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As a preliminary to studying three-body problems involving local two-particle potentials with singular
core interactions, we derive and numerically study an integral equation for the complete o8-energy-shell ]
matrix for the associated two-particle scattering. The core interaction is described by the boundary-con-
dition model (specified energy-independent logarithmic derivative of the radial wave function at the core
radius) . Numerical solutions of the integral equation for the special case of the Herzfeld potential (hard core
with a square well outside) are found to agree well with the exact t matrix.

I. INTRODUCTION

t 1HE nucleon-nucleon t matrix on the energy shell is..now fairly well known over the elastic scattering
region (Ei,b &400 MeV), ' and can be accounted for
accurately in terms of a number of different potential
models. Separable potentials, ' local potentials with
hard cores, ' local potentials with core regions described

by the boundary-condition models (specified energy-
independent logarithmic derivative of the radial wave
function at the core radius), and local potentials with
soft coress have been used.

In order to reduce the ambiguity in the eGective
nucleon-nucleon interaction, one must study problems
such as nuclear matter, p-p bremstrahlung, three-body
bound, and scattering states, etc. , which involve oG-

energy-shell t-matrix elements.
The development of the Faddeev equations, whose

solutions give the properties of three-body states in
terms of oG-energy-shell two-body t-matrix elements,
has led to a great deal of research in three-body prob-
lems. 7

The Faddeev equations reduce to two-variable
integral equations in the case of local two-body inter-
actions, ~ These integral equations are extremely dif-
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ficult to solve with present computing facilities, but
there has been considerable progress recently in ending
efficient practical methods of solution. ' Most of the
Faddeev calculations have been based on separable
two-body interactions' which lead to one-variable
integral equations. ~

Separable nucleon-nucleon interactions are un-
realistic, especially for the long-range forces which are
associated with single-meson exchanges. A number of
"realistic" nucleon-nucleon interactions, ' ' which give
a good description of the t matrix on the energy shell,
have been proposed. They incorporate theoretical
estimates of the long-range (single-meson exchange)
forces and a parametrized intermediate and short-
range behavior. The latter is usually described in terms
of hard cores, ' the boundary condition model, ' or soft
cores.~

Thus, in order to use the Faddeev formalism to
discriminate between various realistic nucleon-nucleon
interactions, practical techniques must be developed
for computing the complete oG-shell t matrix for
singular core interactions.

Van Leeuwen and Reiner' derived an exact expression
for the complete oG-shell t matrix for the case of a
hard core with a chain of square wells outside. Brander"
used the two-potential formalism of Gell-Mann and
Goldberger" to derive a formal integral equation for
the complete oG-shell t matrix for the case of a hard
core and an arbitrary outside potential. Kowalsky and
Feldman" studied the half-off-shell t matrix for a hard-
shell (infinite delta function) core interaction and an
arbitrary outside potential. Laughlin and Scott"
set up, and studied numerically, a formalism for de-
termining the complete oG-shell t matrix in the case of
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a hard core and arbitrary outside potential. Fuda'4
used a separable expansion in Sturmian functions"
to study the same problem. Lomon and his collabo-
rators" investigated the half-off-shell t matrix for the
boundary-condition model.

In this paper, we consider a two-body interaction
with an outside local potential and a core region de-
scribed by the boundary-condition model (hard-core
models are, of course, a special case of this class of
interactions). We then derive and study an explicit
integral equation for the complete oG-shell t matrix.
In subsequent publications, we will study three-body
systems involving two-body forces of the type con-
sidered here.

In Sec. II, we show that the boundary-condition
model may be described in terms of a limiting pro-
cedure applied to a square repulsive well with a delta-
function interaction at the edge of the well. In Sec.
III, we derive an explicit integral equation for the
complete oG-shell t matrix. In Sec. IV, we consider the
hard-core limit of the boundary-condition model and
exhibit an exact expression for the t matrix in the case
of the Herzfeld potential (hard core with a square well

outside). In Sec. V, we numerically solve the integral
equation for the t matrix for the case of the Herzfeld
potential, and compare the results with the exact t-
matrix expression. A summary and some concluding
remarks are given in Sec. VI.

II. REPRESENTATION OF CORE
INTERACTION IN BOUNDARY-

CONDITION MODEL

In this paper, we will, for simplicity, consider un-
coupled two-body partial-wave states of definite orbital
angular momentum. The generalization of our analysis
to coupled partial-wave states is straightforward.

The boundary-condition model (BCM) consists of a
core interaction which gives rise to an energy-independ-
ent logarithmic derivative of the radial wave function
at the core radius, and a local potential outside the
core radius.

