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Faddeev Treatment of sLi with a Separable Potential
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The nucleus 'Li, together with its first excited state ~Li~, is treated as a three-body problem consisting of
an n particle, a proton, and a neutron, interacting through separable potentials in pairs. The N-N potential
includes a tensor force in addition to a central (8-wave) term of the Yamaguchi type. The p-wave part of
the n-N potential is parametrized in terms of the sum of a central and. a small spin-orbit term which fits
the experimental Ps&2 and P&1&a-N phase shifts quite accurately. The smallness of the spin-orbit part justifies
its omission from the full three-body equations. The binding energies and the wave functions for the ground
(I+=1+) and excited (Jo=0+) states of 'Li are calculated by solving the coupled. Faddeev equations
numerically. The calculated binding energy for the 1+ state is a little higher than, and that for the 0+ state
a little lower than, the corresponding experimental values, corrected for Coulomb ef'fects.

1. INTRODUCTION

~ 4HE unusually stable structure of the n particle
has led to many investigations of light nuclei in

which this object is taken as a single structureless
entity. 'Li and 'He are particularly well suited for
such investigations, since their structure consists of
only two nucleons in addition to the u particle. Indeed,
quite encouraging results have been obtained for the
energy levels of Li in a shell-model spirit, ' with I;S
coupling configurations for the two nucleons outside
the n particle which is assumed to be an inert core.
An apparently more "dynamical" model which re-
garded this nucleus as an n-d system' did not, how-
ever, work so well, since it gave a wrong sign for
the quadrupole moment.

The recent advances in three-body techniques
through the Faddeev formalisma have given rise to
a renewed interest in the problem of 'Li-like nuclei
looked upon as three-body structures. A variational
treatment of 'Li as a three-body problem is already
available in the work of Wackman and Austern, and
in the more recent work of Basella et a/. 4 The em-
phasis in the I'addeev technique is, however, on an
exact rather than a variational solution of the problem,
the price for "exactness" being a truncation of the
two-body reaction matrix by one or more pole terms
(always a finite number). However, this approxima-
tion can be defended on theoretical grounds. '

A related approach which leads to the same equa-
tions, and which is particularly convenient for bound-
state problems, is provided through a direct param-
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Baroda, Baroda-2, India.' V. L. Narsiroham et al. , Nucl. Phys. 33, 529 (1962) .
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etrization of the input potentials in a separable form,
and their use in conjunction with a three-body Schro-
dinger equation, ' Such an approach has been exten-
sively used in connection with the three-nucleon
problem involving both 'H and e-8 states, and ap-
pears equally suited to the Li problem. Similar meth-
ods have also been used for light hypernuclei like
q'H, ' q'Be, ' and qgHe" all of which involve unequal
mass particles. An important diGerence between Li
and these hypernuclei is in the nature of the con-
figurations. While the A particle is not prevented by
the Pauli principle from having mainly 5-wave inter-
actions with the other entities in these hypernuclei,
the nucleons in 'Li are constrained by the same prin-
ciple to interact with the ~ particle mainly through
the I' wave. This renders the system more delicate;
and hence numerically more difficult. Nevertheless,
the feasibility of such a program was recognized
several years ago' and a separable form of the n-E
interaction was devised for the purpose. " In the
meantime, Hebach et at." have given a similar treat-
ment of 'He using a diferent form of the o.-Ã inter-
action. The present treatment is, however, designed
to cover both sLi and 'Li* (the latter state being the
counterpart of the ground state of 'He, apart from
Coulomb effects). We also take the opportunity to
clarify the role of the (P-wave) n-1V interaction as
well as to point out certain diGerences of our results
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TABLE I. The parameters for the triplet potential are as
given by Yamaguchi (Ref. 14) and by Naqvi (Ref. 15). For
notation see the text.

Fol ce e (F-') Zg(F-') v~(F ')

eff

(C+T') r

(c+r)

1.4487

1.3338

1.3433

0.414

0.249

0.289

1.784 1.5682

0.9519 1.3433

from those of Hebach, Hennenberg, and Kummel
(HHK). 14 In Sec. 2 we discuss the input forces for
the problem, and in Sec. 3 we outline the essential
steps for the three-body treatment of 'Li. Section 4
gives the numerical results, a comparison with those
of HHK, and a discussion of the three-body wave
function.

