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The Hankel-transform (inpact-parameter representation) method is used to simplify the derivation of
the diffraction model of direct nuclear reactions. Both first- and second-order processes (represented by
pole, triangle, and box diagrams) are discussed, and relatively simple formulas for the corresponding diffrac-
tion-model amplitudes are given. Inclusion of Coulomb effects and the extension to backward-peaked proc-
esses are also discussed.
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t 1HE angular distributions of many direct nuclear
reactions strongly resemble classical diffraction of

light by an absorber. This resemblance is by no means
accidental, and has been exploited by many authors in
constructing a corpus of phenomenological reaction
theories collectively known as the diGraction or strong-
absorption model. In view of the excellent reviews of
the subject by Austern' and by Frahn, ' it would be
superAuous to recapitulate the earlier work here. The
intention of this paper is to derive diffraction-model
formulas for several direct processes of current interest,
using the Hankel-transform, or impact-parameter,
method. This approach is useful first, because it
simplifies the derivations, second, because it is easily
generalized to second-order processes, and third, be-
cause the resulting expressions are relatively easy to
evaluate.

The organization of the paper is as follows: The re-
mainder of Sec. I defines the term "diffraction model"
as it is used in this work. Section II applies the idea to
the stripping process (pole diagram). In Secs. III and
IV, the triangle and box diagrams (impulse approxima-
tion) are analyzed by this scheme, yielding both
familiar and unfamiliar results applicable to the study
of knockout, inelastic scattering, forbidden transitions,
and even (with certain modifications) elastic scattering.
Finally, Sec. V summarizes, draws conclusions about,
and extends the ideas of this work.

What do we mean by a diffraction model? In physical
terms, it is a model of a nuclear reaction in which the
reaction itself occurs at the surface of the target
nucleus. Consider a reaction with spinless particles:
a+A~c+C. Its amplitude Ct(E, Q) is a complex-
valued function of the barycentric energy E, and
momentum transfer Q, with certain well-defined
analytic properties in each variable. These properties,
besides enabling us to represent the amplitude by the

Ct(Z, Q) = db b'av(bQ)Ct(E, b). (2)
0

At higher energies, Eq. (1) is a slowly converging
series and so loses much of its usefulness. How do we
know it converges slowly? In the forward direction, we
have

whereas at 0=x, we have

The strong forward peaking observed at medium-to-
high energies requires the ratio

I 2 (21+1)«(~) I/I 2 (2~+1) (—1) tct (&) I

l

to be large, which is impossible if the terms Ctt(E)
decrease too rapidly with /. Thus, previous versions
of the diffraction model have all had somehow to resum
the higher-/ terms of the partial-wave series

I Eq. (1)j
in order to obtain useful results. The advantages of the
Hankel-transform representation LEq. (2)] are first,
that it seems to appear naturally in high-energy ap-
proximations, and second, that it exhibits strong
forward peaking with simple physical choices for the
amplitude Ct(E, b) .This latter feature is what makes the
impact-parameter formalism useful in phenomeno-
logical analysis.

The diffraction-model amplitude is obtained from
Eq. (2) by first, neglecting contributions to the integral
from impact parameters b smaller than some radius. R,

' M. L. Goldberger and IZ. M. Watson, Collision Theory (John
Wiley R Sons, Inc. , New York, 1964), p. 563 ff.

R. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Brittin and L. G. Dunharn (Wiley-Interscience Publishers,
Inc. , New York, t959), Vol. t.

385

Cauchy integral formula' (i.e. , in terms of single- or
double-dispersion relations), also permit us to expand
it in an appropriate complete set of orthogonal func-
tions such as I,egendre polynomials or Bessel functions:

Ct(E, Q) = P (21+1)Pt(cos8)Ctt(E)
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fraction-model amplitude for this process is

bb(e, Q) —f db bra(bQ)bl(b),

where

(5)

FIG. 1. Po]e graph representing stripping or pickup.

and second, by replacing the exact impact-parameter
amplitude S(Eb b) by the Hankel transform of the
corresponding lowest-order plane-wave Born approxi-
mation, $(E, b). In the case of elastic scattering, this
procedure may still be followed, except that we must
make explicit provision for elastic unitarity. '5 This
amounts to assuming that Ol(E, b) is purely imaginary
for b&E, and that it vanishes for b&E. A single
phenomenological parameter is required in the sharp-
cutoG approach described above. Additional param-
eters can be incorporated in the model in a variety of
ways, most of them either well known, or obvious, or
both. For the purpose of illustrating the Hankel-
transform method as applied to various direct processes,
this paper will be limited to the sharp-cutoG case. The
only generalization will be to nonzero orbital angular
momenta.