In studying the off-shell behavior of the t matrix for
the SCM, it is convenient to represent the model as an
appropriate limit of the local potential given in I'ig. j..
A repulsive square barrier of strength t/'0 extends from
particle separation r =0 to r = ro, a delta-function
interaction —V,rob(r r,) borders the squ—are repulsive
barrier, and there is a local potential V(r) for r)ro.
In this paper, we assume that V(r) approa, ches zero
faster than 1/r as boo. The case V(r) 1/r for
r~~ can easily be handled by using Coulomb functions

"M. G. Fuda, Phys. Rev. 178, 1682 (1969)."K.Meetz, J.Math. Phys. 3, 690 (1961);M. Rotenberg, Ann.
Phys. (N.Y.) 19, 262 (1962); S. Weinherg, Phys. Rev. 131, 440
(1963)."E.L. Lomon and M. McMillan& Ann. Phys. (N.Y.) 23, 439
(1963);M. M. Hoenig and E. L. Lomon, ibul. 36, 363 (1966).

Vp

I'p

~ V, ro8 (r —ro)

FIG. 1. Local potential which becomes the interaction of the
BCM in the limit, Uo = 2yVo/Am-+ ~, Uq =2@Vq/52~ m

f~ ro(V=Uo roUi—) =finite const.

where

= —UgroAi(Uo —k') '~' ro

Xj ((i (Uo k') "' ro)—, (2.5)

Ug= 2p Vg/P. (2.6)

The prime denotes differentiation with respect to r,
and ro+(—& signifies values of r infinitesimally larger
(smaller) than ro.

Now consider (2.5) in the limit

Uo, Ug-+~, (2.7)

fi= ro(V'Uo roUi)— (2 8)

equal to a finite constant. From the asymptotic proper-

instead of Bessel functions to represent the asymptotic
behavior of the wave functions.

The on-shell radial equation for the /th partial wave isd', l(l+1) Wt 2p—+k'— ~u~(r) = —V(r) u~(r), (2.1)

with the boundary condition

u1(0) =0. (2.2)

p is the reduced mass, and the c.m. energy E is Ssk'/2p.
For 0&r&ro, the solution of (2.1), with the V(r)
given in Fig. 1, has the general form

u&(r&ro) =A (i(Uo k') 'l' —r)j&(i(Uo—k') 'I' r), (2.3)

where
Uo= 2IJ,Vo/P, Uo) k'. (2.4)

A is a constant, and j& is the spherical Bessel function
of order I. The delta function in V(r) gives rise to a
discontinuity in the derivative of u&(r),

rou1'(r) ~;-""=roui'(r) [.o —roti(Uo —k')'"
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ties of j~, it follows that

rpug'(r)
i „,+

ug(rp)
lim

O'0, I-» oo

f1,=~0(Q UO—~0UI)

independent of k. The potential of Fig. 1 with conditions
(2.7) and (2.8) is thus equivalent to the BCM. Note
that for r & ro, and 6nite U~,

jg(i(Up —k') 'z' r)
ug(r) =uz(rp), „, . (2.10)

For very large Up, (2.10) gives

ug(r) ug(rp) expL —(+Up) (rp —r) ], (2.11)

may be expressed as

(k'
I t(q) I k)=(k'

I V I+,,.), (3.8)

where
~ +p, g, ) satisfies the off-shell Lippmann-Schwinger

equation

1~"=~"+
(~q/2. )-S(P..) /2. j V t"' ""

The on-shell t-matrix element (k'
~
t(k) j k), with

k', k, and k real and [
k'

)
=

~
k )

=k, is given by

(k'
[ t(q) ) k) = lirn(k'

[ t(k+ip)
) k). (3.10)

e~o+

If the expansions (3.1)

so that uz(r(r, ) =0 in the BCM. This result has been
derived in a more general way by Hoenig and Lomon. "

III. INTEGRAL EQUATION FOR
OFF-SHELL t MATRIX

(r ( k) = (2zr) "'p (21+1)i'Pg(k r)jg(kr)
L=O

(3.11)

In this section, we 6rst review briefly the integral-
equation formalism for scattering by nonsingular
potentials, and then generalize the formalism to the
case of the BCM by an appropriate limit procedure.

We assume a nonsingular, central, Hermitian po-
tential V which is local and generally (orbital) angular-
momentum-dependent. Thus,

(r
~
+,,k)= (2~)-"g (2l+1)igPz(k r)

L=O

(3.12)

are inserted into the coordinate representation of (3.9),
one obtains

ug(k
~ q ~

r) =rjz(kr)

—ZV ( )(2t+1)P ( '),gz(r —r') 1

r' 4z

(3.1)

«'Gz, .(r I ")Uz(") ug(k
~ q j r'), (3.13)

0

where Ug(r') = (2zz/f'gp) Vg(r'), and

where
r= /r), etc. ,

r=r/) r /,

where P,~ is the relative-momentum operator and

q= (2z &)'"/k, (3.3)

Vg(r) is a real function of r, and Pz is the l.egendre
polynomial of order l.