2. INPUT FORCES

A.,=0.291 F ', P,=1.4487 F ',

and 3I is the nucleon mass. It may be noted that
in this potential the short-range repulsion is not in-
cluded, since it contributes not more than 10—15% in
the case of a three-nucleon system'~ and would make
computations exceedingly difficult. For the triplet case
the force is

(2.3)
where

g(ii) =C(V)+ (1/+8) &(V) ~»(i),

+12(g) 3&1'go2'Q et'os'

C(V) = (V'+P1') ' T(g) = —fg'(q'+V') '.
(2 4)

'4 We note in this connection that the validity of the three-
body approach to 'Li at positive energies has been demonstrated
by the work of P. E. Shanley )Phys. Rev. Letters 21, 627 (1968)g
who has obtained rather good 6ts to the data on n-d scattering."Y.Yamaguchi, Phys. Rev. 95, 1628 (1954);95, 1635 (1954).

1 J. Naqvi, Nucl. Phys. 36, 578 (1962).
'7 G. L. Schrenk and A. N. Mitra, Phys. Rev. Letters 19, 530

(1967) .

The main ingredients for the three-body treatment
of 'Li are the n-X and X-E interactions. For the
ground state of Li (1+), the releva, nt X-X interaction
is the triplet one, while for the excited state sLi* (0+)
the corresponding force acts in the singlet ('Ss) state.
These forces were given earlier by Yamaguchi, " and
were then modified by Naqvi" to give a detailed fit
to the E-E system. For the case of the singlet state,
we use the attractive 5-term only, viz. ,

M(il I t,
I
ii')= —)„(~s+p,s)-1(p+p,s)-1,

where

The values of the various constants are given in
Table I. Cy'" denotes the effective pure central force
given by Vamaguchi. i5 It is knowr) from the study
of the three-nucleon system that this force is over
attractive. (C+T)y is the complete Yamaguchi po-
tential, whereas (C+T)rr is the Naqvi potential,
which is an incomplete one in the sense that the
original potential also contained a short-range spin-
orbit term, which in our treatment is dropped for

simplicity.
As for the a-X force, it consists of an S-wave part

and a P-wave part. The 5-wave part which is rele-
vant mainly for the o.-X scattering problem is, how-

ever, prevented by the Pauli principle from entering
into the 'I.i calculations, and will henceforth be ne-
glected. '8 The E-wave part was shown in Ref. 12 to
consist of two terms: (1) a dominant central term
and (ii) a small spin-orbit term (of positive sign),
which together fitted the Pi~2 and I'3~2 phase shifts
of Miller and Phillips. " In their treatment of 'He,
however, HHK have considered only an effective
central P-wave force tuned exclusively to the P3~2

data, " thus ignoring the I'&~2 phase shifts. HHK jus-
tified this parametrization on the ground that in the
energy region important for 'He, the partial cross
sections for I'~~~~ are smaller than the I'3~2 cross sec-
tions. While this is true, we believe that the larger
I'3~2 phase shifts should be obtained through an at-
tractive spin-orbit term in conjunction with a central
term, as in Ref. 12, rather than through a single
eGective term as in HHK. This is particularly im-

portant in view of the recognition that the effectiveness
of a noncentral force (like spin-orbit) in three-body
binding is much more limited than that of the central
force, in much the same way as a central+tensor
force in the triplet X-X state gives less binding for
'H than does an effective central force. At this stage,
we oddly incorporate the central part of the P-wave
term in the three-body Schrodinger equation, and the
spin-orbit part is left to be considered at most per-
turbatively at a later stage.

