0. Then an operator Qtt can be constructed that
creates an eigenboson of the Hamiltonian with this com-
plex energy 8&. It was shown by Thouless' that if the
RPA was preceded by a Hartree-Fock minimization of
the energy, then such bosons cannot exist, and all eigen-
values of H~ must be real.

The origin of the zeros of det[D(8)] in the cut 8
plane can be elucidated in yet another way. It follows
from the commutation relations (10a) that if Qit is the
creation operator of a bound boson with energy E~)0,
then the Hamiltonian has bound states at E~, 2E~,
3E~, ~ ~ . This is due to the boson character of the
operator Q&t. However, the function det[D(8)] has, in
general, a zero only at 8=E&, not at 8= 2E&, 8= 3E&, ~ ~ ~ .
This shows that the positive-energy zeros of det[D]
only give some bound states of the boson Hamiltonian
H~, i.e., those related to the presence of ore boson.
Correspondingly, the annihilation operator Q, for a
bound boson with energy E~)0, is itself a solution of
Eq. (10a), with energy —Ei(0. There are other solu-
tions of this equation, with energies —2E», —3E~,

4Ei, ~ ~ ~ . A negative-ene—rgy zero of det[D(8)] occurs
only at the energy 8= —E&, not at the energies 8=
—2E~, g= —3E~, ~ ~ ~ . Altogether, we see that the zeros
of det[D(8) ], and hence the poles of the S matrix, are
not associated with the bound states of II~. Rather,
they are associated with the one-boson solutions of

e R. G. Newton, Scattering Theory of Waves antt Partictes
(McGraw-Hill Book Co., New York, 1966).



GINOCCHIO, SCHUCAN, AND WEIDENMULLER

Eq. (10a) with discrete energy, .and no discrimination
is made between positive-energy zeros corresponding to
boson creation operators Qt and negative-energy zeros
corresponding to annihilation operators Q.

We now turn to the pole decomposition of the scat-
tering matrix and establish sum rules for the partial and
total widths similar to those4 found in the TDA. We first
observe that neither T;,(8) nor S, ,(8) obeys a sym-
metry relation of type (33).This is not surprising, since
this symmetry relation is a result of the RPA equations,
but not of the boundary conditions imposed upon the
scattering solutions. The matrix D(8) is quite inde-
pendent of the particular boundary conditions chosen.
This is not so with the S matrix, which therefore does
not display the characteristic symmetry of the RPA
equations. This also shows that S...(—Z) (&)0) de-
6ned in Eq. (26) differs from the value obtained by
continuing S, ,(E) analytically to Eon the—cut 8
plane.

A pole decomposition of T. .(8) for of S, .(8)j can be
obtained by continuing these functions into the sheets
adjacent to the positive real axis of the cut 8 plane. It
is on these sheets that poles are found that correspond
to the compound-nuclear resonances. Since the treat-
ment of this problem follows very much the same lines
as that of the general Humblet-Rosenfeld theory, we do
not give it here. Rather, we focus on the pole decom-
position obtained in a, region of the Riemann surface in
8 (henceforth called the "region of interest") restricted
in such a way that the integrals (31) and (32), as well
as the single-particle phase shifts 8, and matrix elements
Ubc(E) Ng (E) appearing in the expression (29) of the
T matrix, may be regarded as constants. It is known4
that this assumption makes it possible to obtain, in the
frame of the TDA, sum rules for the total widths and
the partial widths. The assumption implies that we are
far from any threshold and from any single-particle
resonances. The latter would cause a strong energy
dependence of the quantities assumed constant above.
Such resonances are dealt with in Sec. V. A glance at
the matrix D(8) in Eqs. (30c)—(30g) shows tha, t even
if we assume a,ll the integrals of type (31), (32) to be
constant, zeros of detD will still appear symmetrically
about the point 8=0. Those zeros corresponding to
Rc8&0 lie, of course, far outside the region where our
approximation of constant integrals is valid. Therefore,
they will not coincide with the true zeros of detD, i.e.,
the zeros determined without using the approximation
described above. Furthermore, the corresponding S-
matrix poles will have little inRuence on the cross sec-
tion in the energy region of interest. This inRuence will
consist of a smooth background. For these reasons, we
separate the T matrix into two parts. One part describes
the influence of the close-lying poles, the other one is
assumed to be constant. This operation is carried.
through iri two steps. First, we introduce the eigen-
vectors and eigenvalues of the standard' bound-state
RPA equations. This is done in order to establish the

connection between the present and the standard treat-
ment. Subsequently, we include the eGect of the con-
tinuum and introduce the pole decomposition of the
T matrix. Finally, we derive the sum rules.

We define the 2M&(2' matrix N&'~ as follows:

%b'
!

~bb'+b +bb')
(36)

Comparison of Eq. (36) with Eqs. (30c)—(30g) shows
that N"' divers from N by the omission of the integrals
(31) and (32), which represent the influence of the
various channels on our problem. The eigenvalue
equation

(37)

is used. The statement carries over immediately to the
matrix N& ), which is defined io a subspace of the full
RPA equations.

The symmetry property of N "& displayed in Eq. (36)
implies that to each eigenvalue ~~ of Eq. (37), there is
a corresponding eigenvalue —e". The eigenvector asso-

is exactly the RPA equation that we would have ob-
tained had we omitted all states with nucleons in con-
tinuum orbitals. It is the equation considered in prac-
tice' for the calculation of bound nuclear levels from
the RPA. In the following, we assume that N "~ does not
have vanishing eigenvalues. This assumption is reason-
able because of the following argument. It was shown

by Thouless' that the full RPA equations yield vanishing
eigenvalues for the three components of the linear
momentum operator. Sy full RPA equations, we mean
here the equations obtained by admitting a complete set
of HF single-particle wave functions. The equations
(37) are not identical to these full RPA equations,
since they are obtained by omitting the continuum HF
single-particle wave functions. Hence, the theorem of
Thouless does not apply to these equations. If the effect
of the continuum is small, we expect, according to
Thouless's theorem, the occurrence in the vicinity of
8=0 of eigenvalues c" of Eq. (37) associated with sym-
metry properties of the Hamiltonian and, therefore,
with spurious modes of internal excitation. We would,
however, consider it fortuitous if these eigenvalues were
to vanish exactly. This point of view is supported by the
results of numerical calculations. ' We therefore assume
that all eigenvalues of N( ) differ from zero.