The t operator is dined by the formal integral
equation,

1
t(q) V+ V

/ ) ((p )p/2 ] (q) ( )

G („~„) 2 "d (pi&g(pr))(pr'jz(pr'))
pp q2

F«q'~q' (real and positive)+ip and p~0+, we find

Gzp(r j r ) =
,

—tqr&hgz+&(qr&) qr& jg(qr&)/iqj, (3.1$)

where kz'+'(x) is the 1th-order spherical Handsel func-
tion of the first kind whose asymptotic behavior is—(i/x) expt i(x—lzr/2)$ and r&, r& are, respectively,
the greater and lesser of r and r'. The radial Green's
function Gz p(r

~

r') satisfies the equation

(d', t(t+1)
~
—,+q' — Gz, ,(r

~

r') = b(r r'). (3.16)— —

where E is the (generally complex) energy parameter. If the expansions (3.1), (3.11), (3.12)
The eigenvectors of P,~ are the plane-wave states
~
k) which satisfy

5—gP.p i k) = k j k),

(k'
i
k)=ig'"(k' —k),

(r i k) = P1/(2m-) "'j exp (ik r),

Jd z'gk
[ k) (k )

= 1.

X g (2t+1) tg(k' [ q ) k) Pg(k' k) (3.17)
l=o

3.6
are substituted in (3.8), we find

(3.7)
«(k'

) q ~
k) =-

The general off-shell t-matrix element (k'
~ t(q) ) k)

«rjz(k'r) Ug(r)ug(k
~ q ~

r). (3.18)
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For the on-shell case, the asymptotic behavior of u& is

ui(k I k I r) rj&(kr)+/&(k I
k I k) expl i(k» —lm/2)),

(3.19)
with

fi(k I
k

I k) =expI ibi(k)) sinai(k)/k, (3.20)

where bi(k) is the real partial-wave phase shift.
We now generalize the basic equations, (3.13) and

(3.17), to the case of the BCM.
First consider Vi(r) to be V(r) in Fig. 1 with Vp and

Vi finite. It is then evident from (3.13) that for 0(
r&r,+,

{(d'/dr')+q' —Pl(l+1)/»')}u&(k I q I »)

= (q' —k') rj&(kr)+ I UpQ~(rp —r) —Uirp5(r —rp) )

(3.26) give

(3.28)

» ii(i(Uo q')—"«) —pL= (Uo)'"( —)) (3 29)
«o ji(i(Uo —q') ""o)

as (Up)'" r, (Uo)"'rp&)l, Up&)q'.
Multiplication of u&(k I q I r) by U&, scM(r), and the

use of (3.24), (3.27), and (3.29), yields

Ui sc„(r)ui(k I q I r)

Xi= ui(k I q I ro+), (3.27)

(d/dr) ui(k I q I r)
fo fly

u, (k I q I r) ,=„+

so that the BCM condition (2.9) also holds for the
off-shell radial wave function. In deriving (3.27) and
(3.28), use has been made of the following asymptotic
behavior:

with
)&u, (k I q I r), (3.21) lim

QP, O'I~oo
{(k' —q') rji(kr) Q~(ro —r)

Q~(g) is defined as
ui(k I q I 0) =0.

Q~(x)0) =1,
e(K(0) =0.

(3.22)

(3.23)

fL=rP(4 UP—rPUI)

+ui(k I q I
»o+) U«xpL —(Uo) "'o. ("—») )
—Uir&(r rp) u—&(k I q I r) }. (3.30)

In order to evaluate the limit in (3.30), we use the result

Thus, in the interval 0&r&ro,
—k'+ q'

ui(k I q I «) =, ,
— rji(kr)

U«xpl —(Uo) "'(»o—») )= (Uo) "'&(r—«p)

+(d/d»)~(» «o), (3.»)—
which holds for large Up. (3.31) may be easily verified

by considering the integration by parts of» ii(i(Uo —q')"'»)
(3.24)

ro ji(i(Uo —q')'" »o)
'

where 'A& is a constant. The continuity of u&(k I q I r),
and the discontinuity of —U,r,ui(k I q I rp) in the
derivative of ui(k I q I r) at r =rp, implies that

L(—ko+q') /( —k'+q' —Uo) )rp ji(kro)

f(») U«xpL —(Uo) "'(».—») )«, (3.32)

with f(r) an arbitrary function with a continuous
derivative over the range of integration. The (Up)'i'
term in (3.31) may now be combined with the Ui term
in 3.30 to ive