II. POLE DIAGRAMS

We begin with direct spinless particle transfer,
illustrated diagrammatically in Fig. I. The plane-wave
Born approximation (PKBA) for this process is
written (on the energy shell) as

$(k', k) = —v. (l k' —ck/u I')

&&Pgc+f't'(k —Ak'/C)'/2rlpgg'vc*(l k—Ak'/C i').

(3)

In Eq. (3), v, is the vertex function (virtual-decay

amplitude) for the process ct +b+c, whereas—vc*

plays a corresponding role with regard to A+b +C. —
The binding energy of particle C is 8&, and the reduced
mass ettsz of particle b is just snsA/(A+b). (Here and
subsequently, mass ratios such as rN&/rnc are abbre-
viated A/C. ) Energy conservation implies the relation

(P/2rwpg) (k—Ak'/C)'+Bc

= (its/2mb, ) (k' ck/a)'y—g., (4)

and so either Q=—k—Ak'/C or q=—k' —ck/a may be
used to represent the amplitude as a Hankel transform
tEq. (2)j. That is, the expression (3) is completely
symmetric with respect to time reversal. Suppose we
choose to expand as a function of Q. Then the dif-

5 R. Blankenbecler and M. L. Goldberger, Phys, Rev. 126, 776
(1962l.

$(b) = —(2mb'/its) dQ QJp(bQ)

X v (nQ'+P') (bcc'+Q') —'vc*(Q'), (6)

and we have written n=cC/ttA, P'=2tlb, (gc—8 )5',
and )ac'=2rlpggc/ft2. Under the usual assumPtions on
the analyticity of the vertex functions, ' we can write

(~) f br ~ir)
Pa pc

X I (x2 ~ 2)
—l(y2 bc 2)

—11' (ba )+ (ys x2)—1

XPE'p(bx)/(x' —)bc') —Ep(by)/(y' —bbc') jI. (7)

$ (b) = —(2trtbz/f'b'n)

We have used here the identity~

(Q2+ x2) —1— db bJp(bQ) E'p(bx), (7')
0

where Ep(s) is the modified Bessel function with ex-
ponentially decreasing behavior for large positive s.'
The constants p, and pt. represent the inverse ranges
of the longest-range parts of the corresponding vertex
functions. In any reasonable theory, p,& f(& and
pz&~z. In fact, for many cases of practical interest,
both these constants are much larger than ~(,-. Thus,
when we put Eq. (7) into Eq. (5), the only important
term will be the one proportional to Ep(bbcb) in Eq.
(7), i.e., from the longest-range part of the amplitude.
Under these conditions we obtain

e(E, Q) —(2rttbg/fi') v, (p' nbcc') —vc*( )tc')—

Xfgc~El (Kc+)&p(Q~) —Ep(bcc~) QZIb (Q&) $

b I. S. Shapiro, Selected Topics tl NNclear Theory (International
Atomic Energy Agency, Vienna, 1963); see also H. J. Schnitzer,
Rev. Mod. Phys. 3/, 666 (1965).' G. N. Watson, Theory of Bessel Fbblctborbs (Cambridge
University Press, New York, 1944), 2nd ed. , p. 425.

8 Reference 7, p. 78.' S. T. Butler, Proc. Roy. Soc. (London) 208, 559 (1959).

Equation (8) is effectively the Butler approximation. s

That is, the inequalities p~&f(;~, pg))f(:g give us the right
to neglect the variation with q at vertex "u," and to
replace the coordinate-space wave function 4'c(r) by
its asymptotic limit, 1Vce "c"/r Further. more, it is clear
that Q may be a more useful momentum transfer
to use as a Hankel-transform variable than q. For
phenomenologica1 purposes, it is essential to formulate
the problem in a manner which is as insensitive as
possible to the (undetermined) details of the process.
In many stripping and pickup reactions, the masses
and physical sizes of the various particles are such
that the angular distribution is primarily determined
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by the variation of only one of the vertex functions.
Thus, if we choose to transform with respect to the
wrong momentum transfer, the corresponding impact-
parameter amplitude will have to be a more complicated