The eigenvalues and eigenvectors of Eq. (37) are real.
This also follows from the work by Thouless, 2 who
showed that if the RPA is preceded by a HF calculation,
then the matrix of the full RPA equations is positive
semidefinite if the metric matrix
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ciated with —e" is related to the quantities appearing
in Eq. (37) by

(x,~) (x,~)

l»") lx.")
(38)

(Xg Xg )
Q=l

lxb x)
(happ o

—~ss)

(a;; o

l o —a,...) (39)

0"E—X"'2j

where
Q., 2

Let e;, j=1, ~ ~ ~, M, be the M Positive eigenvalues of
Eq. (37), and let

('x, )
&X.)

be the corresponding eigenvectors. (The quantities e;
should not be confused with the threshold energies e,.)
We define the matrices

The eigenvectors can be chosen in such a way that
(T stands for transposed)

0 IN&»Q=e, 0 10=1=00 I (40)

The matrix D ' appearing in Eq. (30b) can be written

D i=QQ~ID i00&I=QLQ~ID07 iQ~I—=QD iQr I.

(41)

The last relation defines the symmetric matrix D.
Inserting Eq. (41) into Eqs. (30), we find

2'."(E)=(V ~'(E) W"~'(E))(D) 'l

lW. (E))
(42)

Equation (42) implies matrix multiplication in a (2M)-
dimensional space. We have defined ( j= 1, ~ ~, 3II)

V„(E)= Q (U,t,.(E)xt, &'+%7,g (E)Xt, '), (43a)
b/

W„(E)= Q ('C~ (E)xg &+'U, |, (E)Xb &). (43b)
bl

According to Eq. (41), the matrix D has the form

—x...
(43c)

~„'E+X,,'8)

X,,"=e;8,,'+ g
g/ go/

dE , V "(E')V"~'(E')
E+—E/ c/ «c/

djv' W;. (E')W: (iE')

E+E~
(43d)

X;; '= e,8„—Q
c/ «o/

~E, VJ"(E') V"~'(E')
E+E'

, V,. (E') W. ; (E')
E+—E'

dE
W;. (E') W;; (E')

l E+—E'

dE', W,. (E') V. ; (E')
E+E'

(43e)

(43f)

Equations (43c)—(43f) show that the matrix elements
Ugp Kg/' appearing in Eq. (30c) have been removed.

by the transformation and that the only coupling terms
left are the integrals of type (31), (32). This is one
reason that we introduced the transformation leading
from the energies Eb of the particle-hole states to the
energies e; of the bound-state RPA equations. We
wanted to display the connection with the usual, re-
stricted RPA calculatioms. ' We see that the modification
of these calculations introduced by taking into account
the continuum is quite analogous to that introduced
similarly in the TDA. The integrals appearing in Eq.
(43c) can be decomposed into a real and an imaginary
part. The former parts give rise to a shift matrix, the
latter to a width matrix and thus to the particle-decay
widths of the resonances. Typically, 4 integrals of type
(31), (32) have absolute va, lues that are smaller by a
factor 10—30 than those of the matrix elements 'Ubb,

%bb. . This is the other reason that the transformation
leading to the matrix D was introduced above. It is
hoped that, in the region of the 8 plane presently under
study, resonances are caused by RPA states with

('A C)
!D=

kc' B)
(43g)

and note that the quantities A, B, C are M /M matrices.
The matrices A and B are symmetric. We also define

energies t., lying within that region. The inhuence of
RPA states with energies e; outside the region of interest
will be treated as a perturbation, as far as the sum rules
are concerned. The implication of this procedure is the
following. In the standard RPA treatment, ground-
state correlations and collective eAects are ca,used. by
the coupling terms VPbb. . The procedure just outlined

implies that collective e6ects not already included in

the standard RPA treatment, i.e., in the transforma. tion
leading to the matrix D, can be obtained by using
perturbation theory. Such additional collective effects
might arise from the presence of the continuum. We
have not been able to derive physically meaningful sum

rules without using perturbation theory.
We write the matrix D in the form
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the &X' matrix
d= A—CB—'C~.

Hence,
(ee ) bb' ~bb' (e 8)bb" (46)

(d ) bb' Z (e ) bb" (+ Gb") Gb«b" (47)

The quantities gb (b= 1, ~ ., M) are the comple~ reso-
nance energies. Naturally, only those Gb are physically
meaningful that lie in the energy region of interest. For
these resonances, we expect that ImGb(0, according to
the statements made at the end of Sec. III. We now
insert Eq. (47) into Eq. (45b) and obtain

,l(sI 1(2

&."(&)= —Z2' b E—Gb

+ Q W. b(B ')bb Wb. . (48a)
b,V

Ke have used

Pb i/2 (2~)1/2 Q ebb'yb'~. (48b)

The partial-width amplitudes Fb,"' are complex quan-

The inverse of D takes the form

( -d- CB-
(44b)

B
—1C2'd—i B

—I+B
—1C2'd—1CB-i)

It follows from Eq. (43c) that det(B) has no zeros in
the energy region of interest, its zeros all being located
far to the left of this region. In the spirit of the remarks
made above Eq. (36), we therefore assume that B ' is
constant in the region of interest. The T matrix (42)
can be rewritten identically as follows. We introduce,
for each channel c, the vector 7' of M components yb',
b= j., ~ ~, M, with

Vb +bc Z ebb' (~ )b'b" Wb" c (45a)
blytI

According to our assumptions, the quantities yb' are
constant in the energy region of interest. Equation (42)
takes the form

2'".(&)= (~")'d "r'+ Z W"b(& ') bb Wb" (45b)
bbI

The last term on the right-hand side of Eq. (45b)
represents a background term, which, under the assump-
tions made above, is constant in the energy region of
interest. This term is caused by the ground-state cor-
relations in

~
4'2), as is evident from the occurrence of

the matrix elements Wb, (E). Reson. ances, i.e., poles of
T;,(8), in the energy region of interest arise only from
zeros of det(d), i.e., they are contained in the first term
on the right-hand side of Eq. (45b). According to the
defining equation (44a) and our assumptions, the com-
plex, symmetric matrix d is the sum of the unit matrix
multiplied by E and of a coestmt matrix. It can there-
fore be diagonalized by a complex, orthogonal matrix 8,

(ed' )bb
——ebb (E—8b);

tities, both because the matrix 8 is complex and because
the quantities p&' are defined in terms of complex
matrices /see Eq. (45a) j. The matrix 8 occurs, in a
similar form, also in the TDA version of Eqs. (48) .The
quantities p&' differ from their TDA analogs by the
inclusion of backward-going graphs, both through the
last term on the right-hand side of Eq. (45a) and
through the definition of Vb. in Eq. (43a) .The question
arises whether collective enhancement of the partial-
width amplitudes I'b, '(' is possible. Such enhancement,
if it occurs, is expected to reside primarily in the quan-
tities yb'. However, we have not been able to devise a
simple mechanism that would yield particularly large
values for yb'. This question deserves further attention
and can probably only be clarified by explicit calculation
of the quantities pb'. We emphasize that the results
obtained so far are independent of any perturbative
treatment of far-lying resonances.