—k'+q' dUd(J'())—k' q' —Up dr

( )
+~,=u, (klql»o+), (3.25)

Ui, scM(») ui(k I q I ») = (k' —q') «ji(k«) Q(»o —»)

+ui(k I q I
ro+) P(fi/ro) ~(» ro)+ (d/dr—)8(r r;)). —

d r ji(i(Up q')'~'r) —l
dr rp j&(i(Up —qo)iso rp)J

(3.33)

We now assume that U&, scm(r) in (3.13) is given by

(3.34)U&(r) = Ul, Bcm(r)+Ui(r)
+ —ui(k I ql») I.=" =—Ui«o«(k I ql «o).

dr
where Ui(r) =0 for r(rp and goes to zero faster than

In the BCM limit (2.7) and (2.8), Eqs. (3.25) and 1/r as r~&e. Thus,

ui(k I q I r) =rji(kr) —ui(k I q I ro+) —Gi, p(ro I ro) —,R,p(r I «') I, =„—(k' —q')fi d

f'p r'
dr'Gi p(r I

r') rj'i(kr')

dr'Gi, p(r I
r') U&(r')u&(k I q I

r'). (3.35)
rp



S tting r=re+ in (3 3» fill~

g („I „)f/, (r) Ni(k I q I y)(k I I „,+) = rj i(k«0)—

gi ' ra+
I «0)7~Dy(f, /ro)gi. e(ro I «0)d, g, ,(y, I r)rji(kr)+(~'-k')

where
(d/d )g, (rl ) I'—0

(3 36), vanishes fo~checked that i( I

ose ti k I g I k)
$t may be easily c e

d (3.36), we may decomp»e iUsing (3~g) ( )''" ',
k

I Ik)+(i, scM(k'I elk)t (k'I qlk)=' ""

(3.37)

(3.38)
where

(y, I y) t/, (r) Ni(k
I V I ") fi g („ I „) g, ,'(r,+ I «0))I

„(k'
I g I k) = (v'

. (k„)
d

(r'g, (k'r')) I,

CM (U p), is given by

rj, (k'r) ——roj&(k ' dr'

(pr) p&(y) Ni(k I g I y)

g, ,(r, I y) j«i(kr) ——roji(
fi,, („~,(k'r) ) I,=.,—G «o+

I «0)-&+(fi/y)g ("'I"')

' r+ «0
x l+(f /y )gi («0 I «0) gle- ,

d p as is iequired by %acer the interchange o
'

nt to the reaction-
I k) are symmetric un

p) (3.4p) is equivaien
(k'

I q I k) and ~i sc" ~
yn the half-o8-shell c»eeversal invariance n, k),ng fiom p, (r),

ieflection
and Lomon.

, k t}e contribution to ~i ~
d t, (p I g

matijx result of Ho 'g
l uation for Pi, acM( I & I

ortion of one of t"e integ
'

d to be

deiive an integ«q
3 $4), and identifying P

teg«i equatio»s fo

We y . ,3 3~);nto (3 39), us»g
f d algebra, the resu»g '"

b t tut~ng
' '

b&e A(te some straight o

34])

p being an in«g«"' "
" p'~p

k
I I p)&, , (p I v I k)k), Vi,2cM(k'I &Ik)=

where

v, ,,(k'
I g I k) = g„(r, lr(fi (p„) —(r'i~(k'&')) I"=")yy(f/r)Gr, ,( I" )

rji(k'y) ——

opal

d«

(f/«0)g, ~(«OI«) —g, ,'( I o~U („) j,(k ) —
o2 (k"o) (l+(f/, )g,,( o I o)

g„(r I
r') «'ji(k«')+ (g' —k') d" l+ ( f,/r, )gi, g(« I «0)0

(3.42)

gi,,(yo I y)
t/i(r) j«i(p').x, ,/„,)g„(„l;)-g.,'(" I ")-

~
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TABLE I. The on- and oG-energy-shell 3 matrix for the s-wave Herzfeld potential with r0=0.4 F, r&=1.737 F, and V&=73 MeV com-
puted from (4.1), (4.2), and (4.3).These results are to be compared with the exact results (in brackets) computed from (4.11).The
variables g', k2, and k' ' are in units of F ' with Izsjnz =41.47 MeV F'. The adjustable constant z2 is set equal to 10.

k'= 0.1208 k'= 0.1208
k' ~=0.1208 k' 2=1.5542

k~=0. 12O8 k2=1.5542
k' ~=33.304 k' 2=1.5542

k~= i.5542 k~=33.304
k' ~=33.304 k' ~=33.304

—0.1

—33 ~ 0

19.3595
(19.3691)

