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The giant resonance region of C" and 0" is investigated using a continuum model, which is based on
configuration mixing of negative-parity particle-hole states, with the particle in the continuum. Using this
model T=1, J =1,and 2 electron-scattering spectra are calculated as well as the 0, 1, and 2 nuclear-
excitation spectra (or equivalently the neutrino spectra) in ts capture. The SU(4) relationship 3'�'=
JET=M g is tested and found to be satis6ed in both nuclei to better than 10'Pa. In addition, the relationship
(Mrs) = (Mv')zn

~
F,~(o„,') ~' is tested and found to hold to within 3/o. Both of these results justify

the previous work of Foldy and Walecka on calculations of total-muon-capture rates. The detailed behavior
of the electron scattering spectra is examined as a function of momentum transfer with emphasis on the
magnetic contribution to the 1 transverse electric spectra and the giant magnetic quadrupole resonances.
The momentum dependence of integrated form factors for certain regions of the excitation spectra is also
investigated.

INTRODUCTION

5 AHE purpose of this work is to examine the structure
i. of C" and 0" both closed-shell nuclei, in the giant

resonance region of the excitation spectrum. Electron
scattering and muon capture are excellent tools for
studying this structure because their interactions are
relatively weak. Both interactions have sufficiently
small coupling constants that it is unnecessary to treat
the coupled problem of nuclear physics plus external
interaction. One need only treat the electron's electro-
magnetic interaction or the muon's weak interaction
in the Born approximation, which is another way of
saying that these interactions do not mix nuclear states.
Proton-nucleus scattering has just this disadvantage.

Electron scattering and photoabsorption are closely
related processes. Both are electromagnetic, but photo-
absorption is rather limited in the amount of informa-

tion that can be derived from it. Real photons can
only transfer equal amounts of energy and momentum,
q„'=0. Electron scattering, on the other hand, allows

independent variation of q (momentum transfer) and
to (energy loss) subject to the constraint g„')0.Whereas
photoabsorption produces a single energy spectrum,
electron scattering can produce an energy spectrum
for each momentum transfer. ' ~

*Research sponsored in part by the Air Force QKce of Aero-
space Research, U.S. Air Force, under AFOSR Contract No.
F44620-68-C-0075, and by the U.S. Atomic Energy Commission
Contract No. AT(45-1) -1388.

f Present. address: Department of Physics, University of
Washington, Seattle, Wash.

' F. H. Lewis, Jr., and J. D. Walecka, Phys. Rev. 133, +849
(1964) .' F. H. Lewis, Jr., Phys. Rev. 134, 8331 (1964); 138, A115 (E)
(1965).

3 F. H. Lewis, Jr., J. D. Walecka, J. Goldemberg, and W. C.
Barber, Phys. Rev. Letters 10, 493 (1963).

4 T. deForest, Jr., Phys. Rev. 139, 81217 (1965).
5 J. Goldemberg and W. C. Barber, Phys. Rev. 139, B968

(1964).
6 G. J.VanPraet and W. C. Barber, Nucl. Phys. 79, 550 (1966).
7 G. J. VanPraet, Nucl. Phys. 74, 219 (1965).

I

Muon capture contains much less information than.
electron scattering, because momentum transfer and
energy loss are linearly related as they are in photo-
absorption. There are, however, several different tran-
sition operators which contribute to muon capture,
which increases the amount of information one can
derive from the process.

Previous theoretical work on total muon-capture
rates by Foldy and Walecka' has pointed out the
dominant role of the T=1, J =0, 1, and 2 states
lying in the giant resonance region in the p-capture
process. Their work, based on the assumption of SU(4)
invariance, contains a number of predictions which
have been tested in a number of models. ' " One of
the purposes of this work is to examine the assump-
tions of Foldy and Walecka in a continuum nuclear
shell model.

Electron scattering work has shown that there is
interesting structure in the spectrum of the giant reso-
nance region. The theoretical work of Lewis, deForest,
and Walecka, ' ' and the experimental work of Barber,
Goldemberg, and vanPraet' 7 indicate that there are
strong magnetic contributions to the 1 transverse elec-
tric form factors. We wish to calculate and examine
the two-dimensional surfaces in momentum transfer
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and energy loss as seen in electron scattering. Early
attempts to understand electromagnetic form factors
of C" and 0" were made by Lewis and Walecka. ' '
Their work was a reformulation of previous models in
terms of the Tamm-Banco' approximation. The ap-
proximation allows a consistent reduction of the nu-
clear Hamiltonian into a single-particle configuration
Hamiltonian and a residual particle-hole Hamiltonian.
This was accomplished by writing the excited state of
the nucleus as a linear combination of shell-model
particle-hole states and keeping only those terms in
the Hamiltonian which contribute to particle-hole ma-
trix elements. This formalism was then used by de-
Forest4 to study quadrupole excitations (2 ) in C" and
0", as well as partial muon-capture rates into 0, 1,
and 2 states.

These calculations, however, do not emphasize an
important aspect of the giant resonance region. Many
of the "states" in this region lie above single-particle
emission thresholds. ' "Thus, rather than being bound,
these states are resonances. A model originally intro-
duced by Weiss and Villars'4 has been quite versatile
in handling both electron scattering and muon capture.
The important aspects are the following. The excited
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states are assumed to consist only of linear combina-
tions of holes and particles in the continuum or high-
lying bound states LTamm-Dancoff approximation5.
The Hamiltonian is reduced to a single-particle Hartree-
Fock potential and a particle-hole "residual" inter--
action. The single-particle potential is chosen to be a-

square well and is adjusted so that the states of neigh--
boring nuclei correspond to experimental energies. The.
range of the potential is Axed by elastic electron scatter-
ing as calculated in the model and compared with ex-
periment. Even though the square-well potential may
be an unrealistic Hartree-Fock potential, it gives a
ground-state charge density which produces a charge
form factor that allows a good fit for g&200 MeV/c.
A phenomenological residual potential is introduced
which reduces the excited-state coupled integral equa-
tions to a set of matrix equations which are then solved
numerically. Transition matrix elements can then be
computed.

NUCLEAR PHYSICS

There are really two separate problems which must
be solved in the giant resonance region. First of all,
there are bound states which lie below the particle-
emission thresholds. This causes no great difhculty in
a model such as the harmonic-oscillator shell model
(HOSM), because it is only necessary to diagonalize
a secular matrix to obtain eigenvalues and then calcu-
late eigenvectors. The bound-state problem is some-
what more complicated in a model with a finite poten-
tial, but in our model the solution is obtained in a
similar manner. Unbound states are quite different,
however, and must be handled differently.

We separate the nuclear many-body Hamiltonian
into three parts. One part consists of the (diagonal)
Hartree-Fock Hamiltonian, the second is the particle-
hole interaction potential, while the third contributes
no matrix element between particle-hole states and is
neglected. We can therefore write

H=IJp+V,

and, since the excited-state wave function must have
incoming wave boundary conditions, we have

4'f %) =4'f (~)+L~l(+ +o se) 5J 4'f (~) ~ (2)

Since we restrict ourselves to one-particle —one-hole ex-
cited states and uncorrelated ground states, @r' &(E)
is a shell-model state. Projecting out states of total
angular momentum J and total isotopic spin T, we can
write

where the explicit dependence on the diagonal quan-
tum numbers (JMTMp) has been ignored, and the
sum is over both bound and continuum states. The
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channel label 0: refers to [ljJbnb], where t and j are the
particle orbital and total angular momenta, Jq is the
hole angular momentum, and ay, is the rest of the
quantum numbers needed to specify the hole state.