It is well known that for overlapping resonances, the
sum of the partial widths Q...~.„Fb, over all open
channels may differ from the total width (—2 Imgb).
Only for isolated resonances are the two expressions
equal, as a consequence of the unitarity of the 5 matrix.
However, in the TDA it is possible to show that, on the
average, i.e., by summing over u/It' the resonant states 0,
the two expressions do become equal, even for over-

lapping resonances. Can we derive a similar result for
the RPA? According to Eq. (48b), we have

Z Z Pb. =2~ Z Z(Vb')'. (49)
b c,open c,open b

We calculate the trace of the matrix 6 and find

2 Im Tr{d}=—2 Q ImGb ——2 Im Tr{A—CB 'C~}.

(50)

A glance at Eq. (45a) shows that the expressions in
Eqs. (49) and (50) differ. Indeed, the matrices C and B

are both complex. The imaginary parts of yb' and of
gq (pb')2 do not vanish. Thus, the expression

given by the right-hand side of Eq. (49) is complex,
while Eq. (50) contains a purely real qua. ntity. The two
expressions become equal only in lowest (zeroth) order
in CB '. In this case, we retrieve the TDA result. Since
the elements of CB ' are expected to be of the order
10 keV/10 MeV (unless coherent summations come
into play), this approximation is probably quite suK-
cient. We also notice that in lowest (zeroth) order in
B ' ImB, the real part of expression (49) equals expres-
sion (50). It is interesting, however, that in the RPA,
the expressions (49) and (50) are different, in general.
This is because in the RPA there must always be some
poles outside the energy region of interest, in contrast
to the TDA. These poles produce the background in
Eq. (48a). ITnitarity of the S matrix alone is not
suKcient to ensure the equality of the expressions (49)
and (50).

The resonance energies gb defined by Eq. (46) may
not all lie in the energy region of interest. In this case,
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even the restricted sum rule obtained in zeroth order in
CB ' is physically meaningless. However, a device can
be found to remedy this situation. In Eq. (43d), one
can define the matrix A to have fewer than M rows and
columns, while the size of B is increased correspondingly,
and the matrix C becomes a rectangular matrix. There-
by, one includes only part of the resonances in the
matrix A and hopefully can select them in such a way
that they all lie in. the energy region of interest. One
can then follow the steps leading from Eqs. (43) to
Eq. (50) and obtain, inzeroth order in CB ', a sum rule
for the resonances that lie in the region of interest.

for Z in the commutator (51), we find for the T matrix

T;,=cL, rYcc(l+F) 4,+rk, .~fl+Vcc(1+F)Ec i}

&C Vci)D 'Vi)c(1+F)4,. (56)

As in the TD treatment, the transition matrix consists
of a part involving only the interaction between the
channels and a compound part involving the interaction
with the bound states. In the case of no channel-channel
coupling, the first part of Eq. (56) vanishes, and the
second part is equal to Eq. (30a) .

From the defining equation (55) of F, we find

V. CONTINUUM-CONTINUUM INTERACTION

A. General Z' Matrix

Fr= IVcc(1+F)Ec 'I

D~= IDI.

(57a)

(57b)

Neglect of the continuum-continuum interaction
matrix elements (28) is not generally justifiable. If
these matrix elements are not neglected, the second of
the Lippmann-Schwinger equations (16) becomes an
integral equation with a kernel of infinite rank. It can
therefore no longer be solved algebraically. Rewriting
Eqs. (16) in operator form we have

Ys'= E)) '
f Vg))Y~'+ Vi)cZs'},

Z '= exp(i8. ) &.+Ec 'f Vci)Ys'+VccZ '}, (16')

where the definition of the functions Y, Z, and 4 and
the operators E~, Eg, V~~, V~g, Vg~, and V|.-g is obtained
by comparison.

Evaluating the commutator (22b) without the re-
striction (28), we find

Lf ~"(@,I' 3, Q.'+"(&)j=~.'Y-Y"+~.'Y-Z",

from which we get the T matrix by solving Eqs. (16')
for Y and Z. The solution for Y is

Ys' ——exp(iB, ) D 'V))c(1+F)ck, . (52)

The operator D is given by

Using these relations, we find that each of the two parts
of the T matrix (56) is symmetric. It can also be seen
that

(0 1) (0
IF(&) I

I= F(—&)~») E1 o)
(57c)

B. Convergence of the Born Series

The transition matrix given by Eq. (56) can be
calculated only if we can construct the resolvent F. A
straightforward approach to solving the integral equa-
tion (55) is iteration. The resulting Horn series

F=K+K'+K'+ ~ ~ ~

converges, for a fixed value of E, if and only if all eigen-
values))( )(E) of K(E) obey the inequality

and that the matrix D defined in Eq. (53) fulfills the
same RPA-symmetry relation (33) as the corresponding
matrix defined in Sec. IV. It follows that the transition
matrix (56) has the same structure and symmetries as
Eq. (30) and that the discussion given in Sec. IV can
be extended to include the channel-channel interaction.

D = Eg Vpr) Ysc(1+F) Ec '—Vc)). — (53) The eigenvalues g( ) (E) are defined by

(1+F) (1 —K) =1. (55)

In the case of no channel-channel coupling, both oper-
ators F and K vanish, and the elements of D are given by
Eq. (30c).

Inserting Eq. (52) and the corresponding solution

The operator F is defined as resolvent of the operator

((Z —Z')-( 0
K=Ec )Ycc=l

(~++~')-')

( ~
Xl l. (54)

&-~""(~', ~") -~""(E', ~"))
We therefore have

Ec
—&Vc+(~) (+) =&(~)(g)P(~) (g)

where P( ) (E) stands for the amplitudes

( P@(~)(c' jv')
0"(&) =I

k —tt~" (c', &'))

(60a)

(60b)

It follows from the definitions (9) that the matrix ele-
ments of the residual interaction can be written as
matrix elements between two single-particle states

V...-(Z', Z") = &u„.(u')
i
~, ,- I

u„(u") ),
'N. ; (E', E")= (u„(k')

i
'N). )- t

u„"(k")). (61)
The second of these equations is true because the radial
wave functions have been chosen real. With the aid of
these expressions, the eigenvalue equation (60) can be
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written as a set of coupled integral equations

@II E—E
&&I« -I~""(E)&—~ -I~""(E)&I

—r(~) (E) I P, ,(~) (E) )

, I
N„(k') &(N„(k') I

,u E+E'
& f~ -

I 4" "(E)&
—U -

I
4"'"'(E)&I

=~')(E)
I ~. "(E)&,

for the functions

(62a)

good approximation to the actual nuclear wave function,
and that the residual interactions to the HF are weak.
For a more detailed discussion, we refer to Ref. 4.