-function in order to determine the same angular dis-
tribution. Moreover, all of the phenomenological
analysis will become correspondingly more sensitive to
the phenomenological parameters, a feature which is
most undesirable. We note that at physical values of
the momentum transfer, the Jo term of Eq. (8) is
usually sufficient to give the angular distribution.
However, the J~ term must be kept when extrapolating
to the pole in Q', in order that the residue be inde-
pendent of K' Finally, the vertex functions appearing
in Eq. (8) have been evaluated at the propagator
pole. Under the conditions for which Eq. (8) is valid,
we could just as well replace their arguments by the
appropriate physical momentum transfers, if this were
desired for reasons of convenience or esthetics.

Next, consider stripping with spin. The only major
complication results from the orbital angular momenta,
since intrinsic spins enter in an essentially straight-
forward manner. The Born approximation becomes

A

FIG. 2. Triangle diagram applicable to second-order particle
transfer (knockout), inelastic and lowest-order elastic scattering.

)Here 4'c,z(r) is the radial bound-state wave function
of the b Asyst-em. .) The forms of Eqs. (11) and (10)
clearly agree in the forward direction, as well as in the
limit where we ignore variations of the vertex vq.

[In view of the great difficulty of calculating the Hankel
transform of the function

in the most general case, it is indeed fortunate that
in almost all physical applications this is not necessary. )

III. TRIANGLE DIAGRAMS

X2c,z*(Q) I'z~'(Q). (9)

When taking the Hankel transform of Eq. (9) with
respect to Q, for example, we may hold Q 6xed. How-
ever, since q=NQ+2/k (where u and 2/ are constants),
q is not constant as Q varies (in fact, it rotates from
k to Q as Q increases). But since the amplitude LEq.
(9)j is expected to be strongly forward peaked, we
make only a relatively small error by letting j=k in
the factor I'/„(q) (as compared to all the other ap-
proximations of the diffraction model) .

The simplest way to convert Eq. (9) into a dif-
fraction-model amplitude is to write the propagator
in the form of Eq. (7') and truncate the integraL
That is, we assume that the propagator dominates the
angular distribution, and this is reasonable in many
cases. The result is

0',zsr, („(Z,Q) —(2r/2»/5') I'/ (fo) 2/, ,)(q)

X I'zsr*(Q) ze,z*(Q) db b~o(bQ) &o(b«) (10)

The next simplest thing to do is to ignore the variation
of (say) the a +b+c verte—x, thereby obtaining (see
Sec. III for details)

The simplest second-order process can be represented
in PWBA by the triangle graph (Fig. 2). This is
actually a special case of the impulse approximation
in which the off-shell t matrix for the process /2+r~
c+s is replaced by a (complex) constant g2. This
amplitude has been studied in considerable detail by
Shapiro' and by Blokhintsev et al." The triangle
mechanism has an elegant representation in the dif-
fraction model. We shall exhibit it for the case where
particles a, c, r, s, and A have spin 0 and positive
parity, and C has J"=L,& l . The PWBA (Fig. 2) is

/Bzsr(Q) = g'fd'r exp(2Q r)%p(r)+ 'z,c*( )Frzsr*(r),

where we have defined the momentum transfer as

Q'= (Bk//A Bk'/C)'. —(13)

The angular integration in Eq. (12) is easily performed,
yielding

SzM (Q) = 42rg22~&r 2r*(Q)

&& dr r24'~ (r)%'o,z,*(r)jz(Qr) . (14)

Using the identity'2

ds (s2+ b2)
—I /2@ e (s2+ b2) 1/2

"R.D. AInado, Phys. Rev. Letters 2, 399 (1959).

'L. D. Blokhintsev, E. I. Dolinsky, and V. S. Popov, Nuc).
Phys. 40, 117 (1963).

