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An approximate procedure which makes use of the spherical Hartree-Fock method and the perturbation
approximation is described for generating the correlated ground state. This procedure is compared with
an exact shell-model method and with the projected Hartree-Fock (PHF) method, with or without time-
reversal constraint, by studying the octupole correlations in O'. It is shown that the results given by thepres-
ent simple method are comparable with the more difficult PHF method with no time-reversal constraint.

I. INTRODUCTION

EVERAL authors’? have proposed renormalized

random-phase-approximation (RPA) equations to
calculate the excited states for vibrational nuclei. To
apply these methods, a preliminary knowledge of the
correlated ground state is needed. A number of meth-
ods have already been suggested by Rowe® to cal-
culate the ground-state correlations. Recently, it has
been shown** that one of the promising methods is
the projected-Hartree-Fock (PHF) technique, in which
one applies the variational principle after projecting
out the ground state from an intrinsically deformed
determinant. This method is interesting because it
accounts for both vibrational and rotational correla-
tions in a continuous manner, but it cannot include
all types of correlations as long as one imposes sym-
metry constraints, e.g., the time-reversal constraint.’$
As shown in the present paper, much better results
can be obtained when the time-reversal constraint is
relaxed. Even though these PHF calculations can now
be performed,® they are fairly difficult and use a
large amount of computer time.® One therefore needs
a much quicker and easier method to generate the
approximate correlated ground state comparable with
the one obtained by PHF. In this note, we would
like to propose another approximate procedure which
makes use of the spherical Hartree-Fock method and
the perturbation approximation as described by Nes-
bet.” It was used earlier to calculate the correlation
energy for the ground state of the O nucleus.® It will
be shown that the correlated ground state generated
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by the present, much simpler, method, which unlike
PHF takes into account all types of correlations, is
as good as the one obtained by the more difficult
PHF method even when the time-reversal constraint
is relaxed.

In Sec. II, we describe the present method and
show the results in Sec. III.

II. METHOD OF CALCULATION

Let ¥ be an exact wave function and &, its domi-
nant component, then we can write

Y=\ B+ 2 a.8,], (1)
)
where X is the normalization constant. The coefficients
a, in the perturbation approximation’ are given by

a,=Hy/ (Hy—Hy), (2)

where H is the Hamiltonian, and H,,=(®,| H | ®,).
In practical applications,® ®, is first taken to be the
dominant shell-model wave function and the coeffi-
cients @, are calculated using expression (2). If some
of the coefficients @, turn out to be large, then the
Hamiltonian is exactly diagonalized in the basis set
consisting of ®, and those ®, for which the coefficients
a, were large. This then defines a new %, and the
coefficients are recalculated using expression (2). In
the closed-shell nuclei like O, there is a big gap
between the occupied and the unoccupied spherical
Hartree-Fock orbitals,®® and therefore the size of the
Hamiltonian matrix which has to be diagonalized
exactly is quite small.

Let us now apply this method to calculate the cor-
related ground state of O%. Since our aim here is to
compare the results of the present method with the
PHF and the exact shell-model results, we shall use
the same interaction and configuration space which
we had used earlier.’ The configuration space is limited
to four nucleons in the 1p5 and 1ds/s subshell outside
of a (1s12)*(1p32)® closed-shell core. The two-body
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interaction is taken to be the Rosenfeld interaction
V(T) =%VOT1’72(O.3+0.70'1'0’2) e—"’/m', (3)

with V=50 MeV, y'=1.37 fm. The single-particle
energies epe and ez are —4.95 and —1.10 MeV,
respectively. To see the effects of the octupole cor-
relations, an octupole-octupole interaction

v=—xn2rs? 3 Viu(61) Vg™ (62) 4)
q

is artifically added to the Hamiltonian.®
The quantities of interest are the correlation ener-
gies AE,

AE= (o | H | Wo)—((pr2)* | H| (pr2)*),  (5)

and the single-particle densities for the ground state
of OB, These quantities were calculated® using the
PHF technique with the time-reversal constraint as
a function of the strength of the octupole-octupole
interaction, and then compared with the correspond-
ing exact shell-model results. By choosing x to be
both positive and negative, the effects of suppression
and enhancement of the octupole correlations on the
correlation energy and single-particle densities were
studied.®* We show in Sec. IIT how these quantities
change when the time-reversal constraint is relaxed
and how they compare with the ones given by the
approximate perturbation procedure.

III. RESULTS AND DISCUSSIONS

The approximate perturbation procedure is applied
both to the ground state J™=0+, T=0 and the low-
lying excited state J7=3", T=0 of the O nucleus.
For both these states we had to diagonalize exactly
a 2X2 matrix and all the remaining a, coefficients
were calculated using expression (2). Instead of cal-
culating the single-particle densities in the ground
state and the octupole transition matrix, we have
calculated the overlaps of our approximate J7=0t%,
T=0 and J7=3—, T=0 wave functions with the cor-
responding exact shell-model wave functions and have
tabulated them in Table I. The values of the cor-
relation energy AE for the ground state and the
energy of the low-lying 3~ state calculated using
the present method are also shown in Table I. For
comparison the exact shell-model results and the PHF
results obtained with the time-reversal constraint are
also given in the same Table.

Before we compare the results given in Table I,
we remark that the ground state of O has been
calculated by a number of authors using various ap-
proximation procedures. One such study has been
carried out recently by Ellis and Zamick.!® They have

P, J. Ellis and L. Zamick, in Iniernational Conference on
Properties of Nuclear States, Montreal, 1969 (University of
Montreal Press, Montreal, 1969), Contribution No. 7.22.