If p& )(8) has a pole at 8", the coupled. equations
(62a) can be reduced. to

(8"—h -")
I
@""(8")&=o

(8"+I +") I
e""(8"))=o («)

These equations do not contain the residual interaction,
and their solution is

(65)

(63a}

Near the poles' with energy 8", this integral can be
approximated by'

f dE, I
~'(&') &&I'(&')

I I ~.o"'(8.o) &&~.,'-(8.,) I

jV jV~ gCQ

&&5j,~». (63b)
The resonance energy 5" is given by

8"=8»+& 0~ (63c)

while the single-particle Gamow function w»"'(8„,) is
a solution of

(8»—ko) I
w„' (8„,))=O, (63d)

which behaves asymptotically like an outgoing wave.
This condition can only be met at discrete (complex)
values 8„, of the energy. These are the energies of the
single-particle resonances. In the following, we assume
that values of g& &(E) for which

I
g& &(E) I

)1 on the
real E axis occur only because there are single-particle
resonances close to the real E axis. This is consistent
with the main assumption made in this paper, namely,
that the combined HF and RPA procedures give a

~ We assume that there is only one single-particle resonance
associated vnth definite angular momentum and spin of the
particle. Hence, the Kronecker symbol on the right-hand side of
Kq. (63b).

I 0""(E)&=fdEV~" (~', E')
I
~'(&')»

I &""(E)&=f&EV~"(~', E')
I
I'(&') ) (62b)

%e assume that these functions, as well as the functions
z' &(E), can be continued analytically to complex
energies G. Whenever one of the functions g~ )(8) has
a pole, there is a region in the complex-energy plane
surrounding the pole for which

I
q' & (8) I

&1. If one of
these poles lies close to the real axis, the corresponding
region overlaps the real axis, and the convergence condi-
tion (59) is violated.

Inspection of Eq. (62a) shows thatg')(8) has a pole
wherever there is a single-particle resonance. Indeed,
such a resonance corresponds to a pole situated on one
of the nonphysical sheets, of at least one of the expres-
sions

with
~(E)=&/(E —8")

&= &~-"'(8.o) 1«o~o I ~."'(8») &.

C. Separable Approximation

(67a)

(67b)

As we saw in Sec.V B, the series (58) cannot be used
for the calculation of the resolvent F, if narrow single-

particle resonances exist. In this case, the scattering
matrix can be obtained with a method proposed by
%einberg' and applied to nuclear reactions by Glockle,
Hufner, and Weidenmuller. The method consists in a
modification of the continuum-continuum interaction
operator Y~~. An operator of finite rank V8 is subtracted
from the full operator V|.-g in such a way that the norm
of the difference operator Ez 'IVco —VBI is suKciently
small to allow a perturbation calculation of the resolvent

F'i=Ec 'fVcc —Va}+Ec 'I Vcc—'6IEc 'IVcc—Vs}

(68)

W. Glockle, J. HQfner, and H. A. Weidenmiiller, Nucl. Phys.
A90, 481 (1967).

S. Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1964).

In the vicinity of the energy 8", the background scat-
tering function for elastic scattering from the HF
potential eo is given by the one-level approximation

g„„&')(E) = exp(2i8. ,)
=- (2'&.)I (E—8"*)/(E—8")1. (66)

Here, $0 is the background potential scattering phase
shift.

With this, we have established the connection between
the poles of the functions g~ & (8) and the narrow single-

particle resonances. In order to simplify the presenta-
tion, we assume that only one of these functions has a
pole in the energy region of interest. The generalization
to the case where more of the functions have poles is
straightforward. The number of q' & with

I
q& '(E)

I
)1

is always finite, for each value of the energy E.'
The residue of the function q(g) at the pole 8" is

obtained. from Eqs. (62) with the aid of the approx-
imate relation (63b) . Using this property and. Eq. (65),
we 6nd
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Since the operator V8 is of finite rank, the resolvent of
Kg=Eg 'V8 can be constructed algebraically, and the
full resolvent F is readily obtained.

It follows from the discussion in the last subsection
that the ideal choice for the separable potential V8 is
such that the eigenvalues of K—KB are identical to those
of K, except for the finite number p of g')(E) (n=
1, ~ ~ ~, p), which violate the convergence condition
(59).The corresponding p eigenvectors of K will become
null eigenvectors of K—K8 if E& is chosen ideally. As
before, we assume p=1 for reasons of simplicity. The
ideal choice V8&" for the separable potential is then
given by

with
Vs")= $1/N ) (E))Vc~'IV«

cVib) (E) =Q'IVcnk.

(69a)

(69b)

With these definitions we have

Vs")4'(E) =VeA'(E) (69c)

and the operator K8&"= Eg 'Vz&'& has the same poles and
residues as the full operator K de6ned in Eq. (54).
All eigenvalues of the difference operator K—KB&0~ have
magnitude less than one. The resolvent of K—KB~ ~ can
thus be calculated with the Born series (68).

The prescription (69) for the construction of the
ideal operator V8( ~ can only be followed exactly if the
eigenfunctions of K are known. This is usually not the
case. It is, however, possible to replace these functions
by approximate functions. If the latter functions are
chosen in such a way that they agree, at E=G", with
the exact eigenfunctions of K, it is still possible to split
the kernel K into a separable part, which contains the
eGects of the poles, and a nonseparable part, which can
be treated as perturbation. It can be seen from Eq. (65)
that a possible choice for the approximate functions is
given by

I
~' (E) )= I

~.o"'(4 ) )~."„
I
~"(E) ) =o (70)

A diferent choice for
~
W(E) ) is discussed in Ref. 4.

Using the choice (70), we define

('(~n (&')
I &i i. I "n:"(gn.) ) )

V«W=~ (. (71)
l(". (&')

I
~i io I ".o"'(8.o) ))

With this and Eq. (67b), we define the separable
potential

It can be easily checked that the operator

Ks=Ec 'V8 (73)

Ks Ee '—V—es(Es Vss—) 'Vse (74b)

Ks=Ee 'V«W(1/X) W'IV«. (74c)

The kernels K~ and K8 have finite ranks 235 and 1,
respectively. The resolvent of (Ks+Ks) can therefore
be calculated algebraically. The resolvent of K—K8, on
the other hand, is obtained from the Born series (68)
within our approximation. Carrying through this pro-
cedure, we And

T;,= 4, '(V« —Vs) (1+Fi)cL,

+&a 'f'+(Vec —Vs)(~+Fi)Ee '}Vceoe iVec(1+Fi)&.)