3.1086
(3.1082)

0.9253
(0.9249)

9.4616
(9.4671)

1.4993
(1.4992)

—0.1581
(—0.1582)

—1.8196
(—1.8207)

—0.2942

(—0.2942)

—0.7804

(—0. 'I804)

4.3264
(4.3291)

0.5960
(0.5960)

—0.7711
(—0.7711)

—0.9695
(—0.9701)
—0.2793

(—0.2794)

—0.7988

(—0.7988)

0.0277
(0.0278)

—0.1358
(—0.1357)

—0.4582

(—0.4582)

since the kernel is bounded, i.e.,

p, ( I ql p) (344)
o o q p

as can be seen from the expression (3.43) for
Vz 2(k'

I q I P). For a bounded kernel, it is well known
that the solution of (3.41) exists for all q' except for an
at most denumerable set of points q,', and furthermore
that the solutions of (3.41) are unique. 'r

For negative real q', as is appropriate for the bound-
state problem, the kernel of (3.41) does not develop a
singularity, and hence (3.41) is an ordinary Fredholm
integral equation for which several standard methods
of solution are available. For q' +q2 (real an—d positive)
+ie, c—+0+, as is appropriate for the scattering problem,
(3.41) can be reduced to a Fredholm integral equation
by a well-known reduction method. "

IV. HARD-CORE LIMIT

In this section, we consider local potentials with
hard cores as a limiting case of the BCM. As a special
case, we consider a local potential with a hard core
and an attractive square well outside (the Herzfeld
potential or hard-core square-well potential) and
derive the exact expression for the complete o6-shell
f matrix.

For local potentials with hard cores, we take limits
Uo~~ and Ui—+0 or equivalently fz~~ in (3.40),
(3.42), and (3.43) . We then have

tz(k' I q I k) =tz, zrc(k'
I q I k)+tz, Hc(k' [ q I k), (4.1)

For the special case of 3= 0 (s wave), (4.2a) reduces to
"0 sink'r sinks

drto, zzc(k'
I q I k) = (q' —k2)

Vz i(k'
I q I k) = — dr

Gz, o(ro I r) l
X ~ji k'& —

&ops k'&o
Gz, ,(ro I ro) j

Gz, ,(ro I r)
&z,'Uz(r) rjz(kr) rjoz(kr,)— (4 4)

Gz, ,(ro I ro)

Vz, (k'
I q I p) = — dr

Gz.o(ro I r)P rj& k'r —rq& k'ro
Gz. (ro I ro)

&& Uz(r) rjz(kr) . (4.5)

sinkro coskrol sink'ro

k iq j k'

The second term of (4.1) satisfies the integral equation

tz, Hc(k'
I q I k) = Vz, z(k'

I q I k)
00 p2dp

Vz, 2(k'
I q I P) f'z, uc(P I q I k), (4.3)

q
—p

where

where the first term on the right-hand side is the pure
hard-core contribution given by

tz Hc(k'
I q I k) = (q' —k') dr

Gz, ,(«sir) ~ .
XI rjz(k'r) —rqjz(k'ro)

'
I
rj z(kr)

Gz o(ro I ro) j
Vz(r) = (&'/2z ) Uo= ~

(4.2a) Vz(") = (&'/2z ) U(r) = P'/2z ) Uz& 0

for r&ro,

for r~QrQr„

for r&rj.

rojz(k'ro) r,j,(kr, )
Gz.o(ro I «o)

Vz(r) = (e/2z ) U, = 0"F. Smithies, Integral Zgzzations (Cambridge University
Press, Cambridge, England, 1958). (4.6)

Note that Eq. (4.3) reduces to the Lippmann-
Schwinger equation for a single potential as ~0~0.

We now consider as a special case the Herzfeld
potential for which Eqs. (4.1)-(4.5) are valid. For each
partial wave /, we define the parameters of the Herzfeld
potential as follows:
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ro is the core radius previously defined, r~ is the radius
of the outer edge of the square-well potential, and
U s are constants proportional to the interaction
strengths.

For the Herzfeld potential, it is well known that the
exact expression for the t matrix can be derived by a
method which does not involve the solution of an in-

tegral equation. Van Leeuwen and Reiner have given a
detailed description of the method. ' We will brieQy
outline the derivation here and give the Anal explicit
expression for the t matrix.