~~ Bateman Manuscript Project, in Tables of Irbregra/ Traris-
forms (McGraw-Hill Book Co., New York, 1954l, Vol. II, p. 48.
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A

FIG. 3. Box graph —same as the triangle graph, but with a
different approximation for the a+r—+c+s off-shell t matrix.

we obtain, as in Sec. II, the diffraction-model result

612r (Q) = 42rg'F Yz,/b/*(Q) db b +'J (bQ)

dz (z2+b2) —I/2@ L"(s2+b2) 1/2$bP @L(s2+b2) i/27

That is, we approximate the wave functions by their
asymptotic forms, which is justified when the cutoff
radius 8 is as large as, or larger than, the size of the
nuclear interactions which give rise to the bound
states +z and +c. The approximation LEq. (16')j
leads to the amplitude

Ollir(Q) =42rg'i N~NcYr2r*(Q) db

(16)
For large b, we may write

bP& (r)+c r,*(r) NzNz exP)—(Kg+ Kc) rj//r . (16')

The box graph can be considered another special
case of the impulse approximation, in which the I,

matrix for a+r~c+s has a pole corresponding to a
bound state or resonance "b" in the (2+r (and also in
the (,+s) subsystem. The f matrix is replaced by its
pole contribution, and may or may not be unitary. '
The example we consider has, for simplicity, constant
vertices and a simple pole as the off-shell t matrix.
The on-shell box amplitude is proportional to (see
Fig. 3)

) f lb
$ (

Ib
) j—i( bb 2)—i

XEa2+(K"—p') 2j-i. (20)

In Eq. (20), p=Bk/A, p'=Bk'/C, and n2, p', and lV
are given by

n2= 2m„(B/AP) (mii+m„m~) c2, —
P'= 2m, (B/Cf'2') (mi/+ m, mc) c2, —

—62=42(bB/aA)+2mbL(B/f22(b+B) $

(21a)

(21b)

X (m,+m~ m2 —mi/) c—2 (21c.)

Eq. (17) is indistinguishable from the Illair'4 result for
inelastic scattering.

Finally, we observe that whereas Eq. (19) has simple
poles at Q= &iBKc/A, Eq. (17) has logarithmic
branch points at the points Q =&i (K~+ Kc) . (Here
we have redefined the Inomentum transfer for the
pole diagram to agree with that of the triangle dia-
gram. )

IV. BOX DIAGRAMS

X be, (bQ)
Kg+Kg

dx KiJ.(bx), (17) Using Feynman parameterization, " Eq. (20) can be
integrated in closed form, yielding

where Kiz(s) is defined"

K2i, (s) = dh exp( —s cosh/, ') /(cosh') ~. (18)

&(&, Q) = —(~'/~P~) L1 '(/ '+~'—+-~' c«) 3 "—

X tan 'IL1—-'(/'+~'+r' —
/ «) j/9+2(/+~+r) 3I

bC(Q) = f db bJc(Qb)Kcc(Bccb/cb). (19)

0

It is interesting to compare Eq. (17) with the result of
making a similar approximation in Eq. (11).The strip-
ping angular distribution is determined by the function

/
= (~'+P'+~')/~~,
= (p'+ p"+~')/p~,

T A2 2 2

(22)

(23a)

(23b)

(23c)

When Eqs. (17) and (19) pertain to the same reaction
(so that the orbital angular momentum transfer,
momentum transfer, and cuto6 radii would be the same
for both expressions), and under the conditions which
usually obtain in direct reactions, the angular distri-
butions from pole and triangle diagrams are nearly
identical, being approximately proportional to
)Jz (QR) )2. The angular distribution predicted by

'3 Handbook of Mathematical Functions, edited by M. Abramo-
witz and I. Stegun (National Bureau of Standards, Washington,
D.C., 1964), p. 483.

bb(2, Q) = f bb bj.(bQ) r (2, b), (24)

' J. S. Blair, Phys. Rev. 115, 928 (1959).
'~ Reference 3, p. 754 ff.
1 J.D. Bjorken and S. D. Drell, Relativistic Quantum 3SIechanics

(McGraw-Hill Book Co., New York, 1964), p. 155. See also Ref.
11, as well as the Appendix, where this result is briefiy rederived.

and Q'= (p—p')'= (Bk/A Bk'/C)' i—s just the mo-
mentum-transfer variable which appeared naturally in
the triangle amplitude. Equation (22) possesses a
more transparent representation