(75a)

where the index G indicates that one row or one column,
or both, are added to the corresponding matrices occur-
ring in Eq. (56). This is because we explicitly treated
the single-particle resonance, approximated by a Gamow
function. YVe have

W'. (E')

Vee —'Hb. (E') ———"Ub. (E') (75b)

&+. %) ~+."N)1

with,

Vcr= tVac te

&2-+i,"(E')= (~nb"'(4b)
I «bt I &n (&') )

~2~+i,. (E') =(~nb"'(~nb)
I
~).i I "n (&')) (75d)

The metric matrix Ig is defined by

t'I 0&

l.o 1)
(75e)

has, at 8=8", the same residue as K. In order to evaluate
the transition matrix, we write the formal solution of
the RPA equations (16')

Zs' ——exp(i8. ) 4,+K. sZs'+KsZs'+(K —Ks)Zs' (74a)

with

Vs= (1/E) VeeWW~IV«. (72) For the (23II+1) 'rC(2%+1) matrix De we obtain

+~bb' (E+Eb)~bb'+'bb' 0 Vee(l+Fi) Ee 'Vce. (76)

It can easily be checked that Dzlg is symmetric and therefore that both parts of the T matrix are symmetric, too.
The behavior of the scattering matrix in the vicinity of the resonance energy 8" is best seen if the T matrix
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(75a) is expressed as ratio of two determinants. Inserting this into Eq. (22a), we obtain

exp(ib. +ib, )
detog

2krVgg(1+Fg) 4,

a. »'(1+Far)V'ggrlg 8- —2ixck ~(~go—~s) (l+Fi) &'
(77)

In order to illustrate the physical content of this expression, we con6ne ourselves, for simplicity, to one continuum
of states, i.e., to the elastic scattering of nucleons in a state of Axed spin and parity. Near the resonance energy,
we use the approximate relation (63b) to obtain

detDg=
gCQ

(E Eb) ~bb' Ubb'

+~~v

2M+1, b'

+b,2M+1

(E+Eb)~bb'+ UM' ~b,»&+1

%M+1,b'

where the quantities

I
«'&o I ~no ' (40) )

(78b)
~b»~+i=, (~.' I

~i i, I
~.,"'(4,) &

have been defined in analogy to Eqs. (75d) .
Comparing Eq. (78a) with the background scattering

phase shift (66), we see that the two denominators are
the same. It can also be shown that the determinant in'

the numerator of Eq. (77) has a pole at 8=8"*,which.

is canceled by the numerator of Eq. (66) . As a result,
the scattering matrix has no pole at. the single-particle
resonance energy 8'0, but its poles are given by the zeros
of the determinant (78a). In keeping with the discus-
sion in the last section, we see that this determinant has
M+1 zeros at positive energies and M zeros at negative
energies. This asymmetry could be removed if the

steinberg

state corresponding to negative single-

particle energy would be included in the definition of
the separable potential. This, however, is not practical,
since this energy is far outside our region of interest.
It is apparent from Eq. (78a) that the M zeros of the
determinant at negative energies would not contribute
to the cross section in the physical region at all, if the
backward-going interaction VP were switched off. Prom
the similarity between Eq. (75a) and the corresponding
result (30) of Sec. IV, it can be seen that pole decom-

position, sum rules, and the separation of the poles at
negative energies can be carried through by the same
methods. The matrices 8, D, A, and d defined in Sec.
IV have to be augmented by one row and one column,
and a background, part of the S matrix can be pulled.

out in a similar way.

VI. LINEAR MOMENTUM

The exact Hamiltonian II has a number of symmetry
properties. It conserves particle number, linear momen-

tum, angular momentum, and electric charge. The
spherical HF procedure with separate orbits for neu-

trons and protons" conserves all of these quantum

"In principle, the HP energy could. be lowered by mixing neu-
tron and proton orbitals through the exchange part of the nuclear
force. For even-even self-conjugate (T,=O) nuclei, this will not
happen. Furthermore, we assume it does not happen for spherical
even-even nuclei, even if there is a neutron excess.

PH, P»]=0,
and the latter leads to

$H, R,]= L(P'/2AM), R,]= (5/iAM) P„(79b)
where P» and R» are the qth components (q= 1, 2, 3) of
the total linear-momentum operator and c.m. coordi-
nate, respectively,

A A

P,=(5/ )ig V,(j), R,=(1/A) g r, (j), (79c)
j'=I j=1

$P„R,]= (5/i) 5(q, q'). (79d)

The RPA to P, a~d E, is derived by taking the p-h
parts of these operators and. replacing the p-h operators
by bosons as prescribed in Eq. (5). Writing the p-h
matrix elements of P~ as

~ -=(plP, II&,

6". (E)=—(p I P. I I&,

the boson form of P, is

P»a= Q Pp(Apt Ab)—
b

p bound

p continuous

The linear combination (At —A) comes from the fact
that I'~ is an imaginary Hermitian operator. For E~
we have

R»a= Q Rp(Apt+Ay)

+ Q dE (R,»(E) (A,t(E)+A.(E) ). (80c)

numbers except for linear momentum. There is a danger,
then, in making an approximation to the residual inter-
action to obtain approximate excited states, that these
excited states may have spurious components in them
that correspond to the motion of the c.m. of the nucleus.
Such a problem is certainly present in the TDA. How-
ever, the RPA separates out exactly the c.m. modes from
the intrinsic modes of excitation. This fact follows from
the translational and. Galilean invariance of the inter-
action V. The former states that the linear momentum
commutes with II,
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The linear combination (At+A) comes here because
Eq is a real Hermitian operator. Since the boson com-
mutation rules differ from those between p-h operators
only by p-p and h-h terms, one 6nds that the commuta-
tion rules given in Eq. (79) are preserved in the RPA;
that is,

EH~ P ~]=0 (81a)

I X&,,„)=E "' exp(zk R) I Xp,„), (84a)

» Because oi this condition,
I
4'0) is not normalizable. However,

this does not a6ect the calculations of any intrinsic matrix ele-
ments, since the overlap (4's

I
4'0 ) always cancels out. The scat-

tering matrix is, for example, given by

&(z z') s;.(z) = &+o I Q. &—-& {s')Q.&'&'%)
I
+o )/ &+o I +o )

= LQ ' ' (~') Q '+'t (B)3'

thus it agrees with Eq. (21)."E. R. Marshale)c and J. Weneser, Ann. Phys. (N.Y). 53,
569 (1969).

PV E ~)= (SliAM)PP, (81b)

EP;, &; j=(&/')~, ,' (81c)

Clearly, I'q is ao eigenmode of H~, with zero eigen-
energy. It commutes with both the bound and the
scattering modes of excitation discussed in Sec. II.This
is easily seen by commuting Eq. (10a) with P» . Using
Jacobi's identity for double commutators, with the fact
that the commutator of two bosons is a c number, we
have

EPs' Q.'3=0 (82a)

Since I"q is Hermitian, it follows that it also commutes
with Q„. The operators Q„t, Q„also commute with E,~.
To see this, we commute again Eq. (10a) with I&.'P, use
Jacobi's identity and Eqs. (81b) and (82a), and we find

E~s' Q.'j=E~s' Q.j=0 (82b)

Thus the RPA excited modes are completely intrinsic
Inodes of excitation. We have the freedom, as given in
Eq. (12b), to choose the RPA ground state so that it
is an eigenstate of the RPA linear-momentum operator,
with eigenvalue zero":

P,' I +s)=0. (83)
Because of Eq. (82a), the RPA excited states are also
eigenstates of I'q~, with eigenvalue zero. In particular,
the scattering matrix derived in Sec. II is an intrinsic
scattering matrix; that is, it is the scattering matrix in
the c.m. frame.