'8It might be thought at 6rst sight that the neglect of the
(repulsive) S-wave force between o. and X is questionable, since
it is really the Pauli principle that brings it about in the first place.
The important point however is to decide on systems where this
force plays an important role, and those +here it should be ne-
glected. Certainly the S-wave cx-ZV force plays a very important
role in ~-E' scattering where it makes an important contribution
to the cross section. On the other hand, the Pauli principle also
tells us at the same time that in a bound system like 'Li or 'He,
the n and/or p must reside in a P shel/ with respect to the core
(i.e., the ce particle), so that the S-wave part of the ~-E' force does
not, so to say, get a chance to play its role in such a system. While
a completely satisfactory explanation of this apparent anomaly
must depend on a six-body treatment of 'Li or 'He, it looks physi-
cally plausible enough that the neglect of the S-wave n-X force in
the Li calculation must really also be justified by the Pauli
principle.

1s P. D. Miller and G. C. Phillips, Phys. Rev. 112, 2043 (1958);
C. L. Chritchfield and D. C. Dodder, ibid. 7'6, 602 (1949).' W. Pearce and P. Swan, Nucl. Phys. '78, 433 (1966).
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As in Ref. 12, we tak.e the I'-wave n-E interaction
(still a matrix in spin space) of the form

—2M, &q I e. 11 I
q')=4~).e, (q)e, (q')

&& & V -*(q) f1+ (L lr/~') I Vl-(q'), (2 5)

TABLE II. The comparison of the binding energies in MeV
of 'Li and Li~ with different potentials, calculated with our
parameters and those of HHK. The Coulomb-corrected binding

energy Z,»1 (1+)=3.7+ (0.83) =4.53 MeV, and Ze»1(0+) =
O.i3+ (0.83) =0.96 MeV.

where

with

A. =0.0884 F ',

»(q) =q(q'+0-') '

P =0.9727 F ',

(2.6)

~'= 21.6. (2.7)

State
~N-N

potential potential

Ours
HHK

(MeV)

6.0ii
8.7

3IIz is the reduced mass of the cx-E system, given by

M12 MM /——(M+M ) =11M

with a= M/M. , 21
= (1+a)—'. (2.8)

(C+T) y

(C+r)N

Eqs. (2.1) and (2.2)

Ours
Ours

Ours
HHK

4.974
4.560

0.2
2. 1

3. THREE-BODY EQUATIONS

We consider the nucleus in its c.m. system and
choose the momenta of the nucleons as P~ and P2,
so that the momentum of the n particle P3 is
—(Pl+P2) = —P. The relative momenta qle and q22

for the 0.-Ã pair are

q12,22 IM P1,2+M(P1+P2) }/(M+M )
=P1,2+a+'2, 1. (3.1)

The potentials in the momentum space of Pq and P~
are normalized according to

&P1P2 I U. „ I
Pl'P2')

=(q» I"-.I
q12')~(P1+P2 Pl P2) (32)

with

q12 2 (Pl P2) p

&P1P2
I

V--~ I
Pl'P2'& = &q» I

e--~
I

q»'&3(P2 —P2')

(3.3)

(3.4)

where the reduced elements in Eqs. (3.2) and (3.4)
are given by Eqs. (2.3)—(2.4) and (2.5)—(2.6) re-

This gives an effective strength parameter ~ ~3 for the
I'3/2 state as & —,'=0.0925 F '. These values may be
compared with the corresponding parameters of HHK,
normalized to the expression (2.5)

)1.—,'=0.0773 F ', P =0.8 F '. (2.9)

To estimate the strength of the P-wave force of HHK,
let us compare the volume strength parameter which
is related to )1„/p. This quantity turns out to be
0.0967 for HHK parameters, whereas our parameters
yields the value 0.0909. Even with our effective-
strength parameter A. —,', this value is 0.095I. The
E-wave force in the HHK calculation appears, there-
fore, to be somewhat over attractive. In Sec. 3 we
give the essential formulation of the three-body prob-
lem for the ground state (1+).