The solution to this set of integral equations is facili-
tated by using the surface-6 interaction

V(x„x.) = Vo«'~(
I » I

—r, )

p( j x2
~

—ro) 5(i&—i2) (1—X+X5& 82), (4)

where ro is the well radius, ) =O. II.35, and Vo is the
over-all potential strength. We write the excited state
as a linear combination of shell-model particle-hole
states

6-i' '(E) = Z Lfk"dk'Cpb (E)4mb' '+&p"(E)6'j,
P=I3+h

where superscripts refer to the continuum and bound
contributions, while P~, Ph refer to particle and hole
single-particle quantum numbers. We can solve for the
coeKcients in the manner previously reported. '4 Be-
6ning

Rp-(-)(k r) = fk"C» "(E)Rp,(-~'(k', r)dk'

+~ "(E)R,"(r), (6)
we can write

Rp ( '(k, r) =Rp( )'(k, r)+V&r&'$Gp, z( ~(r, ro')

+Gp sb(r, ro) $X Q fp ~TR ~( ) (k, rb), (7)

where the 6's are single-particle Green's functions, and
fp~~T is the angular part of the potential matrix ele-
ment in Eq. (3).

For computational purposes, it is convenient to
"solve" for the Green's function in terms of radial
solutions of another single-particle potential. Consider
the potential

n(r) =
Vaq (r) +Vr„b (r r,) . (8)—

The incoming wave solutions of this equation are the
radial wave functions

Rp( &(k, r).
We can write

Gp, z' '+ 2 Gp p'(r ro) =. (1/Vro')
Np

XI|R —)(k, ) Rp( '(k, ) j/Rp —(k,
—

o) I, (9)

where the sum is over all configuration bound states
with quantum numbers p. In light nuclei such as C"
and 0", only the scrim single-particle channel has two
bound states. One of these is the bound (and filled)
is~f2 shell. The Pauli exclusion principle forbids transi-
tions into this shell, so the Green s function in Eq. (7)
lacks the term. Defining

f iJT
fp JT/fppJT—

we get
Vp'= Vofpp",

Rp (k r)=R ' ~ (k r)8

LRp( '(k, r) —Rp( ~'(k, r) —Up'r, 'Gpb(r, ro) $
Rp(—'(k, ro)

X Q fp,~TRV ( '(k, r—,'j. (10)

Everything in the above equation is known analytically.
Furthermore, if the diagonal matrix elements of fp~~T
are dominant, we can approximate

Rp'(E, r) = V'rU'LGp, J.( &(r, ro) + Q—
Gpsb(r, ,ro) j

Np

XRp'(E, ro),

with the obvious restriction that Vp' and E are not
independent and cannot be varied independently. Set-
ting r=ro in the above equation yields the eigenvalue
equation. For purposes of ending a solution to the
bound-state problem, we want the Green's function as
a function of energy so we write

V'= Vp'(E),

where Vp'(E) is the potential necessary to produce an
eigenvalue at an energy E. We therefore write

Rp" (E r) =L.Vo/Vp'(E) j
(Rpb(E, r)

X
l » —Vp'(b) res~~(r, r,,)')

X Q fp ' R ~b(E ro) . (12)

As before, we subtract oG any filled bound states be-
cause of the Pauli principle. Defining

we get

V-p= Vof-p"LI-Vp'(E) "Gp."(", o) &, (»)

Z I ~phd(E) Vp,)R—b(E, «) =0, (14)

which is almost identical to what one gets in the usual
bound-state models. Neglecting the small correction
term, we have

with
Rp b(E, r) =Dp (E )Rpb(E, r),

g Z) aD ae (16)

In nuclei such as C" and 0", there are several
thresbolds for particle emission. Channels which are
below threshold have equations of motion which are
the same as the bound states, although con6guration

Rp ( '(k, r) Rp( ~(k, r)b p

The bound-state equations can be similarly solved.
The single-particle radial equation for a bound state
in this model is
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mixing couples them to continuum states in those
channels above threshold. Therefore, we need only
combine Eqs. (10) and (12) for channels above and
below threshold to complete the problem. A knowledge
of the functions EP constitutes a solution to the prob-
lem, since we can write the transition matrix elements as

&A., II r II o&= 2 (fk' dk'c». -&y»' 'l
l
r -II o&

Pgh

+ fl,-&y,s II r II o&). (17)

by the Coulomb interaction. Even though only the
transverse matrix elements contribute to photoabsorp-
tion the kinematics restrict us to g=co; in electron
scattering we have q' —co'&0.

There is a diferent way of analyzing the electric form
factor, using current conservation. It can be showns
that a number of single-particle operators of the form

0'= g is(i)f(i)

Og' ——Q is(«) ox(«)f(i)

nerate" the giant resonances. If we examine Eqs.
(20a) and (20b) for 5=1, we see that one of our
operators is not of the above form.

If we keep only isovector terms in the operators and
write them in erst quantization form for small mo-
mentum transfers, we see that

ELECTRON SCATTERING

The cross section for electron scattering can be ex-
pressed in terms of three form factors which contain
all the nuclear physics. '«These form factors (for excit-
ing a closed-shell ground state into a T=1 excited
state) are

Fj"(q, ) = 2 (kp~) I &~J II
q'j" (q) II o) I'

~j "(q, ~) = 2 (ks~) I &P~ II &j "(q) II o) I', (19)

~j'"'(q, ) = 2 (ksW I
&8~ II ~j(q) II 0& I'

P

M»= Q ts(i) Xg(i)

and that the magnetic term in T~~" is of the form

q'»' l~~s Q 4(i) La(i) x(i) ]».
i=1

However, the current dominates the total operator
Tj~" at small momentum transfers, and this is of the
forITlwhere

3/I jjj (q) = f dxp~ (x)j j(qx) gjar (*"), (20a)

7'j~"(q) = (1/q) fdxL j&(x) .VXj j(qx)'g) jj«(i)
+q'j(qx)Qjj«(i) lL~(x)], (20b)

Fjsr "(q) = fdx[p~(x) ~ V&&j j(qx)gjjr (i)

Icurrent g is(«) &x(«) Isym.

This is not one of the operators O. Because of this,
there is no way to use SU(4) invariances to analyze
the low-momentum-transfer transitions induced by this
operator. We can, however, reduce the dependence of
the matrix element on the current (and eliminate it
altogether at very small momentum transfers) .

To accomplish this we write

+jj(qx) ja (x) Ijjr (s)] (20c)

are the Coulomb, electric, and magnetic rnultipole op-
erators, respectively. The operators pz(x), jz(x), and

pa (x) are the nuclear charge, current, and magnetiza-
tion densities, respectively, while jj(x) and Qjj«(x)
are the usual spherical Bessel functions and vector
spherical harmonics. la In the case of excitation to a
bound state, the factor (ksM) is missing and only one
term in the sum contributes at that energy.

We are primarily interested in the transverse matrix
elements in electron scattering because their structure
contains information about magnetic eGects in nuclear
excitation. In addition, abnormal parity states 1+, 2,
3+ can be excited by the transverse operators but not

fdx j&(x) ~ V)&jj(q~) Ijj,~(i)
= fdxj j(qx)g jj«(i) ~ VX j&(xl. (22)

Ke can use an identity involving the vector spherical
harmonics to get

fdxj~(x} ~ V&(j j(qx)gjjr~(*l"
= I

—«/L~(J+»]"'I fdxSj~(+

g 'I V' jp7(x) (8/8$)

(hajj(qx)

)—q'x jN(x)jj(qx) I. (23)

Furthermore, we can use the continuity equation»T. deForest, Jr., and J. D. Walecka, Advan. Phys. 15, 1
(19m).