We take Uo to be finite initially and then take the
limit Up —+~ at the end. With the Vi(r) defined in
(4.6), the differential equation for ui(k ~ q t r) de-
fined by (3.13) is

/' d', t (1+1)i
(

—+q' — — )ui(k ( q ) r) = (q' —k') rji(kr)
&kdr2 r2 1

+Vi(r) ui(k f q j r). (4.7)

For q'—kq' (real and positive) +io, 2—&0+, the solution of
(4.7), which has an outgoing scattered wave for

r& r, Las is implied by (3.13) and (3.15)j, is

u[(k
~ q ) r) =Aprji(kr)+Bp+rhi&+&(n()r)

yBo rh«
—'(nor),

ui(k
~ q ) r) =Airji(kr)+B, +rhi&+&(n, r)

+B,—rhi& &(n,r),

0&r&ro

(4.8)

ro(r(r~

ui(k
~ q j r) =rj i(kr)+B2+rhi&+&(qr), r~r, .

The A, (i=0, 1) are given by

A, = (q' —k') /(q' —k' —U, ),
and the n, (2=0, 1, 2) by

(q2 U',2) i/2 (4.10)

Tile hi&+& (x) are the tth-order spherical Hankel func-
tions of the first (second) kind. The B,+ (i=0, 1, 2)
are complex coefficients, independent of r, which are
determined from the vanishing of ui(k

~ q ~
r) at r=0

and the continuity of derivative and value of
ul(k

~ q ~
r) at r=ro and r=r, . In the limit Up~&x),

the t matrix defined by (3.18) is thus given by

ti (k'
~ q ~

k) = (q' —k') dr rj i(k'r) jri(kr)

—Ail r»i(k'ro) —,Lr'ji(kr') j I"=.,+Uir'

rj
dr jr& (k 'r) rj, (kr) )0

g+ r~ Pr rh(+) r, U dr rj i(k'r) rhi&+&(n, r)
~

with

—Bg
—

r)j) k'rg —,r'h)(-& o.~r' „. „, Ugr' drrj, (k'r)rk, & &(,r)), (4.&&)
0

Bi+= ( —ni'/D)L —Airp ji(krp)X/(nl n2 ( ri)+(Ai —1)ro hk &(airo)xi(ka2+
) ri) j

Bi-——(nP/D) p
—A,ro ji(kro) Xi(ai+n2+ [ ri)+ (Ai 1)ro hi—&+'(niro) Xi(ka2+ [ ri) g.

The Xg's are Wronskians defined by

(4.12)

(4.13)

Xi(kno+t~ ri) =
riji(kri) rihi&+& (n2ri)

(4.14)
(d/«) Lrj i(kr) j I.— (d/«) Lrhi'+'(a2r) 3 l.=.

and similar expressions for Xi(ai+, n2+
~
ri) and

Xi(ai, a2+
~
ri) The symbo. l D stands for the function

Di(ro, r„ni, a2) defined as

Di(rp, r, ; ni, a2) = a,'prphi+—(airp) Xi(ai a2+
[ ri)

—r()hi
—(n,r,)Xi(n,+n,+

( r, )). (4.13)

As in (3.20), the normalization is such that on the
energy shell we have ti (k

~

k
~
k) =e'2'&2&fsinbi(k)/kg.

As expected, tP(k'
~ q ~

k) is symmetric in k' and k.
For a finite value of q', as k (or k') approaches in-
finity, tP(k' ) q ~

k) approaches zero as 1/k (or 1/k').

For a very large value of q2, the behavior of tP(k'
~ q ~

k)
is mainly determined by the first term on the right-
hand side of Eq. (4.11). As q2—k~& tP(k'~ q ~

k)
approaches infinity as q'.

Although tP(k'
~ q ~

k) is, in general, complex, it is
real for the negative (real) q', as is expected from
general properties of the t matrix. This is not obvious
from Eq. (4.11), especially for the case of 0&q'& U,
with V~&0. However, we can show for this case that the
function Di(rp, ri, ai, n2) is purely imaginary and,
furthermore, that Bi+= (Bi )*, so that, when all terms
on the right-hand side of Eq. (4.11) are summed, the
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which yields the well-known formula"

V= (-', ir) '(ft'/mb'),

where b=r, —rp and V= —Ui(5'/m) with m=2tt.

(4.17)

V. NUMERICAL SOLUTION

We present in this section a numerical example which
demonstrates the practicality of solving the integral
equation (4.3) for the Herzfeld potential. The use of
other local potentials Ui(r), which approach zero
faster than 1/r as r—+co, does not present any numerical
difhculties. For simplicity, we consider the case of
negative real q'. Extension to the positive q' case is
slightly more complicated but straightforward. " Also
for simplicity, we consider only the case of the two-
nucleon system interacting through an s-wave Herzfeld
potential.