I'.b = n22/M. —— (3.7)

Substitution of the factorable shapes of the poten-
tials in (3.5) leads, in the sta,ndard manner, ' to the
following expressions for the wave function in terms
of two spectator functions g and F describing, re-
spectively, the associations I n, (X1V)) and L"(nX), Ãg

q (Ply P2) DE f g(q12)g(P) +e (qls) qls'P2F (F2)

+e(q'2) q» P1F(Fl) } I X-.'), (3 8)
where

e(q) =q '»(q) (3.10)

is the spin triplet wave function. For con-
venience, we have explicitly exhibited in (3.8) the vec-
tor structures of the n-X wave function Ds 'qlee(qle)
and the I (nE), Ã$ specta, tor wave function P2F(F2)
in which F(F2) is merely a scalar function of its
argument. We have taken only the central part of
the 0.-1V interaction as mentioned in Sec. 2. The in-

tegral equations for the spectator functions for the
ground state are

f)1 '—1 (P) }G(P)= (—2n) f &'qF(q)~(qp), (3»)
f) '—h (P) }If(P)=(—2n) f d'qF(q)&(qp), (3.»)

and

af)=' —1-(P) }P'F(P)= f d'qF(q)&(qp), (3.»)

spectively. The three-particle Schrodinger equation
now reads

D~%'(P1P2) = —M (V ~+ U „+V ~) 4(P1P2), (3.5)

where

Ds = ,'F12+ 'P22+-'aP-22 M-E—
= (221) '(Fl'+F2')+aP1 P2+nr' (3.6)

with



M. S. SHAH AND A. N. MITRA

&(qp) = &(pq)

n(p+~Vq)&(q+&np) {&YpV+~n(p'+V') p q+(p. q)'}
{(p'+q')+2gnz'+2aqp , q}

+ti—t I d'x{X—'—h, (x) }
—'{A(px)A(qx)+B(px)B(qx) } (3.14)

A(xy) = C(x+-', y) e(y+rix) {tax'+x y}
{x'+ (2') 'y'+nr'+x y}.

T(x+-', y) P&(u„+;, y) v(y+r)x) {tax'+x y}B xy {x'+(2q)-'y'+nr'+x y}
where u„+;,——(x+-', y)/~ x+-', y ~,

& (*)= I d'y{(-'(y)+T'(y) }/{y'+-'(1+2~)~'+~ '}

h (x) = I d'ynP(y)/{y'+ (1+2a)ti'x'+2tinr'}.

(3.15)

(3.16)

(3.17)

(3.18)

j', (p) is the Legendre polynomial of order two. For
the excited state 0+, the same formulation is utilized
with t=o and X„P„and

~ x~,'), replaced by X„P.,
and

~ x~,s), respectively.

The solution of Eqs. (3.11)—(3.13) for the eigen-
value problem of determining the binding energy pa-
rameter n~' proceeds on the familiar lines of erst
asslmieg an input value of this parameter and cal-
culating the quantity A by the standard determinantal
method. This "three-body" determination of X should,
of course, match the "two-body" value (2.7) or (2.9),
as the case may be. Hence, the input value of O.y' is
adjusted, until the matching is sufficiently accurate.
With our parameters (2.7) for V ~ as well as those
of HHK (2.9), we have used this method to evaluate
the binding energy of (1+) state for the E Xpoten--
tial as given in Table I and the binding energy of
(0+) state with the pa, rameters (2.2). The results are
given in Table II which also includes the Coulomb-
corrected experimental values. " Table II bears out
the fact that the effective central potential Cp"' is
over attractive for the three-body system. The com-
plete Yamaguchi potential including central as well as
tensor force does give a better result. The very good
agreement for the binding energy with Naqvi's set
need not be taken too seriously as it is an incomplete
force, though one must recognize that the neglected
part, being a short-range noncentral force, may well
be unimportant. Thus for the ground. state (1+) the
binding energy is somewhat larger compared to the
(Coulomb-corrected) experimental one. Table II also
bears out our earlier assertion of an over-attractive
(I',&,) potentia. l used by HHK which seems to give
too large a binding energy with Cy"' for the ground

21 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78, 1
(1966).

state. For the 'I.i* state, we get a lower value for
the binding energy, although the experimental number
itself is quite small in this case. Our estimate of the
same quantity with HHK parameters appears ap-
preciably larger. On the other hand, the value quoted
by HHK, obtained with the same parameters, is only
1.06~MeV, compared to our estimate of 2.1 MeV. Ke
also note the decisive role of the S-X tensor force
which was not considered earlier.