"A. R. Edmonds, Angulur Momentum ie Quuntum Mechumcs
(Princeton University Press, Princeton, N.J., 1957). v'. jN(x) = —ilH, p~(x)]. (24)

The configuration state matrix elements can be put in
the form &Qs II T

I I 0)= (Pn I is
I Ph&, where the latter

matrix element is purely radial. Finally, we get

A., II T II o&= 2 &z,-l 1, I „&. (18)
PyPh

"ge
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Inserting the above equation into Eq. (23) we get

ldxjz(x) VXj z(q33) @zest~(*)

I
—/I:J(J+1)]'"}fd 5 (*)

X l~r,pw(x) (&/») (xj z(q&) )—iq'x. jar(x)jz(q&) }.

This recasting of the form of 7.'J~", which is well known
as Siegert's theorem, has the desired form now. I'or
small momentum transfers, we get

A

Ieherge g 4(i) &a(i) & (26)

which is one of the "generators" of SU(4). Further-
more, we do not expect the term proportional to jN(x)
to have a great effect. It is only significant at large
momentum transfers, and that region is dominated by
the magnetic term because of the large isovector mag-
netic moment in T= 1 states. We define a new quantity
T J~ corresponding to the transverse electric opera-
tor's new form

&'~~"= (1/q) fdxl (—$~~(*)/L~(~+1)]'")
XPcuI;p~(x) (8/») (wag(qx) )—iq'jJ (qx) x j~(x)]

+qj'z(qz) Qzzi" (*) ij~(x) }. (27)

Although we might suppose that 7."J~"would give
the same result as TJ~", we shall see that this is not
true. The Qaw lies in the use of the current continuity
equation. This operator identity does not hold in this
model for transition currents (although itdoes .for
regular currents). We can see this as follows. Con-
struct the divergence of the single-particle current op-
erator in second quantization:

V j~(x) = (1/2im) Igt(x) V'p(x) —V3gt(x) g(x) }.

parts of the Hamiltonian. If the two-body operator
contains no derivative terms, it commutes with p(x),
Separating the kinetic and potential parts of Ho, we get

V.j~(x)+i/H, p(x)]=iIyt(x) u(x)y(x)
—

I u(x) Pt(x) ]p(x) }. (30)

If n(x), the single-particle potential, contains deriva-
tive terms, spin-orbit terms, or depends on the angular
momentum eigenvalues of the states (i, j), the right-
hand side has nonzero transition matrix elements. Di-
agonal matrix elements are obviously zero.

This problem is peculiar to Tamm-Danco6 approxi-
mation calculations, and arises in all such calcu. ations.
On the one hand, we demand that configuration ener-
gies be taken from neighboring nuclei; it is necessary
to do this in order to produce realistic spectra. On the
other hand, we lose current conservation, which we
will see does not affect the position of our states, but
does affect transition strengths. We have already used
current conservation in the derivation of the electron
scattering cross-section formula. YVe have seen that this
equation contains three form factors which are inde-
pendent of one another except at q=0. In this limiting
case, the Coulomb form factor is related to the trans-
verse electric form factor by the continuity equation.
Because the continuity equation is not valid here for
inelastic transitions, these form factors are not properly
normalized to one another at q=0. Lewis and Walecka'
showed that this difference was approximately a factor
of (a&/&ua) ', where &o is the energy of the state in question
and coo is the harmonic-oscillator energy spacing. This
amounts to a factor of 2 or less for most states. AL-
though our two ways of evaluating the transverse elec-
tric form factor are not equivalent for q=0, we hope
that normalized form fac1ors for individual states in
the absence of the magnetic part of T,i will have the
same dependence on momentum transfer in the two
cases and we will show this to be approximately true
in some simple examples.

Ke also can write
(28)

(1/i) LII, P(x)]=(1/i) (I:IIo, P(x)]+L'I', P(x)]}, (29)

~here IIO and t/' are the single-particle and two-body

MUON CAPTURE

The other process which is to be examined is p cap-
ture, p +E(A, Z)~v+E(A, Z—1).Neglecting small
nuclear recoil terms, the transition rate can be expressed
in terms of three form factors

dMv, p'/d~=2~& (v/M. )'(4M)
I
&P»=1 M~=0 il Ov, ~(v) II o) I',

PJ

dM&3/d~=2~+ (v/M„)3{k&M) g I (21+1)/3]
I
(pJT=1 M, =o II o,z(v) II 0) I3,

(31)

(32)

where the single-particle operators are

OTr= 'r3$ j(vS) @Jeer(X) q

Op =~3 I I J/(2J+1) ]"'gg g(vx) (QJ' r o) g3r+I (/+1) /(27+1) ]'"gg~)(vx) (p~+igrr) ~3r },
O& =r3ji(vx) {gr,(go)~~.
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Furthermore, we can simplify these expressions by keep-
ing only the dipole terms fI-= 1 in Qz3r jr, (ix) $. The
octupole contribution is considerably smaller and con-
tributes to 2, 3, and 4 states. We are only interested
in the 0, 1, and 2 contributions because they are by
far the largest. Furthermore, the octupole contribution
will largely cancel out of the total 2 contribution if
SU(4) invariance holds. For these reasons we ignore
the octupole terms.

We wish to investigate two things in p capture using
our model. The first is to test the validity of the
relationship derived from SU(4) invariance

(34)
where

"& dM'
3P= Ao (35)

~2

and cubi and co2 are appropriate upper and lower limits to
catch all the contribution of dM3/Au to the integral.
The second relation to be tested is

/l/I, )n=M, ~~n
~
F,(...,') ~', (36)

where Fe(3, ') is the elastic form factor evaluated. at
v„„ the momentum transfer corresponding to the giant
resonance energy, and (3P)& is obtained by making
the replacement

j,(VX)—&
—333'

in all radial matrix elements.

CALCULATIONS AND DISCUSSION OF RESULTS

In our discussion we will treat the two nuclei C" and
0" separately. We take the case of C" first.

The single-particle configuration energies were ob-
tained from the energy level data of C", C", and C".
From these nuclei, the particle-hole configuration ener-
gies listed below were obtained:

Z'((2si/3) (1p3/3) ')=16.86 MeV,

Z'((1d»3) (1p3,3) ') = 17.62 MeV,

Z ((d3/3) ( 1p3/, )-')= 22.11 MeV.

In addition to these there is another possible particle-
hole state ((1pi/3) (1si/3) ') which is included in many
C" calculations. It was not included because the state
must lie above 30 MeV and this is not in the range of
interest here. The state has not been seen in electron
scattering results.

With the above energies, the depths of the single-
particle potentials and the square-well radius r& could
be calculated by using the known value of the rms
radius"

E, =2.42&0.04 fm.

l.0

O. I

40 80 l20 ) 60 200 240 PSQ
q(MeV/c)

FIG. 1. C~~ elastic scattering form factor versus momentum
transfer. The data are from Ref. 42.

In the standard fashion, we write

ro=ro

and get as a result (for A = 12)

ro'= 1.40 fm.