DIFFRACTION MODEL OF DIRECT NUCLEAR REACTIONS

where

h(B 0)=— 'L'( p)'I/A]f due "f dve "'

)&exp[—bp(u, v) j/p(u, v) (25)
and

p'= (a+P)'+uP+v+ou+uv+ (u —v)'/uv). (26)

The derivation of Eq. (25) is given in detail in the
Appendix. We see from Eqs. (25), (26), and (23) that
the minimum value of the modulus of y(u, v) is n+p,
independent of whether dP is positive or negative.
That is, the box amplitude exhibits (independent of
energy) logarithmic branch points in the complex

Q plane, at Q=&i(n+P), exactly as did the cor-
responding triangle diagram.

We are interested in the energy dependence of the
box diagram near the threshold for real production of
the intermediate state b+B, i.e. , near LE=0. Because
p(u, v) is such a complicated function of the integration
variables, we can only give here a qualitative discussion
of the behavior of B(E,Q). We see that the asymptotic
behavior of h(E, b) in Eq. (25), as a function of the
impact parameter b, is exponential with a range de-
termined by the average value of p(u, v). When 6') 0,
(i.e., below threshold), the term nP[pv+ou] is real
and positive, and therefore tends to increase p, .
To analytically continue to lV(0, we set 6= —i~,
and then the npQv+au) term becomes purely imagi-
nary. This reduces p, ; thus, the amplitude B(E, Q)
receives its main contribution from larger values
of b. That is, although the nearest momentum-
transfer singularity is always at &i(u+p) I and
hence the longest-range part of h(E, b) is the tail
~ exp[—b(n+P) )I, the effective range" of the
amplitude is always somewhat less than (n+P)
Furthermore, we expect this eGective range to increase
rapidly as the energy surpasses the threshold of the
b+B intermediate state. In the presence of strong
absorption, this eRect will naturally be accentuated
as the interaction region does or does not extend
beyond the strong-absorption radius. Moreover, the
phase of the box amplitude varies rapidly as the energy
exceeds threshold, making possible interference with a
more slowly varying background amplitude, if such is
present. Thus the sudden increase of the diffraction-
modified box amplitude above threshold could produce
either a bump or a dip in the cross section. We also
expect, bv analogy with certain three-particle, E-
matrix and dispersion-theoretic calculations, " that
the coupling between the b+B channel and other
open channels (e.g. , elastic @+3, c+C, and inelastic

'7R. Aaron, D. Teplitz, R. Amado, and J. Young, Phys. Rev.
187, 204'7 (1969); R. H. Dalitz, Strange Particles and Strong
Interactions (Oxford University Press, London, 1962)., p. 122 ff;
J. Ball and W. Frazer, Phys. Rev. Letters 7, 204 (1961);R. F.
Peierls, ibid. 6, 641 (1961).

b+B, as well as other rearrangements) will, through
unitarity, absorb the flux from the b+B channel and
thereby quickly damp the a+A —+c+C cross section
after its rise at threshold. That is, if the box amplitude
dominates the cross section, the net eRect of an opening
channel in the intermediate state should be a sharp
bump.

The diGraction-model amplitude derived from Eq.
(24) is

A(E, Q) = db bJO(bQ)h(E, b). (27)

This suggests how the diGraction-modified box ampli-
tude can be generalized to the case where the B+s~C
vertex has orbital angular momentum L, without the
necessity for deriving erst the corresponding PWBA
expression: It should be adequate to replace the
impact-parameter amplitude

appearing in Eq. (17) by the corresponding function

'[( p)"'/Ag duu "'

V. SUMMARY AND CONCLUSIONS

The previous sections have described how to use the
Hankel-transform method to represent various types
of direct-reaction amplitudes in the sharp-cutoff
diGraction model. Most cases of interest can be built
up from an appropriate superposition of the simpler
forms considered in this paper. It is also clear how to
incorporate additional parameters to represent such
eGects as nuclear "skin-thickness. " Probably it is best
not to introduce too many extra parameters, since we
do not wish to create a phenomenological theory which
is merely an analog computer for curve fitting. There
are a host of eGects, all of about the same magnitude,
which can be neglected in a rough treatment, but it is
not clear which of them we are justi6ed in including
while ignoring others. In such a situation, perhaps the
best thing to do is to include none,