The parameters of the potential as defined in (4.6)
are chosen to be ro ——0.4F, rl ——1.737F, and V» =
—(ft'/m) Ui= 73 Mev with (5'/m) =41 47F' MeV,
where m= 2p, is the nucleon rest mass. For these values
of parameters, the potential gives the experimental
triplet s-wave scattering length and effective range, and
the deuteron binding energy" (tensor coupling being
ignored) .

For negative real q', the integral equation (4.3) is of
the Fredholm type. We adopt a standard numerical
method of matrix inversion. Ke approximate the
integral part of (4.3) by a finite sum using Gaussian

ie A. bohr and B. R. Mottelson, in nuclear Structure (W. A.
Benjamin, Inc. , New York, 1969), Vol. I, p. 245.

'9 H. Enge, Introduction to Nuclear Physics (Addison-Kesley
Publishing Company, Inc. , Reading, Mass. , 1966).

imaginary parts cancel, and hence tP(k'
I q I k) turns

out to be real.
Apparent singularities due to (q' —O' —Ui) in the

denominator of Ai in Eq. (4.11) are fictitious and cancel
out when all the contributions to tt are summed.
However, for negative real q, genuine singularities
develop for values of Ul which are large enough to give
bound states. That is, zeros of Di(rp, ri,' cti, n2) as a
function of q'(0 give rise to poles in &t (k'

I q I k).
The binding energies can be obtained as the values of
negative qp at which Di(rp, ri, ai, ot2) vanishes. As an
example we give a simple expression for the binding
energy in the case of an s-wave interaction. Setting
Dp(rp, ri,' o'i, np) =0, we obtain for U, &q'(0

(I q I)'t' sinC(q' Ui)'t' (ri—rp) j
+(q' Ui)'t'cos—

l (q' —Ui)"' (r,—rp) j=0. (4.16)

It is easy to show that D, (r,r, ; n, , ce&) does not develop
zeros for the values of q' such that q'( Ul&0. It is of
some interest to And parameters ro, rl, and Ul of the
s-wave Herzfeld potential which gives zero binding
energy. For this case, we must have

(—Ui) "' cos[(—U,) 't'(rp —ri) j= 0,

TABLE II. Successive approximations for the determinants at
diferent values of two-body energy parameter qm (in units of
k'/m=41. 47 MeV F') as a function of the total number E of
Gaussian quadrature points. The adjustable constant o, is set
equal to 10.

C'(F ') X=40

—0.1
-0.8
—1.5
—3.0

—33.0

0.0577
0.3462
0.4477
0.5557
0 ' 8253

0.0594
0.3431
0.4433
0.5503
0.8217

0.0598
0.3441
0.4445
0.5516
0.8228

0.0598
0.3449
0.4455
0.5529
0.8241

dh E,(t', t) tp, no(t
I q I

t")

—Q W;(t') E,(t', t,) $p, iio(t; I q I
t'r), (5.2)

with

2 0.3t2

~ I
q' —~ tp/(1 —t)'j(1—

&)

(5.3)

where ti and W; are the abscissas and weight factors for
Gaussian quadrature. If we discretize the variables
t' and t" in the same way as t, 's with E points dis-
tributed over the interval (0, 1), then Eq. (5.1)
becomes a matrix equation for a given value of negative

"T.A. Osborn, SLAC Report No. 79, 1967 (unpublished).
2' See paper of J. H. Hetherington and L. H. Schick in Ref. 7.
"G.E. Brown, A. D. Jackson, and T. T. S. Kuo, Nucl. Phys.

A133, 481 (1969);M. Baranger, B.Girand, S. K. Mukhopdhyay,
and P. U. Sauer (to be published).

quadrature. It is convenient to make a change of
variable so as to make the upper integration limit
finite. The change of variable with p=nft/(1 t)j-
shifts the integration limits of (0, po) to (0, 1), and
with p=a tan(u/4) (1+/) it is shifted to (—1, +1).
The parameter 0. is an adjustable constant. The 6rst
choice of p=ot$t/(1 t) j ha—s been used, and is known
to work well for the I.ippmann-Schwinger equation
with the s-wave part of a local Yukawa potentiaP
and for the Faddeev equation with s-wave separable
potentials of the Yamaguchi type. "The second choice
of p= tx tan(ir/4) (1+/) appears to be equally suitable
for our purpose. "

We choose the change of variable p=nft/(1 t)j-
and rewrite Eq. (4.3) as

&o, nc(&' I q I
&")= Vp, (&'

I q I
&")

2 l- n3t2dt
vp, p(&'

I q I
&)

Lq' —n't2/(1 —t) 'j(1—t) 4

)(f'p, Hc(t I q I
t"). (5.1)