The ground-state elastic scattering form factor
~

Fe(/J') ~3 was then calculated. The result is plotted
in Fig. 1. We have also plotted the result of the har-
monic-oscillator shell model as a comparison (the length
parameter b in this model was fitted to the rms radius
also). We see that both models give fits which are
indistinguishable for momentum transfers less than 140
MeV/c. The results diverge at this point although the
experiments seem to lie midway between the two lines
out to 210 MeV/c. From this point, the square-well
model appears to be consistently low. We note, how-
ever, that good agreement is achieved over 1~ decades
and the behavior of the form factor in the vicinity of
the diffraction minimum ( 350 MeV/c) should be
very sensitive to the nuclear model. While we do not
claim that we have given a good fit to the elastic form
factor at all momentum transfers, we do get good
agreement below 200 MeV/c, which is the upper limit
of interest in this work. This means that our nu-
clear charge density fits quite well to a depth of about
1 fm. Although it should not be very important for
q(200 MeV/c, the effect of c.m. motion has not been
taken into account. This would be very dificult in our
model, although it is trivial in the harmonic-oscillator
model. 4' c.m. motion can be accounted for in this
case by multiplying the shell-model matrix elements

"R.Engfer and D. Turck, Z. Physik 205, 90 (1967l. L. J. Tassie and F.. C. Barker, Phys. Rev. 111, 940 (1958).



J. L. FRIAR

2.0

IQO

8.0

6.0

M 4o

2.0

19 2I 23 25 27 29 31

~ (MeV)

33 35 37 19 21 23 25 27 29 31

~ (Mev)

2.0

—le%

N~
xi 3

-Iud

19 2I 23 25 27 29 3l 33 '35 37
cu {MeV)

19 20 21 22 23 24 25 26 27 2S 29

tu (MeV)

{d)
Fro. 2. Cu p-capture spectrum. (a) dM~'/des for J=o. (b) dMQ/des for J=1. (c) dMg'/des for j=1. (d) de~'/da& for 1=2. Eq is

(hc/ro) (=61.56 MeV).

by exp(q'b'/4A), where b is the oscillator parameter
and A is the number of nucleons. This is small ((10%)
for q(200 MeV/c. With the single-particle potentials
and potential-well radius determined, we calculated
the coefficients f s~~ and then the photoabsorption cross
section for various values of Vo, the over-all strength
of the particle-particle potential. A value of t/"0 was
chosen so that the largest state in the spectrum, the
giant resonance, has the experimentally observed en-

ergy of 22.8 MeV. We get Vo ———32.9 MeV. This com-
pleted the determination of the parameters of C".

Detailed spectra for I and 2 states may be ob-
tained from electron scattering form factors, and for
the 0 (as well as the 1 and 2 ) state from p capture.
Although we will discuss these spectra later in detail,
it is desirable to list the resonant states we get in

.Table I. We have included the two 1 and 2 bound
states for completeness. We can get some idea of the
widths of the various resonances by examining the
p-capture spectra, . Examining the Mis(7=1) contri-

TAsLE I. Energies of bound states and resonances in C'~.

Energy in MeV.

J=2

26.2 i7.75
22.8
25.6

17.19
20.0
23.2

bution t Fig. 2(b) ), we see that the full width at half-
maximum is 1.75 MeV for the 22.8-MeV giant state.
The M~'(J=1) contribution LFig. 2(c)) allows us to
estimate the width of the 25.6-MeV state to be 4 MeV.
Figure 2(a) shows that the width of the J=O state is
about 4 7VIeV also. The two J=2 states can be seen in
Fig. 2(d). They have widths of about 0.8 MeV (20.0-
MeV state) and 2.5 MeV (23.2-MeV state). These
widths are necessarily estimates since the states blend
into each other and cannot easily be separated.
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TABLE II. Configuration mixing parameters for the bound states in HOSM and continuum model for C»,

((sl/2) (pl/2} ) ((d5/2) (p3/2) ) ((d3/2) {pa/l) )

17.75 MeV
Continuum
Harmonic oscillator

0.921
0.978

0.316
—0.164

—0.229
0.127

J=2
17.19 MeV

Continuum
Harmonic oscillator

0.824
0.937

0.566
—0.349

0.044
—0.025

TABLE III. Partial capture rate contributions to p capture in
C». The bound states and continuum contributions are listed
separately.

Continuum
Sound states
Total

0.065
0.000
0, 065

0.194
0.000
0.194

Continuum
Bound state
Total

0.509
0.002
0.511

0.180
0.009
0.189

Continuum
Bound state
Total

0.256
0.005
0.261

0.307
0.006
0.313

Total
deForest results

0.511
0.567

0.515
0.562

0.507
0.550

The resonance states can be classified according to
the configuration states which contribute to them most
strongly. This is necessarily an approximation, also,
since some configuration states mix strongly with one
another. However, the way we have set up the calcula-
tion allows us to make a good guess. If we neglect the
eGect of off-diagonal configuration matrix elements we

get a spectrum which can be separated into individual
channels and the sum of which looks substantially like
the configuration-mixed one. From this information,
we conclude that the J=0 state is a pure ((d3/2) (p3/2) )
state. The low-lying and high-lying J=1 states are
primarily ((d5/, ) (p3/, ) ') and ((d3/2) (p3/Q) '), respec-
tively. The two J=2 states areprimarily ((dg2) (pa/2) ')
and ((d3/2) (p3/9) ') for the lower and upper states, re-
spectively. We shall see that the two bound states are
primarily ((s~/2) (p///~) '). Although the s wave con-
tains a continuum contribution, it is nonresonant and
relatively flat. This is true for square-well wave func-
tions regardless of whether the state is above or below
threshold, in contrast to configuration states with /&0.
Therefore, the s wave leads to sharp states below thresh-
old but not above, except in special cases which will
be discussed in the case of 0'.

The bound states have their configuration mixing
parameters listed in Table II.The equivalent harmonic-
oscillator theory results are listed for comparison. The
results are clearly dominated by the s wave in both
cases, but the signs of the other contributions are in-
compatible. We believe this is due to the peculiar
nature of the s-wave bound states and their relation-
ship to our model. The s wave, alone of the various
contributions, does not have an angular momentum
barrier. Thus the major part of its wave function lies
close to r=0. The other /-wave contributions do not
have this property; their bound-state wave functions
vanish for r=0, rise fairly rapidly to a peak and de-
scend again. The 8-function force which we used to
solve the coupled bound-state problem has a diferent
effect in the two cases when used to shift the energies
of single-particle bound states. This energy shift arises
from a discontinuity in the derivative of the bound
wave function at the well radius. Because the bulk. of
the s wave lies close to the origin, it is difficult for this
discontinuity to change the energy of the bound state.
It is less difficult for t40. This is borne out in numerical
calculations. The quantity V//'(E), introduced earlier,
which we noted replaces (E E//) in earlier —bound-
state calculations, as a function of energy is substan-
tially larger than (E E//0) for the s-stat—e case. It is
slightly smaller than (E E//) for the d-w—ave case.
This leads to a depression of the energy of states which
have a substantial s-wave contribution, as compared
with other models. It can also have a strong eGect on
the configuration mixing coefficients as we see in Table
II. The two bound-state cases which we investigated
that did not have a substantial s-wave contribution
have configuration mixing coefficients in reasonable
agreement with the harmonic-oscillator shell model.

We now discuss the results of the p-capture calcula-
tion. We noted before that there are four independent
contributions to p, -capture partial-capture rates, two
for J = I and one each for J =0 and J =2 . The
broad high-lying J =0 state contributes only to M~'
and M~' as do the two resonant and one bound J"= 2
states. Most of the J=2 strength, as we see in Fig.
2(d), lies in the giant quadrupole state at 20.0 MeV,
in agreement with the results of deForest. 4 Further-
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TAsl.E IV. Dipole and unretarded dipole capture rates and
their ratios in C".