The point may be raised that the RPA states are not
eigenstates of the full linear-momentum operator I'q.
However, Marshalek and Weneser~a have emphasized
that this is not the correct interpretation of the RPA.
The exact dependence of the exact eigenstates of H on
the linear momentum is known simply because of the
translational and Galilean invariance of V. This tells
us that an exact eigenstate (including scattering states),
with total momentum 1r has the form (assuming box
normalization)

where
~
Xs,„) is an intrinsic state; that is,

Ps I Xo,.)=o.
The c.m. and the total momentum dependence of a,ll

operators are also known exactly and can be separated
from the intrinsic part. Hence, we need only worry
about the intrinsic structure of our states, since the only
quan. tities of physical interest are the matrix elements
of intrinsic operators. As seen above, the RPA produces
intrinsic states to the RPA order; that is, the RPA to
the linear-momentum operator gives zero when it
operates on the intrinsic states, Eq. (83). The RPA
order keeps terms in II quadratic in the bosons, but no
higher. If we try to improve the approximation by
including the cubic terms in the Hamiltonian as well,
then the improved approximation to the linear-momen-
tum operator will retain this property with respect to
the new intrinsic states, so long as we keep all the cubic
terms in the Hamiltonian. So it is with higher orders:
As long as we are consistent and keep all boson terms
to a given power, the resulting states will be intrinsic
states.

Equation (81b) introduces an inhomogeneous set of
RPA equations, unlike the homogeneous equations
encountered in solving for the eigenmodes of H~. Such
a set of equations will occur only if there is an eigenboson
with zero energy. Since we expect the ground state to be
nondegenerate, such zero-energy modes occur only when
an exact symmetry of H is broken in the HF approx-
imation. From what was said at the beginning of this
section, the I'q~ are the only zero-energy bosons, and
there is no other set of inhomogeneous equations than
(81b). Knowing this, we may write H~ in its diagonal
form. Denoting the bound eigenbosons by Q„t, we have

P P Q tQ + g dP PQ &+&t(g)
C

XQ.&+&(E)+(P '/2AM). (85)
The c.m. energy is separated from the intrinsic energy
d.ependence. In particular, the RPA ground-state energy
ERP~ has the HF c.m. energy,

E, HF = (C s I
P'/2AM

I C,),
subtracted out. The separation of the c.m. eGects by
the RPA that has been discussed in this section makes
it unnecessary for us to choose, in the HF procedure,
an intrinsic Hamiltonian, '4

Hr =H—Ps/2AM. (86)
A Lippmann-Schwinger equation cannot be written for
the scattering states of such a Hamiltonian in the HF
approximation. To see this, we note that the two-body
part of Ps/2AM gives a velocity-dependent interaction

A

AM Z P(z) P(i)
1=i&j

' A. K. Kerman, J.P. Svenne, and F.M. H. Villars, Phys. Rev.
147, 710 (1966}.
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Such an interaction does not have a finite range, and
thus the scattering solution is not asymptotically a free
particle plus target nucleus. Physically this makes sense,
since the outgoing nucleon has a constraint on its co-
ordinate, namely,

«.(A) =—Z r.(i)

and is not independent of the coordinates of the other
nucleons.

It was stated in Sec. IV that, if the 5 matrix is con-

tinued analytically in energy, it has poles at energies
corresponding to the eigenenergies E„of B~. %e saw
above that B~ also has zero eigenenergies corresponding
to the linear-momentum operators I'~~. The question
arises whether the 8 matrix has poles at zero energy.
The answer is no. To show this, we expand the scat-
tering solutions in terms of the complete set of bosons
IQ„', Q„, Q,&+)t(E), Q,&+&(E), P, , RP }.Using similar
arguments to those used in Sec. II for expanding the
scattering solutions in terms of the complete set of
bosons {A&t, A&, , A, t(E), A, (E) }, we can derive the
result

Q,&+&t(E) = exp(i(), ) A,&(E)+ g
00

LQ, ,&+)(E') t
P)) A t(E) jjQ, (+)t(E')

c~ col

', m. (»). &~., ~.'(~)]]e""'(~))+Z( &e., &r., ~.'(~)]]().'E+E' ' ' „E E„—
i 3

+ —~ p
q=l

+~, [P,~, &V, A ~(E)]] [R, , [V—, A.'(E)]])P, . (8))
(

From the expression for the T matrix given in Eq.
(22b), we see that the singularities encountered in the
analytical continuation of the T matrix discussed in
Sec. IV coincide with those of exp( —Q,)Q,'+'t(E),
since A, (E) is well behaved. The second term in Eq.
(87) gives rise to branch points at E=&»,. The third
term produces poles at E—~E„.The last term appears
to give a pole at E=O. Such a separation of pole terms
is valid because, if a term in Eq. (87) gives a pole at a
given energy, then it n1ust be an eigenboson of B~. To
see this, we assume that the eigenboson equation (10a)
can be analytically continued. Now let us suppose that
Q,&+)t(E) has a pole at E=G; we separate the pole
term, call it It(E), from the regular part Jt(E),

Q '+"(E)= p( —& ) {I:1/(E—8)3I'(E)+~'(E) }.

PEP, A,t(F) &=EA, t (E), (89a)

Premultiplying Eq. (10a) by (E 8) and taking —the
limit E—+8, we get

EH~ It(8) j=8It(8).

Hence, the pole pa, rt of Q,t(8) must be proportional to
the eigenboson of B~ with eigenenergy 8.