0 state relative to the ground state, and the overlaps with the shell-model

Tasre I. Correlation energy AE, energy of the J*=3", T

(s.m.) wave functions. For convenience x is expressed in the units of 0.0364 fm—,

Present method

PHF (with time-reversal constraint)

Shell model

—AE
(MeV)

<\1,3 -P I Wy-s-m. )

<\I/0+P ! \I,o+s.m.>

137, T=0

—AE
(MeV)

0 <\I/o+PHF i \I,o+s.m.) (‘I’x_PHFI \I/a_s.m.)

Es‘, T

—AE
(MeV)

E3-, T=0
(MeV)

X

0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9998
0.9998
0.9998
0.9997
0.9997
0.9996

0.9999
1.0000
1.0000
0.9997
0.9992
0.9984
0.9974
0.9962
0.9950
0.9939
0.9928
0.9920
0.9912

5.6877
5.4489
5.2451
5.0801
4.9563
4.8740
4.8317
4.8270
4.8563
4.9161
5.0026
5.1126
5.2428

0.6527
0.8561
1.1440
1.5201
1.9850
2.5363
3.1688
3.8759
4.6500
5.4833
6.3684
7.2984
8.2673

0.9957
0.9959
0.9962
0.9966
0.9969
0.9970
0.9968
0.9975
0.9975
0.9977
0.9976
0.9979
0.9972

0.9858
0.9868
0.9901
0.9916
0.9931
0.9943
0.9950
0.9965
0.9974
0.9972
0.9986
0.9980
0.9992

5.4213
5.2090
5.0403
4.9185
4.8441
4.8165
4.8322
4.8704
4.9728
5.0814
5.2319
5.3752
5.5844

0.2548
0.4928
0.8246
1.2539
1.7786
2.3928
3.0843
3.8426
4.6958
5.5778
6.5327
7.4995
8.5380

5.6887
5.4475
5.2440
5.0842
4.9724
4.9097
4.8946
4.9229
4.9898
5.0896
5.2171
5.3677
5.5374

0.6555
0.8566
1.1449
1.5266
2.0040
2.5756
3.2359
3.9771
4.7900
5.6643
6.5917
7.5640
8.5743

—6
-5
—4
-3
-2
-1

0
1
2
3
4
5
6
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Tasre II. Correlation energy AE and the overlap of the improved PHF ground-state wave function o+ of O, obtained without any
time-reversal constraint, with the corresponding shell-model wave function.

—AE —AE

X (MCV) (\I,D+PHF l \I’o+"m‘> X (MCV) (\I/0+ ] Wo+e-m.
—6 0.6467 0.9998 1 3.8974 0.9978
-5 0.8462 0.9997 2 4.7152 0.9996
—4 1.1337 0.9997 3 5.6504 0.9997
-3 1.5134 0.9997 4 6.5784 0.9997
-2 1.9898 0.9996 5 7.5514 0.9997
-1 2.5603 0.9996 6 8.5619 0.9997

0 3.2204 0.9996

also made use of the perturbation theory, but with
the difference that their &, is restricted to a O-particle-
0-hole state and all the other &, are then necessarily
restricted to 2-particle-2-hole states because of the
two-body nature of the interaction. This straight-
forward use of the perturbation theory has been used
in the past by a number of other authors, whereas
in the present general approach, ®, is not restricted
to the single shell-model component, and thus, ®, have
the possibility of including, for example, 4-particle-
4-hole components also. Since the objective of Ellis
and Zamick is to calculate the 2-particle-2-hole ad-
mixtures in the ground state, they have used a much
larger configuration space than the one used here.

The aim of the present calculation, as mentioned
in the Introduction, is to generate a perturbative cor-
related ground state to use in the equations-of-motion
calculations.® It has been shown®® that the PHF
method, even though difficult in practice, gives a
fairly satisfactory correlated ground state for this
purpose. This state not only contains 2-particle-2-hole
components, but also all the other 2#-particle-2z-hole
components. It is easy to see that the perturbative
procedure described in Sec. II can produce such a
state and, as shall be shown shortly, this correlated
state is better than the one obtained by the PHF
method with the time-reversal constraint. Even when
the time-reversal constraint is relaxed in the PHF
method to obtain a better wave function, the per-
turbative wave function still compares nicely with it.

The other advantage of the present method is that
if there are several ®, with amplitudes comparable
with the single shell-model wave function &, then
they can be easily taken care of by the exact diago-
nalization in this small set to define a new ®,8 For
example, in the present calculation &, is obtained by
diagonalizing a 2X2 matrix.

The present procedure is applied to O as an
example, since the PHF results with the time-reversal
constraint are already known for this case.5 Not only
the O, but also the 3~ state is calculated by the
present method and compared with the exact shell
model and the PHF results, both with and without
the time-reversal constraint. By studying the problem
as a function of the octupole deformation parameter yx,
the validity of the present perturbative approach is
checked for a wide range of octupole correlations.

We now go back to Table I and compare the results
of the present calculation with those of the shell
model and the PHF with the time-reversal constraint.
We find that, except in the large octupole correlation
region, the approximate correlated ground-state wave
function calculated by the much simpler present
method is better than the one given by PHF using
time-reversal constraint.

As mentioned earlier, the perturbation method in-
cludes all correlations, whereas the constrained PHF
does not. This is demonstrated by relaxing the time-
reversal constraint and observing the improved PHF
results, which are shown in Table II.

On comparing the results of the present method,
given in Table I, with the results obtained by the
PHF method relaxing the time-reversal constraint
given in Table II, we find that the present method
gives as good results as the PHF method without the
time-reversal constraint, and can therefore be used
as a quicker and easier method to generate the ap-
proximate correlated ground state.
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