We approximate the integral part of (5.1) as
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TABLE III. Successive approximations for the deuteron binding
energy qP computed from the s-wave hard-core square-well po-
tential (the Herzfeld potential) as a function of the total number
E of Gaussian quadrature points. These results are to be com-
pared with the exact result of —5.3822)&10 ~ F ' which corre-
sponds to —2.2320 MeV with V/2a=41. 47 MeV F'. The ad-
justable constant parameter o. is set to be 10.

g22 (10-2F-2)

Difference between
calculated and

exact results (%)

16
20
24
40

—5.5789
—5.4001
—5.3662
—5.3798

3.378
0.33|
0.297
0.046

real q',

(1—K)T= V. (5.4)

1, K, and V are EX% matrices whose (2, j) elements
are given by 8;;, W;(t )K,(t,', t;), and Vo,t(t j q ( t;"),
respectively. The solution for fo, Hc(t'

~ g ~

t") is ob-
tained as an Ã)&E matrix T by inverting the matrix
equation (5.4). Solutions for to,Hc(k'

~ g ~
k) thus

obtained are then added to the pure hard-core t matrix
to, Hc (k'

~ q ~
k) to obtain the complete oG-shell

matrix. This is to be compared with the exact
to (k'

( g ~ k) calculated from (4.11).
To test the stability of our solution, the total number

E of Gaussian quadrature points is varied from 16 to
40 and the adjustable constant a from 2 to 10.A matrix
inversion with /=40 and o.=10 yields results with an
accuracy of about 0.05% as compared with the exact
results calculated from Eq. (4.11). Comparisons of
these results at a few selected momenta and energies are
presented in Table I.

Another test of the accuracy of our solutions is to
look at convergence of the determinant ) 1—K

~

as
a function of E. This test is expected to be a sensitive
one because evaluation of the determinant involves a
surrunation of many comparable terms with opposite
signs. Furthermore, this test becomes very useful
when we are dealing with the usual situation in which
the exact solutions for the t matrix are not available.
Table II shows successive approximations for the
determinant at different values of q'.

A similar test to the above one is to calculate zeros
of the determinant as a function of X when there are
bound states present in the two-particle system. We
calculate the values of q' at which the determinant
vanishes and compare the results with the exact binding
energy obtained by solving Eq. (4.16). These results
are presented in Table III. For X=40, our solutions
for the binding energies differ only about 0.05% from
the exact ones.

VL SUMMARY

We have derived an integral equation for the com-
plete oG-energy-shell t matrix in the case of a singular
core interaction described by the boundary-condition
model, and an outside local potential. This work sup-
plements the previous work of Lomon and his col-
laborators" who studied the half-oG-shell t matrix for
the same interaction. The total t matrix consists of the
pure BCM part tscM(k

~ g j k) and the contribution
kacM (k'

~ q ~
k) which comes from the outside local

potential. We have derived a Predholm integral equa-
tion for kscM(k' I q ~

k). The t matrix for a hard-core
interaction and a local outside potential is obtained
from our formalism as a special limiting case.

The integral equation for t&c&(k'
~ g ~

k) has been
solved numerically for negative q' using the s-wave
Herzfeld potential (hard core and outside square well)
which gives the experimental nucleon-nucleon bound
state and (low-energy) scattering parameters for the
'St state (with tensor coupling to oDt being ignored).
For the Herzfeld potential, an exact analytic expression
for the t matrix can be derived. ' The numerical solution
of the integral equation was compared to the exact
result. With a reasonable number E of Gaussian
quadrature points, we found satisfactory agreement
(~0.5% accuracy with /=24 and ~0.05% accuracy
with %=40).

Extensions to the cases of real positive q' are slightly
more complicated but straightforward. Inclusion of the
Coulomb interaction in the two-body potential does
not introduce any difficulties except complications
arising from complexities of the Coulomb wave func-
tions, which in this case replace the Bessel functions
in our formalism.

It should be pointed out that there are several
other works" "in which the complete off-shell t matrix
is derived and studied numerically for local hard-core
potentials. One of the practical advantages of our
method is that, for a given energy parameter q', the
solution of the integral equation for t(k'

~ q ~
k) de-

termines simultaneously the complete k' and k de-
pendences of t(k'

) g ~ k), whereas the method proposed
by Laughlin and Scott" involves solving a diGerential
equation for each value of k' and q, and the method by
Fuda'4 involves an additional double integral in k'
and k variables after solving an integral equation
similar to ours.

The main objective of this paper was to develop a
practical method of calculating the complete off-shell
t matrix for local potentials with hard cores such as
the Hamada-Johnston and Yale potentials' and also
for potentials with the more general core interactions
described by the BCM.4 The methods presented in this
paper are now being used in calculations of the proper-
ties of trinucleon scattering and bound states.