Dipole
Unretarded dipole
Ratio (M') n/(3P) un

I ~o(~-') I'

0.5ii
0.727
0.704
0.698

0.515
0.745
0.693

0.507
0.732
0.692

more, the Mv'(J=i) result. seems, in Fig. 2(b), to-
tally dominated by the giant dipole resonance at 22.8
MeV. Little sign of the 2o.6-MeV state is visible. The
M~'(7=1) spectrum, however, has a strong contribu-
tion from this same 25.6-MeV state. The explanation
for this lies in the two types of operators which cause
transitions to 7=1 states. One of these is the usual
dipole operator P~~ which produces transition primar-
ily to states with large electric dipole moments (giant
dipole states). The other is the magnetic operator
(Yzjao) t~, which dominates spin-flip-type transitions.
Both operators contribute to electron scattering as we
see in Kq. (20). We can thus identify the 22.8-MeV
state as the giant dipole resonance and the 25.6-MeV
state as a "magnetic" state. We expect the momentum
dependence of the two states to be quite different in
electron scattering form factors, and we shall see later
that this is indeed the case.

The results of integrating over the whole continuum
spectrum to test the SU(4) relationship Mv'=M~' ——

M~' are shown in Table III. The bound-state contri-

0.05

27

l20

q(MeV/c)

200

Pxo. 4. C" 1 spectra for several momentum transfers, The
"current" form of the transverse electric operator was used.
Za is (Ac/ro) (=61.56 MeV).

butions are listed separately. We also list deForest's
results for comparison.

We see that our over-all agreement is about 2%.
The fact that the numbers are all smaller than the
deForest calculation is likely due to the fact that this
calculation omitted the high-lying ((pr~s) (sr~, ) ') state
while deForest's did not. This state must necessarily
make a positive contribution to the J=o and 7=1
transition rates.

Table IV lists the total strengths of the unretarded
dipole contributions, the strengths of the retarded con-
tributions, their ratio, and the ground-state elastic form
factor for a momentum transfer corresponding to the
energy of excitation of the giant dipole resonance. We
see that the three equations

(Mv, ~.p') D= (Mv, ~,~') ~n I Fo("-')
I

hold to about 1%, as they did in deForest's results.

o.~— l2

0.2

O. l

0
l20 240 360 48C

25.5 MeV STATE

2.0
CF

I.O

l2.0 240
q (MeV/c)

I

360

Fxo. 3. C~2 i form factors versus momentum transfer. The
"current" form factors fr(q) (dashed curve) and "charge" form
factors fr'(tl) (solid curve) normalized to the "current" form
factors frere calculated. in the HOSM.

We now examine the electron scattering results. First
we wish to demonstrate that, in the absence of mag-
netic effects, the two forms of the 1 transverse electric
operator give form factors which are roughly propor-
tional. To test this we set (X„—X„)=0 and calculated
the form factors of the 1 states using the two different
forms of the transition operator, T'J~" and TJ~".The
model used was the harmonic-oscillator shell model of
Lewis and Walecka, ' because this model allows a clean
separation of individual states, which cannot be done
in our continuum model. The form factors for T'~~"
were normalized to those of T~~", and the results for
two states were plotted in Fig. 3. We see that the
agreement is quite good for these states. Unfortunately
the form factor of the 1 magnetic state in this model
is negligible in the absence of the magnetic moment
term, so no comparison could be made. The agreement
of the other form factors is suKciently good that we
believe the form of our normalized form factors, regard-
less of which operator is used to calculate them. Similar
results are obtained in the continuum model if the
area under the giant resonance is calculated.

Figure 4 displays the 1 form factor F&"(q, or), which
was calculated using the usual convection-current form
of the transverse electric operator. The q

=0 spectrum
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FIG. 5. C" 1 spectra for several momentum transfers. The
"charge" form of the transverse electric operator was used. Eg is
(Pic/ro) (=61.56 MeV) .

is completely dominated by the giant resonance, while
the magnetic state at 25.6 MeV is almost invisible. As
the momentum transfer increases, the giant state de-
creases until at q 120 MeV/c it has entirely dis-
appeared. As momentum transfer increases further, the
state builds up its strength again until it reaches its
initial value at q~200 MeV/c. The magnetic state
immediately builds in strength, completely dominating
the spectrum for q) 80 MeV/c. We contrast this be-
havior with the results of Fig. 5, which displays the 1
form factor F'tet(q, &c) calculated using the transverse
electric operator T J~", which was discussed in detail
earlier. The giant state has the same dependence on
momentum transfer in the two cases but the magnetic
state has a smaller influence. This is because the
convection-current matrix element has been electively
doubled while the magnetic matrix element remained
as before. Figure 6 shows the 2 form factor Fs 's(q, cc) .
This form factor vanishes for q near zero and rises
rapidly with increasing q ( q"). The very prominent
giant quadrupole state at 20.0 MeV dominates every
spectrum. Because of its proximity to threshold, it is
very narrow, while the other quadrupole state is much
broader.

Figure 7 shows the sum of the contributions of
F'te'(q, cc) and Fs 's(q, cc). The resulting sum should
be the prediction of SU(4) invariance for the complete
1 and 2 spectrum.

Figure 8 shows the result of integrating the form
factors Ft"(q, cc) and Fs "(q, cc) over the giant reso-

Fxo. 7. Sum of C" 1 and 2 spectra for several momentum
transfers. The 1 form factors were calculated using the "charge"
form of the transverse electric operator. Ea is (hc/rs) (=61.56
MeV) .

nance region. We de6ne integrated form factors

fg(q) = Fg(q, a&) Cko.

We have chosen ~» ——21.0 MeV and co~ ——27.0 MeV.
Figure 9 shows the sum of the integrated form factors
for F't" (q, ~) [f&'(q) j and for Fs "(q, cc) (fs(q) ).We
have normalized this total form factor to the photo-
absorption point at 23 MeV/c.

Although the experimental points have a consider-
able spread, it is clear that the integrated form factor
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Fro. 6. C" 2 spectra for several momentum transfers. E~ is
(hc/rs) (=61.56 MeV).

FxG. 8. C' 1 and 2 integrated form factors for the giant
resonance region. The lower curve is the 1 "current" form factor;
the upper curve includes the 2 form factor as well. The data are
from Refs. 1, 5, 41, and G. A. Proca and D. B. Isabelle, Nucl.
Phys. A109, 177 (1968).
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The backscattering data of deForest et al.4' at q~110
MeV/c can be compared to the results of our calcula-
tion. We note that in Fig. 7 there is no giant resonance
at this momentum transfer, although the magnetic
state at 25.6 MeV is large. The bump at 25 MeV
would appear to correspond to this state. The giant
quadrupole state at 20.0 MeV would appear to corre-
spond to the state seen at 19.2 MeV in the experimental
data. There are two states at approximately the correct
energies to correspond to the two bound states (1
and 2 ). The 23.7-MeV state may correspond to the
uppermost 2 state that we have calculated, although
it is difficult to see because it is fairly small and rather
wide.