This means that, to investigate the analytic behavior
of exp( —i&),) Q,t(E) as E~O, we need only look at the
coeKcient of P, given in Eq. (87). We can simplify
this coeKcient by putting V =B —Bo —E in the
double commutators. By using the fact that the A~'s

are eigenbosons for the unperturbed Hamiltonian

along with Jacobi's identity and Eqs. (80) and (81),
we find that

EP, LV A, t(E) j7=ELA,t(E) P j=E&P,»(E)

(89b)
LI&.'», Ll', A.'(E)jj

=ELA.t(E), I&'., j+ (&)&/iA~) LA, t(E), P,))j

E&J&,»(E)+ (A/iA3—f) &J,»(E). (89c)

The coefficient of P»~ in Eq. (87) then becomes just
(i/f&) &R»»(E). The problem reduces to investigating the
analytic continuation of the single-particle matrix ele-
ments &R,»(E). We need only look at the radial matrix
element. This radial matrix element of $.»(E) is of the
forn1

OQ

dr»&, &;.(r, k) rw„&P(r).
A

(90)

In this matrix element, Ng; and m„~,~ are the wave func-
tions of the particle and hole, respectively, in the
channel c. The energy is given by E=Pk'/2I»1 »„». —
Continuing the energy E to zero means continuing the
particle energy 5'k'/2M to take on the value of the hole
energy e„&;. Thus, the question reduces to studying the
behavior of the single-particle wave function I&.» (r, k),
as k is continued to { (2M/f)»)»„» j')'. This wave function
does have poles at energies corresponding to energies of
single-particle bound states with the same orbital and
total angular momentum that N~, itself has. However,
the hole wave function in the matrix element in Eq. (90)
can never have the same orbital angular momentum as
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the particle wave function in (90) (i.e., l'Wl) because
the c.m. operator changes the parity. Thus, u„~;(k, r)
does not have a pole for 0 continued to L(2M/5') p„~,$'~',
and consequently Rp(E) does not have a pole at 8=0.
Thus, the T matrix does not have a pole at E=0. This
result is satisfactory because the zero corresponding to
Eq. (81a) follows from the translational invariance of
EP (to the RPA order). The eigenmodes EP are the
generators of these translations. They do not generate
internal excitations of the nucleus, but they generate
translations of the nucleus as a whole and thus do not
affect the scattering matrix in the c.m. frame.

VII. CONCLUSIONS

Using single-particle wave functions determined from
a HF potential, we have written down the RPA equa-
tions that determine the scattering of nucleons by
nuclei lacking one particle from being doubly magic. It
was assumed that states of the target and residual
nuclei can be d, escribed as 1-h states in the correlated
ground state

~
%p) of the RPA for the compound system.

This assumption is probably one of the most severe of
our approach. It can only be removed at the expense of
considerable formal complications. We found that the
RPA equations allow for the proper definition of asymp-
totic states only if the full Hamiltonian H is used in the
HF procedure, rather than the intrinsic Hamiltonian
given in Eq. (86).

The scattering eigenfunctions of the system deter-
mined by the RPA are linear combinations of e-particle-
s-hole states, with a=I, 3, 5 ~ ~ ~ and thus contain
states with 1, 3, 5, ~ ~ ~ nucleons in continuum. orbitals
of the HF Hamiltonian. In spite of this fact, the RPA
equations are free from the mathematical complications
of the quantum-mechanical three- and many-body scat-
tering problem and have the structure of equations
typically obtained in many-channel scattering. This is
so because of the basic RPA assumption that excited
states of the system (including the scattering states)
are obtained by applying a boson operator Q„t to

~
Np).

The operator Q„ is written as a linear combination of
boson creation and destruction operators A~, 2, with
coefficients F, P, Z, Z. The RPA equations are linear
equations for these coefficients and hence do not refer
to more than one nucleon in a continuum orbital. They
are therefore "connected" equations in the sense of
Weinberg' and thus well behaved. In other words, the
potentially dangerous many-particle —many-hole states
all appear in the wave function of the correlated RPA
ground state. There they cannot cause any difficulties,
because the intrinsic part of

~
4'p) is square-integrable.

Without resorting to separable two-nucleon poten-
tials, we have given a general formula for the T matrix.
For translationally and Galilean-invariant two-nucleon
interactions, it was shown that this is the T matrix in
the c.m. frame, in the RPA. All eigenfunctions con-
structed from the RPA are also eigenfunctions of the

RPA to the linear-momentum operator. Failure of con-
servation of linear momentum can only be caused by 3,

breakdown of the fundamental RPA assumptions, not
by an incorrect treatment of the linear-momentum
operator within the RPA. While E=0 is an eigenvalue
of the RPA equations (with the linear-momentum
operator as eigenboson), E=O does not correspond to
a singularity of the RPA T matrix.

From the general form of the T matrix, it was shown
that the S matrix is unitary and symmetric. The forlrL

(56) for T, while quite general, is not transparent,
because it contains a yet-unknown resolvent operator
F. This is so because the RPA equations constitute 0.

system of integral equations of infinite rank and there-
fore cannot be solved by algebraic means. In order to
display the structure and energy dependence of T
explicitly, we constructed the resolvent operator F fol-
lowing a procedure suggested. by Weinberg. ' F is the
resolvent of the integral operator containing the chan-
nel-channel coupling Ygg. While it was found that the
Born, series for F may diverge, and hence cannot always
be used to calculate F, the causes of the divergence were
exhibited. It was see~ that single-particle resonances in
the HF field are the cause of such divergences. It was
found possible, in full analogy to the TDA,"to intro-
duce a separable potential V8 in such a way that the
Born series for the operator containing (Voo—Vs)
would always converge, while the treatment of VB itself
causes no problem, Vq being separable.

The resulting formulas for the T matrix make it
possible to discuss the structure and, to some extent,
the analytical properties of this matrix. For reasons of
simplicity, this was only done for the case of no channel-
channel coupling Ygg. The extension of the treatment
to include Vgq is straightforward. All S-matrix elements
were found to contain the same function (detD) in
the denominator. Essentially, this function is the gen-
eralization of the Jost function to the present problem.
Because of the RPA, the matrix D has the remarkable
property that detD( —8) = detD(8). This leads to the
statement that, on the physical sheet, poles and branch
points of the S matrix caused by detD occur symmetri-
cally about the point E=O. A detailed discussion of
origin and physical significance of the left-hand singu-
larities was given. They are due to the backward-going
graphs.

The pole expansion of the T matrix yields, even in the
case of no channel-channel coupling, a background
term due to the left-hand. poles. The presence of these
poles also limits the possibility of deriving sum rules for
the partial and total widths, in contrast to results.
obtained in the TDA. Indeed, the sum rules hold only
up to and including first order in the matrix elements
of the backward-going graphs. Ke remark that these
matrix elements contribute to the correlations in the
RPA ground state

~ %p), where they enter in first and
higher order.

During preparation of this manuscript, the authors,
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received a manuscript by Hahne and Dover '5 in which
some of the problems studied in the present paper are
investigated for the case of a separable two-nucleon
interaction. In this case, an algebraic solution of the
I.ippmann-Schwinger equation can be obtained. While
some of the problems discussed above (the relationship
between the HF procedure and the RPA, the role of the
linear-momentum operator) are not investigated in
Ref. 15, the work there provides a very interesting and
useful counterpart to the present investigation, because
the motion of the poles in the complex plane and the
values of the partial widths can be studied as functions
of the parameters characterizing the separable potential.

APPENDIX

In this Appendix, we show that the scattering solu-
tions given by Eqs. (15) and (17) agree with those
derived by Dietrich and Hara. a We then show (i) that
the scattering modes obey the boson commutation rules
given in Eq. (18), (ii) that the scattering matrix is
given by Eq. (22), and (iii) that the scattering matrix
is unitary.