A generalization which is clearly necessary is the
inclusion of Coulomb effects. Any method that accounts
for most of the effect and introduces no additional
undetermined parameters is probably satisfactory.
A way that suggests itself is the impact-parameter
version of the Durand-Chiu-Sopkovitch approxima-
tion" in which the amplitude is written

e(E, b) [Sr(E b))"'(B(E,b)[S,(E b)$'" (28)

In Eq. (28), Sr(E, b) and S,(E, b) are the impact-

' N. J. Sopkovitch, Nuovo Cimento 26, 186 (1962);L. Durand
and Y. T. Chiu, Phys. Rev. 139, 8646 (1965).
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Q, will turn out to be a rapidly oscillatory function of
b. Therefore it is prudent to transform with respect
to an appropriate exchange, or "crossed-channel"
momentum transfer, rather than the direct momentum
transfer Q. That is, in a process such as that illustrated
by Fig. 4, we should write the amplitude as

FIG. 4. Backward-peaked second-order contribution to (d, p)
reactions.

where

db bJp(bQ) 8(E, b), (33)

parameter "S matrices" for elastic scattering in Anal
and initial channels of the reaction being considered,
and $(E, b) is the Hankel transform of its PWBA
amplitude. The S matrices define the elastic diGerential
cross sections in their respective channels through the
relation

do 2

dQ
ik db bop(2k sin-,'8) $1—S(E, b) $ . (29)

In the case of interest, for b&A we may approximate
S(E, b) by

S(E, b) expI 2iti ln(kb) —2~], (30)
where

and p is a constant (real) phase angle resulting from
the long-range cutoG we apply to the Coulomb po-
tential. "The approximation $Eq. (30)$ follows from
the eikonal approximation' and agrees with the
analytic continuation of the partial-wave Coulomb
phase shift

o )(E) =argl'(3+1+it)) (32)

to l= kb ——,. This approximation of the Coulomb
eGects is similar both to the method of Bethe" in
proton-proton scattering (based on the ~KB ap-
proximation) and to the Blair model. " Furthermore,
there is evidence" that the Durand-Chiu-Sopkovitch
approximation gives a good account of direct reaction
amplitudes in the partial-wave representation, and
there is no reason to believe that the impact-parameter
representation will invalidate it. Application of ex-
pression (28) to analysis of several reactions is cur-
rently underway, and the results will be reported
elsewhere.

Finally, the Hankel-transform approach can easily
be used to represent backward-peaked reaction mechan-
isms. We would expect, by analogy with the partial-
wave representation of a backward-peaked process,
that the Hankel transform, with respect to the variable

"Reference 3, p. 265.
"Reference 3, p. 330,
2' H. A. Bethe, Ann. Phys. (¹Y.) 3, 190 (1958).
22 J. S. Blair, Phys. Rev. 95, 1218 (1954)."R. Aaron and P. E. Shanley, Ann. Phys. (N.Y.) 44, 363

(1967).

Q=
i
Nk/d+nk'/C ).

With this slight modification, all the results of this
paper can be applied directly to the phenomenological
analysis of backward-peaked graphs.

Many of the methods of this paper have appeared
earlier in the literature, particularly in high-energy
applications. '4 ' To my knowledge, no analogous
discussion of second-order processes has been given
previously. In particular, I believe the comparison of
erst- and second-order angular distributions and the
discussion of threshold effects in the box graph (as a
range phenomenon) are new. In view of the impos-
sibility of searching the entire, vast literature on the
diGraction model, I apologize in advance to anyone
whose work I may have inadvertently duplicated and
to which I have not referred.
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A form of Feynman parameterization" can be used
to evaluate the integral in Eq. (20). The identity

c = ds exp —cQ
0

(A1)

is used to elevate the three energy denominators into
exponentials, transforming the integral into the form

dl de dm d'E"
0 0

Xexp/ —n'I —6'v —P'w —E"(u+ w+ w)

+2K" (pl+ p'w) —p'I —p "wj. (A2)

By completing the square in the variable K" and
transforming the origin in this variable, the E"integral

~ W. ¹ Cottingham and R. F. Peierls, Phys. Rev. 13', B147
(1965).