I

40
l I

80 )20
q (MeV/c)

t

) 60 200

Fxo. 9. C'2 1 and 2 integrated form factors for the giant
resonance region normalized to the first data point. The lovrer
curve is the 1 "charge" form factor; the upper curve includes the
2 form factor also. The data are from Refs. 1, 5, and 41.

seen experiinentally has a dip for g 80 MeV/c. This
dip is clearly visible in both Figs. 8 and 9. Although
Fig. 8 seems to give a good Gt to both low- and high-
momentum transfers, (with the exception of the point
at 60 MeV/c), Fig. 9 is probably closer to reality.
Higher multipoles contributing to the integrated form
factor will become important for q)100 MeV/c and
will build up the curve. Also, if the point at 60 MeU/c
is to be believed, the form factor fr(q) does not have
enough of a dip. Between the two cases, however, the
experimental points are fairly well bracketed. The rea-
son for the diferent behaviors at high-momentum trans-
fers can be attributed to the diferent roles played by
the magnetic 1 state at 25.6 MeV. As we saw in
Fig. 4, this state rises rapidly with increasing momen-
tum transfer and dominates the spectrum. In Fig. 5,
however, this state was not so dominant, owing to the
reduction that was made of the current operator. This
reduction approximately doubled the strength of the
giant resonance at q=0, while leaving the magnetic
state's strength alone. Because of this, the high-momen-
tum transfer behavior in the two cases is diferent. It
is somewhat diQicult to see all this in the continuum
model we have used, but it is readily apparent in the
model of Lewis and Walecka' which allows form factors
for individual states to be calculated separately.

The integrated form factor for the 2 state at 20.0
MeV, fs(g), was calculated using ~r ——19.0 MeV and
co~=21.0 MeV in the previous equation. This form
factor is plotted in Fig. 10. The form factor reduced
by the ratio of the experimental photoabsorption cross
section to the theoretical one (from T'r~") is also
plotted. This is the SU(4) prediction. The unreduced
form factor is somewhat higher than experiment, al-
though not the factor of 2 higher predicted by deForest. '
The reduced form factor is probably much too low.

Discussion of 0'

The procedure for 0" is the same as for C". Single-
particle configuration energies are taken from neighbor-
ing nuclei 0" and O'. Oxygen consists of filled 1s~/2,

1p@s, and 1p»s shells. Ignoring the low-lying 1s»s, we
are left with two possible hole states. As in the case of
C", there are three particle states which can be used
to form negative-parity particle-hole states, sg/2 d3/2,

and d~/2. There six possible configurations of which two
contribute to J =0, and 5 each to J = 1, 2 . These

configurations and their con6guration energies' are

&'((1ds~2) (p», )
—') = 11.52 MeV,

E'((2s»s) (p»s) ') =12.39 MeV,

K'((1dgs) (p»s) ')= 16.60 MeV,

E'((1ds~s) (ps~s) ')= 17.68 MeV,

E'((2s»s) (pcs) ')=18.55 MeV,

E'((1dsp) (ps)s) ')= 22.76 MeV.

The single-particle energies can now be used to deter-
mine the well radius ro and the configuration potential
depths. Using4'

E, =2.65+0.04 fm,

ro' ——1.40 fm
as before.

Using the photoabsorption cross section we can deter-
mine the over-all potential strength Vo by forcing the
0"giant resonance state to have its peak at 22.4 MeV.
We get

Vo ———24.4 MeV.

An examination of the electron scattering and p-
capture spectra allows us to determine the widths and
energies of the resonance states (Table V) . Because the
O" spectra for p, capture and electron scattering are
quite similar to the C" results, the detailed drawings

4'T. deForest, Jr., J. D. Kalecka, H. VanPraet, and W. C.
Barber, Phys. Letters 16, 311 (1965).

4s H. Crannell, Phys. Rev. 148, 1107 (1966).
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have been omitted. The results, however, are discussed.
The J=O spectrum consists of a single large state at
25.4 MeV with a width of about 1.5 MeV. This state
is primarily a ((d3/2) (P3/2) ') configuration. The J=2
:spectrum consists of 4 resonances. The 23.4-MeV state
'has a width of about 0.4 MeV and is primarily a
((d3/2) (pa/2) ') configuration. The giant quadrupole

:state is very narrow, ~0.2 MeV and is primarily a
((d„,) (p3/g) ') conf guration. Although this state lies
below the p3/2 hole separation energy, the state acquires
a width (albeit small) through configuration mixing.
'The other two states are caused by a similar phenome-
non noted by Weiss in his work on photoexcitation in
0".'4 The ((d3/2) (pi/2) ') configuration state can lead
to two states through virtual excitation into the non-
resonant s-wave channel ((si/~) (p3/2) ') and back down
again. In the process a new resonance is formed. If
configuration mixing between the pi/2 hole states and
the p3/~ hole states is turned off, the two resonances
become a single one. Both these resonances are very
narrow, 0.15 MeV. The structure of the J=1 spec-
trum is similar. The 25.2-MeV state has a width of
about 2 MeV and is primarily a ((d3/, ) (P3/&) ') con-
%guration. The giant dipole resonance with a width of
about 1 MeV is primarily ((d@2) (p3/2) '). The same
state-splitting mechanism holds for the J= 1 spectrum
also. The two states have widths of about 0.15 MeV.

The bound-state mixing parameters are listed in
Table VI with the harmonic-oscillator model results
of Lewis and deForest listed for comparison. We see
that the best agreement is the J=2 state. This state is
primarily ((d&/2) (pi/&) '), ~ather than ((s&/2) (p&/&) '), as
the others are. In fact, the only mixing parameter which

0.004

CI2

TABLE V. Energies of bound states and resonances in 0".
Energy in MeV.

13.31
25.4

13.23

. 17 2
19.1
22. 4
25.2

12.52
17.7
18.2
20.6
23.4

is not substantially in agreement is the ((si/a) (pa/2) ')
term. For previously mentioned reasons, the s~~& par-
ticle states lead to disagreements between the results
of the two models.

The 0" p-capture results indicate that the J =1
19.1-MeV state and the 25.2-MeV state are primarily
magnetic. The strength of these states in the M~'(J = 1)
spectrum indicates that they are easily excited by the
magnetic operator (Yi o) i. The 20.6-MeV giant quad-
rupole state dominates the J=2 p-capture spectrum,
as one would expect. The lone J =0 resonance at
25.4 MeV contributes virtually all the J=O strength
(in the continuum) in spite of the mixture of the non-
resonant ((s&/2) (pi/2) ') state. Most of the strength of
the latter configuration is in the low-lying J=O bound
state. The giant resonance dominates the Mi" (J=1)
spectrum. We present the results of integrating over
the whole spectrum of M~', M~', and 3f~' in Table VII.
Bound and continuum contributions are separately
listed, and deForest's harmonic-oscillator results are
included for comparison.

The agreement on Mi' ——M~'=My' is about 9%,
while the agreement on the relationship

0.003—

2 STATE I

/

c 0.002—

0.00i

t I

40 80 )20
q (MeV/c)

[60 200

FIG. 10. C" integrated form factor for the 2 20.0-MeV state.
The solid curve is reduced by the ratio of theoretical to experi-
mental integrated photoabsorption spectrum. The data are
from Refs. 5, 41, and G. A. Proca and D. B. Isabelle, Nucl. Phys.
A109, 177 (1968);and G. A. Beer, T. E.Drake, R. M. Hutcheon,
and H. C. Caplan, Nnovo Cimento 533, 319 (1968}.

is within 3% (Table VIII). In agreement with de-
Forest's results, Mv' is lower than M~' and M~'. Unlike
the C" results, however, the ratios (M') n/(M') r/D are
all larger than the elastic form factor.

The role of the charge and current operator in T~"
was also investigated in 0 ' in the harmonic-oscillator
shell model. Setting (X~—X„), the isovector nucleon
magnetic moment, equal to zero, several diferent form
factors were calculated using the two forms of Tj".As
in the case of C", the resulting form factors are nearly
the same.