Let us define U, (+'r(E) to be

U, (+&t(E)=Q,(+it(E) —exp(ib, )A, t(E) . (A1)

From Eq. (15), this is just

U.'+"(2)= Z ~
[&s, L'&', Q.'+"(&)jjA' —L~~' (&" 0 ""(a)Z )

1 Ag

E—EI, E+Ea

cl

A, E'
dE' E&. (E'), [V, Q.'+"(E)]]~"'(E'),—I ~"'(E')

I
V Q '+"(E)]], (A2)E+E'

=E1/(E'-Hs')]{EV', Q.""(E)]+LU.' "(E),V ]

In the above, we have put the energy denominators to brackets, the expression becomes
the far right to illustrate better our argument. We then
operate on the RPA ground state I 4s) with U, (+&t(E). Ua+ t(E) I +o&

Consider the 6rst of the energy denominators given in
the above expression. Since H~

I
4'((&=0, 'we have

C1/(E —Ea)] I +o&=E1/(E—Ea—H')]
I +o&, (A3)

which is equivalent to

E1/(E-E, )] I
~,& =E1/(E—E,—H;) ]

+ (E&F+Vii) U (+)t(E) j I
@ )

=E1/(E+ Ho~)—]{exp(ih,) EV~, A,t(E)]

+(E +V &U'""(E) I l@a&, (A8)

Using the operator identity

~arE1/(E Ea H~)]=C—1/(E—Hii)]Aat, (A—S) C'/(E —Ha )](E—H') U'+"(E)
I
+ &

X{1+(E"+V )C1/(E —Ea—H )]}I%&. (A4) where we have used the definition of U,&+~1(E) given
in (A1). We then bring the second term on the right-
hand side to the left-hand side, and we Anally get

we get

~a'C1/(E —Ea)] I +o&= L1/(E—Ho')]~a'

= E1/(E+—Hae)] «P(i&.) CV', &.'(E)]
I +&), (A9)

from which we conclude that

U""(E)
I
+.&=C1/(E'-H )]

&& {1+E1/(E—Ea)](E"'+V') } I +a& (A6)
)& exp(sb )EV ~ t(E)]

I @o), (A10)
We can thus pull the (E HP) ' factor outside —the'

summation sign in Eq. (A1). Doing this for all other
energy denominators as well, and resumming (and
integrating), we get

W+"(E) I +s&=L1/(E"—Ho') 7{EV' Q.'+"(E)]

using the fact that U,&+11(E) has outgoing scattered
waves only. This result agrees with that of Dietrich
and Hara. ~

The commutators between the creation and destruc-
tion operators for scattering modes can then be calcu-
lated. For example, we have

+ '"""'""'+'"I" '""
CQ. (E'), Q. '(E)]=-p(-~. )

If vre com~ute the last two operators in the curly

"F.Hahne and C. B.Dover, Nucl. Phys. A135, 65 (1969).

&&E~"(E'), Q.'+"(E)]
+LU""'(E'), Q.'+ '(E)1. (A»)
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If we use the expression in Eq. (15), the first term
becomes

exp( —iB;)1 A, (E'), Q.&+)')(E)7=8„&)(E—E')

+ exp( —~&") (E'—E') '1:~"(E') Ll" Q'+"(E)77.

(A12)

In. order to evaluate the second term in (A11), we can
sandwich it between the RPA ground states, since it is
just a number:

«.&.)(E), Q.&»(E)7

=&~. 1L~. (E), Q. (E»1~.&

= &+, 1v..& )(E)e.&+ t(E) 1~,&,

where we have used Eq. (12b) . Using (A10) above, we

get

PU', &+)(E~) Q &+)t(E)7=—exp( —$&),) (E&-—E~)

X &~. 1P. (E'), Ll, Q ")'(E)771~.&. (A14)

This term cancels with the second term in Eq. (A12),
and we get

LQ "'(E') Q""(E)7=~-~(E—E').

It is easier to show that

m""'(E'), e."(E)7=Le" '(E'), e.'" '(E)7=0.

(A16)

Since the commutators are just numbers, we can
evaluate them by sandwiching them between the RPA
ground state as was done in (A13). Using (12b), we
verify that these commutators vanish.

In a manner equivalent to deriving Eq (A10)., we
can show that

U.&-"(E)
I ~.&=L1/(E-Lf )7

X exp( —~~.)LV, ~.t(E)]
I e,&, (AIT)

where

U, & )"(E)=—Q, & )"(E)—exp( —i5,) A,t(E). (A18)

Using this relation, we can derive commutators like
{A15) and (A16) with {+) superscripts replaced by
(—) superscripts. Furthermore, we can derive the
expression for the scattering matrix given in Eqs. (22).
In a development similar to that used in Eqs. (A11)-

Thus,
=ELQ "'(E) Q.'7.

f.e "'(E),Q.'7=o,

(A22)

if E„/E.
Thus the set of bosons I e„t, Q„, Q,&+)t(E), Q,&+) (E),

E~~, R~~I form an orthonormal set of bosons. They also
form a complete set in the sense that any boson expand-
able in the set f A&,t, A&„A,t(E), A, (E) I is expandable
in this set. In particular, the scattering bosons Q, & ) (E)
are expandable in this set. These bosons commute with
all the bosons in the former set of bosons, except for the
eigenbosons Q,&+)t(E). The commutator with these
bosons is just the scattering matrix, Eq. (20):

Q.' '(E) = Z 5'- (E)Q""'(E). (A24)

Corronuting this equation with the conjugate boson
Q,-& )t(E"), we get

~(E E")~ -= Z ~- (E)—L'Q '+'(E) Q"' "(E")7
c)'

= g S,;(E)8...-*(E)S(E E"). (A25)—
Thus, the 5 matrix is unitary.

(A14), we find

LQ. ' '(E') Q.""(E)7= exp'~(~"+~.)7~(E—E')~-

+ p(&")r~"(E') LI e.""(E)77
X((E+—E') '—(E —E') '}. (A19)

Hence, in, this case only the real parts of the terms in
curly brackets cancel, and the imaginary parts add.
Using the fact that

ImL1/(W —E')7= Wn&)(E —E'), (A20)

we arrive at Eq. (22) .
For reasons identical to those used in deriving Eqs.

(A16), the other possible commutators vanish; namely,

Le"'-'(E'). Q.")(E)7= 1:e"&-)"(E'),Q.& )'(E)7=0.
(A21)

All the scattering eigenbosons commute eith bound
eigenbosons simply because they are solutions to the
eigenequations (10a) for different energies. Using Eq.
(10a) and Jacobi's identity, we can easily see that

E.LQ.'"'(E) Q.'7=LQ. '+'(E) L& Q.'77