~ A. Dar and W. Yobocman, Phys. Rev. Letters 12, 511 (1964) .
"A. Dar, M. Kugler, Y. Dothan, and S. Nussinov, Phys. Rev.

Letters 12, 82 (1964).
~~ A. Dar, Phys. Letters 7', 339 (1963).

K. Gottfried and J. D. Jackson, Nuovo Cimento 34, 735
(1964).

APPENDIX: EVALUATION OF THE BOX GRAPH
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may be performed, giving us

J=xsj~ dl dv dm I e zv

XexpL(pu+p'w) '/(u+v+w) —(n'+ p') u —(p'+ p")w

—LOS (A3)

We now scale u and m with respect to v: I—+vg, zv—+m.
Thus, after integrating with respect to e, we have

du dw I
nsus+P'w'+ (n'+P'+Q') wu

immediately reduces I to the form

&+5(p+e+r)
dx Lxs+1—ss(ps+os+rs —por)$ ', (A6)

which is easily integrated to give Eq. (22).
Moreover, Eq. (A4) is easily put into the form of

Eq. (25) by first, changing variables

u—+6/nu, w~h/pv,
which gives

0 0

+ ( syps+g2) u+ (ps+ p&2+g2) w++21—3/2 (A4) ~ v
I (np) /~3

0 0

Scaling once more with respect to n& and p4, and de-
fining p, o, and r as in Eqs. (23), we find J= srrrsI/nPA, -
where

du dW (u'+W'+pu+oW+ruW+1) 312.

&&v '"fp'(»)+O'I "' (A7)

where ps(u, v) is as given in Eq. (26); and then sub-
stituting the expression"

db bus(bQ) exp( —bp)/p, = (p'+Q') "2 (AS)

"Reference 12, p. 29.

(A5)
The integral with resPect to (say) w can immediately into (A7)
be performed, and the transformation

u= —lp+-'I:~/(&+l ) —(&+l ) (&—~p')/*j
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Threshold Electrodisintegration of the Deuteron*

G. RrCCO, t T. E. DRAKE, t L. KATZ, AND H. s. CAPI.AN

Saskatchewan Accelerator Laboratory, Saskatoon, Canada

(Received 1 April 1969)

The electrodisintegration of the deuteron near threshold has been investigated by inelastic electron scat-
tering at, momentum transfers q=0.35 F ' and g=0.66 F ' and scattering angles 8=125', 140', and 155,
The longitudinal and transverse matrix elements to the final So and 3Sl states have been compared with the
Jankus-Durand theory using repulsive-core wave functions. The repulsive-core parameter, corresponding to
a radius of about 0.2 F, has been adjusted to fit the elastic deuteron form factors up to g =6 I" '. The com-
puted inelastic cross sections give a statisfactory description of the existing data in the whole momentum-
transfer range experimentally investigated: (0.35 F '(g(3 F '),

INTRODUCTlOÃ

"EAR the electrodisintegration threshold, the in-

elastic electron scattering cross section from the
deuteron dso/dQdE is enhanced by a strong inter-
action between the neutron and the proton in the
final 'So and 'S~ partial waves. This final-state inter-
action has been investigated theoretically by Jankus'
and Durand' using a nonrelativistic potentia1 model,
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Canada.
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f. Now at the Kelvin Laboratory, University of Glasgow,
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' V. Z. Jankus, Phys. Rev. 102, 1586 {1956).
2 L. Durand, Phys. Rev. 123, 1393 (1961).

and by Bosco' using the dispersive approach. Both
of these methods neglect two-body exchange currents
and in the Jankus-Durand method our knowledge of
the nucleon-nucleon potential is still inadequate, espe-
cia11y in the repulsive-core region. The nucleon-nucleon
scattering data from energies 0.5 to 450 MeV, fitted
phenomenologically with energy-dependent phase shifts
using separate 'Ss-wave phase shifts for the 23-p and
p-p systems, suggest some degree of charge depend-
ence of the two-nucleon force.4 Yet the attempts to
fit the data with an energy-independent potential

' B.Bosco, Nuovo Cimento 23, 1028 {1961).
4 M. H. McGregor, R. A. Amdt, and R. M. Wright, University

of California Radiation Laboratory Report No. UCRL 70075,
part X, 1968 (unpublished).