The upper portion of the energy spectrum of the 1
form factor F&"(q, cu) displays a not very surprising
resemblance to the C" spectrum. The giant dipole state
dominates at small momentum transfers. Although the
magnetic state at 25.2 MeV can be easily distinguished,
it is relatively small. The two states lying below the
Pa/2 threshold are also quite small. As momentum trans-
fer increases the magnetic state becomes quite large,
dominating the spectrum for q) 60 MeV/c. The giant
dipole state decreases until it vanishes for q 120 MeV/c
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TABLE VI. Configuration mixing parameters for the bound states in the HOSM and continuum model for 0".

((21/2) (Pl/2) ') ((4/2) (Pl/2) ) ((d3/2) (Pl/2) ) ((21/2) (P3/2) ) ((4/2) (P3/2) ) ((4/2) (Pl/2) )

J=O
13.31 MeV
Continuum
Harmonic

oscillator

0.990
0.998

-0.140
0.070

13.23 MeV
Continuum
Harmonic

oscillator

0.968
0.991

0.014
—0.011

—0.009
—O. 063

0.245
—0.113

0.051
—0.029

12.52 MeV
Continuum
Harmonic

oscillator

O. 977
0.974

0.019
—0.025

—0.142
0.069

0.150
0.201

0.048
0.076

TAsx,E VII. Partial capture rate contributions to p, capture
in, 016. The bound-state and continuum contributions are listed

separately.

Continuum
Bound state
Total

0.084
0.006
0.090

0.253
0.016
0.269

and then increases again. The higher of the two lowest
resonances displays a large growth as q increases, con-
firming the original indication in p, capture that it had
a magnetic behavior (magnetic 1 states grow like g',
just as 2 states do). The other state grows also but is
smaller than its companion.

The form factor F'iei(q, a&) also has many character-
istics of the equivalent C" figure. The giant resonance
vanishes and rises as before, but the 25.2-MeV mag-
netic state shows less activity. Ke shall see that this
is strongly reflected in the integrated form factors. The
19.1-MeV state shows its usual magnetic character,
although the companion state does not move appre-
ciably.

All of the resonances which contribute to the 2
form factor F2 "(q, co) show their magnetic behavior
clearly. The most interesting feature is the fact that
the two lowest-lying states are close enough to coalesce,
giving something of the appearance of a single broad
state.

Figure 11displays the sum&2 '&(q, co) and p'iei(g, ~),
giving the best SU(4) prediction for a scattering form
factor.

Figure 12 shows the integrated form factor fi(q)+
f2(g). The range of integration is the same as in C".
Although the over-all normalization is a little low
(15-20%), the shape of the curve agrees with the
experiments if one believes the first (photoabsorption')
point. If this point is low, then oxygen will also show
the pronounced dip seen in C". This would be even
more pronounced in the form factor fi'(/f) +f~(q) nor-
malized to the second experimental point. This form
factor looks much like carbon, being too small for
large q. Higher multipoles would presumably build the
curve up at higher momentum transfers. Because the
magnetic state does not build rapidly in the case rep-
resented by fi'(q), the effect of the rapid decrease in
strength of the giant resonance is emphasized, caus-
ing a dip. The magnetic state in the other case rises
rapidly enough to offset this effect, resulting in a Ratter
form factor.

The fact that both form factors fi(q) are somewhat
smaller than the ones calculated in the harmonic-
oscillator shell model is probably due to the fact that
the broad magnetic state has strength outside the range
of integration. In a pure bound-state model, all the
strength is concentrated at the bound-state's energy
eigenvalue.

The 20.6-MeV 2 form factor f2 was also calculated,

Continuum
Bound state
Total

0.900
0.000
0.900

0.293
0.005
0.298

TABLE VIII. Dipole and unretarded dipole capture rates and
their ratios in 0".

Continuum
Sound state
Total

Total
deForest results

0.900
0.857

0.409
0.187
0.596

0.983
0.938

0.490
0.224
0.715

0.984
0.938

Dipole
Unretarded dipole
Ratio (3P)~/(M2) gD

&3 (3'ree )

0.900
1.37
0.657
0.639

0.984
1.50
0.654

0.983
1.50
0.655
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Fxo. 11. Sum of the 0"1 and 2 spectrafor severalmomentum

transfers. The 1 form factors were calculated using the "charge"
form of the transverse electric operator. Za is (Itc/ro) (=55.9
MeV) . O.OOI

O.OI 4

0.012—
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the range of integration being 20—21 MeV. This form
factor behaves very nearly the same as the correspond-
ing 20.0-MeV one in C". We see in Fig. 13 that it lies
above the experimental results, but not by the factor
of 2 predicted by deForest. 4 When normalized to the
integrated photoabsorption cross section, the resulting
curve is rather low. A similar plot for the 2 bound
state at 12.52 MeV is shown in Fig. 14. This form
factor is a little higher than the prediction of deForest,
but the normalized form factor seems to Qt the experi-
mental data nicely. The bound 1 state which lies
nearby has a negligible transverse form factor com-
pared to the 2 state, so that its inclusion in the over-
all transverse form factor for this region has little
effect. Both 2 states are observed in inelastic proton
-scattering and they adequately account for the cross-
sections seen. 4' 4'

Figure 15 shows the form factor fr(q) for the 1
17.2-MeV state, using ca~=16.0 MeV and co~

——18.0
MeV. This result is in quite good agreement with the
-experimental data. The results of Lewis' for this state

0 I I

0 20 40 $0 80 I 00 I 20 l40
q( Me V/c)

Pro. 13. 0" integrated form factor for the 2 20.55-MeV
state. The dashed curve is reduced by the ratio of the theoretical
result to the experimental result for the integrated photoabsorp-
tion spectrum. The data are from Ref. 6 and T. E. Drake, E. L.
Tumusiak, and H. S. Caplan, Nucl. Phys. A118, 138 (1968).

O.OOI 5

O I6

give a form factor which is approximately twice as
large as experiment.

Figure 11 can be compared with the backscattering
results of VanPraet~ for 69-MeV incident electrons.
The approximate momentum transfer is 120 MeV/c
( =2E; ~). As in the carbon case, the calculation~g=
shows no giant resonance at this momentum transfer.
There are a number of other prominent states, how-
ever. The two bound-states at 12.5 and 13.2 MeV are
close to two peaks in the cross section at 12.2 and 13.0
MeV. There are three states rather close together be-
tween 17.2 and 18.2 MeV, while the experimental data
shows a bump at 17.1 MeV and possibly -one between
18.0 and 18.7 MeV. There is a predicted 1 state at
19.1 and a prominent bump at 19.2 in the experimental

+ 0.008—
O O.OOIO

0.006—

0.004 =—~
0.002

0
I I I I

40 80 I20 I60 200
q (MeV/c)

0.0005— U(4)
CT ION

. 12. 0'6 1 and 2 integrated form factors for the giant
resonanc re region. The lower curve is the 1 "current" form factor;

. The datathe upper curve includes the 2 contribution as well. e a a
are from Ref. 5, 7, and E. G. Fuller and E. Hayward, in XNclear
Eeactions, edited by P. M. Endt and P. B.Smith (North-Holland
Publishing Co., Amsterdam, 1962), Vol. II.

43 T. Erickson, NucL Phys. 54, 321 (1964).
~ H. K. Lee and H. McManus, Phys. Rev. 161, 1087 (1967).

l~
20 40 60 80 IOO I20 I400

q (MeV/c)

Iso. 14. 0'6 form factor for the 2 12.52-MeV state. The
dashed curve is reduced by the ratio of the theoretical result to the
experimental result for the integrated photoabsorption spectrum.
The data are from Ref. 6.
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where Pi and i/2 a,re the giant dipole resonance and the
magnetic state, respectively. The transition prob-

abilities can theref'ore be written

2'oi=—8, II i II 0&=«,yP~„
Ti'i—= &p; II i II o&= —pi,+«„

where

~i=&(ph)ill &II o&

i.= &(ph). II ~ II o&

The detailed behavior of
I

To& I' and
I

T"& I' obviously. -

are sensitive to the sign and magnitude of P. Yet if we:
form

Zl~i" I,

we get

& I
2'"'I'=(~'+&'& & I

~'I'= Z I
i'I-',

0.0002—

O.OOOI—

I

0 20 40 60 80 100 120
q (MeV/c )

FIG. 15. 0" integrated form factor for the 17.2-MeV 1 state.
The data are from Refs. 6 and E. G. Fuller and E. Hayward, in
Nuclear Reactions, edited by P. M. Endt and P. 3.Smith (North-
Holland Publishing Co., Amsterdam, 1962), Vol. II.

cross section. The giant quadrupole state at 20.6 MeV
seems to match the 20.4-MeV experimental peak. . The
other predictions are the 2 state at 23.4 MeV and the
25.2-MeV 1 state. The two most prominent peaks
seen in the experimental data in this energy range are
at 23.8 and. 26.0 MeV and presumably correspond to
the above predictions. Although the predicted widths
are much narrower in most cases than the experiments
indica, te, the experimental resolution is probably little
better than 1 MeV."This would make narrow states
appear much broader.

Another point must be made about the behavior of
the giant dipole resonance and the high-lying 1 mag-
netic state. Ke saw above that the detailed behavior
of the two states is not in good agreement with experi-
ment, although the integrated form factor (21—27 MeV)
is in rough agreement. We can give one possible ex-
planation of this by simplifying the model to the barest
essentials. Let us consider configuration mixing in the
HOSM, where we will only include the ((1de~q) (1ps~~) ')
and the ((1de/2) (1'&) ') configurations. These are the
largest contributions to the above-mentioned states.
We denote the 6rst of the above particle-hole con6g-
uration states by (ph)i and the second by (ph)2. Our
two configuration-mixed states are therefore

fr=~(ph) i+P(ph). ,

A= —P(ph) i+~(ph) 2,

"W'. C. Barber I'private communication) .

since cr'+P'=1 is the normalization condition of our
states. This interesting result for the integrated form.
factor is now independent of a and P and therefore.
independent of the particle-hole potential. In essence-
we have a sum rule. We therefore see that our inte-
grated form factors are much less sensitive to details.
of the model (such as the potential) than is the be-
havior of each individual state.

SUMMARY

In summary, we see that a "realistic model" of the
giant resonance region has been examined. This model
allowed construction of particle-hole states in the con-
tinuum and was capable of analytic solution. Using the
model, spectral surfaces in q (momentum transfer)
and re (energy loss) were constructed for electron.
scattering as well as the neutrino spectrum in p capture.

In is capture the SU(4) relationship

was tested in C" and 0".While this relationship does
not hold for individual levels or resonances (we do not
expect it to), the agreement is good when all levels
have been summed over. The relationship held to within
3% in C" and within 9% in 0", even though the
over-all size of the individual matrix elements was oB
by a factor of 2. This agreement justified the work of
Foldy and Kalecka. 4' In addition, we tested the rela-
tionship

(~e)~= (~v')»
I J'o(~-') I'

in our model and found that the discrepancy was only
1% in C" and 3% in 0".It should be noted that our
model has a continuous spectrum from the lowest
threshold upwards, so that it was necessary to include
the rather long "tails" of some of the resonances in the

4 This analysis was successful because of the weak spin de-
pendence of the particle-particle potential. For a different point
of view using another model see Ref. 12.
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calculation. This contrasts with the usual bound-state
Inodels.

In electron scattering we calculated the transverse
form factors for 1 and 2 states because these form
factors show the importance of magnetic effects. These
results were compared with experiment, and the pre-
dicted levels are generally seen. The integrated form

.factors that can be derived from the energy spectra
show reasonably good agreement with experiment. We
have also seen that normalizing certain form factors
by the ratio of experimental to theoretically predicted
'integrated photoabsorption cross sections improves the
results, again pointing out the importance of SU(4}
to the nuclear physics of the giant resonances. The
v idths we predict for our states are in qualitative agree-

ment with experiment. This model also justices previ-
ous identification of narrow giant quadrupole states
predicted by deForest. We have also investigated why
the high-lying magnetic 1 state does not become huge
at large momentum transfers, although shell-model cal-
culations, including this one, predict a vanishing of the
giant dipole resonance for momentum transfers q~120
MeV/c due to interference between the electric and
magnetic parts of the 1 transverse operator. This is
not seen experimentally.
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Structure of the Nucleon-Nucleus Scattering Matrix in the
Random-Phase Approximation*
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The scattering matrix is derived for the scattering of nucleons by nuclei lacking one nucleon from being
doubly magic. It is assumed that an average 6eld has been determined through a Hartree-Fock procedure
(HF). The residual interaction is treated in the random-phase approximation (RPA). In contrast to pre-
vious treatments, it is not assumed that this interaction is separable. The RPA ground state of the com-
pound system is given by a correlated wave function ~%'0). It is assumed that states of the target and residual
nucleus can be described as one-hole states in this correlated ground state

~
+0). It is found that the RPA

equations allow for a proper definition of asymptotic states only if the full Hamiltonian (including the c.m.
energy) is used in the HF procedure. A general, yet explicit, expression for the 5 matrix is obtained by
applying to the channel-channel part of the residual interaction a method Qrst proposed by steinberg. The
correlations contained in ( Np) give rise to poles of the scattering matrix for real negative energies below

the energy of the lowest bound state, i.e., the ground state
~
+o ). In the energy region of physical interest,

these poles have two eBects on the scattering matrix. First, a constant background term is introduced.
Second, the partial widths Pq, for decay of a compound state (X) into an open channel (c) are complex. The
sum of the partial widths, ZJ„Fq„ is compared with the sum of the total widths, ZJ,Fq. It is found that the two
sums dier by terms of second order in the admixture of correlations in the ground state. The influence of
symmetry properties of the Hamiltonian on the RPA solutions is discussed. It is shown that the scattering
matrix derived is that in the c.m. frame, and it is completely independent of the total momentum of the
nucleus.

I. INTRODUCTION

&HE random-phase approximation (RPA) is a useful. tool for the understanding of collective properties
ef nuclear levels. ' It serves primarily as a useful model
in which the occurrence of collective modes of motion
can be theoretically understood on a microscopic basis.
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Compared with the ordinary shell-model for Tamm-
Dancoff (TD) $ treatment, the RPA offers an improved
understanding of the relationship between symmetry
properties of the Hamiltonian and the occurrence of
collective modes. ' The RPA also yields a semiquantita-
tive account of the positions and electromagnetic prop-
erties of vibrational states. '

Since the RPA has turned out to be such a useful

' D. J. Thouless, Nucl. Phys. 22, 78 (1961);D. J. Thouless and
J. G. Valatin, ibid. 31, 211 (1962).' G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22,
1 (1961); G. E. Brown, J. A. Evans, and D. J. Thouless, ibid
45, 164 (1963);A. Goswami and M. K. Pal, ibid 35, 544 (1962.);
V. Gillet and N. Vinh Mau, ibid. 54, 321 (1964);V. Gillet, A. M.
Green, and E.A. Sanderson, ibid. 88, 321 (1966);V. Gillet and E.
A. Sanderson, ibid. A91, 292 (1967).