The eigenvectors of Eqs. (3.11)—(3.13), or the spec-
tator functions in the ground-state wave function have

0.00 2

- 0.00 i

0.00

a. o—

250 750—P ( ev/, M)-

Fro. 1. Spectator functions P P(P), G(P), and II(P) are
plotted against momentum P for the parameter a+=0.12~, i.e., Eq=4.947 MeV. The right-hand scale and curves refer
to the magniled plot of the spectator functions for larger values
of P.
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also been evaluated, and are shown. in Fig. 1. It may
be noted that G(P) has a negative sign for low values
of P, and. eventually becomes positive (small) for
moderately large momenta. Its dominant part is es-
sentially negative. This merely reQects the fact that
in the "polarization" n-EE of the 'Li system which
G(P) represents, one has an effective repulsion. This
repulsion is, of course, more than oGset by the at-
traction in the other two pairs E-OtS as represented
by the spectator function PE(P), which is clearly
seen to be positive. It is also worth noticing that
the spectator functions G(P) and E?(P) corresponding
to the central part and tensor part, respectively, have
opposite phases in most of momentum space, in con-
trast with their behavior in the three-nucleon system. "
This is possibly due to the other pairs's being in the
E state in the case of 'Li. The important fact about
the spectator function PF(P), which more or less
behaves like the form factors er(P) of C(P), is that
it has sizable components for momenta above 300
MeV/c, whereas the harmonic oscillator wave func-
tion fitted to the gross structure of 'Li goes prac-
tically to zero for large momenta. This feature of the
"exact" wave function obtained with reasonably short-
range potentials tuned to the O.-E scattering data
should have important consequences in other areas
of investigations requiring fairly accurate Li wave
function. One such calculation on the pion capture
in 'Li is vow in progress. "

The over-all normalization

g jf d'P, d'Ps
~
@(P&Ps) ~'=1

tells directly about the probability of the D state
contained in the ground-state wave function. This
probability is now no more a free parameter to be
fitted to the observed data. It is a dynamical output,
once the spectator functions are calculated by 6xing
the potential. As we are working in the total c.m.
frame, it should be clarified that the D state which
we are talking about is of the E-E system explicitly
coming from the tensor force in the E-E system and
not from the P-wave structure of the n-E system.

» li. S. ]lhakar, ph.D. thesis, Delhi University, 1965 (unpub-
.lished) .» M. S. Shah (to be published).

This D-state probability turns out to be
& 44'7o for the (C+ &) r and (C+ T) N parameters„
respectively. This value of D-state probability does
not ht in with the quadrupole moment of 'Li, which
is negative. However, a fuller comparison of the
quadrupole moment would require a more careful
treatment of the L o term in the V ~ potential
which is known to be necessary to give the negative
sign for the quadrupole moment. To incorporate the
eGect of L r term in the binding energy, we have
calculated it in a perturbative manner. In the first-
order perturbation, this correction is zero for the ex-
cited state (0+). For the ground state it is again zero
for the wave function obtained with the Ci"" poten-
tial. The correction is proportional to the D state,
and hence we expect it to be very small. The first-
order correction to the binding energy is only 5 keV.
Thus, we expect only a very small value of this con-
tribution to the binding energy even in a more ade-
quate treatment. " We believe that this accounts
largely for the diGerence of our results from those of
HHK who parametrize the L- o term through an
effective (Pals) force and overestimate the three-body
attraction. A second (but smaller) reason for the dif-
ference may be that HHK have fitted. the o.-Ã reso-
nance to the 0.95 MeV (c.m. ) values of Pierce a,nd
Swan, se while we use the value 2.35 MeV (c.m. ) given
by Miller and Phillips. "

So far we have not been able to test the effects
of short, -range repulsion in the S-E potential, since
this cannot be taken into account perturbatively.
There also remains the question of the extent to
which the composite structure of the 0, particle could,
possibly aGect the calculations, though one expects
such effects to be extremely small. In conclusion, the
results of our calculations show that this three-body
model of 'Li works satisfactorily for the calculation
of binding energies.
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24 However the effect of the L 0 term on the 'Li wave function
could be more important; and hence also on its quadrupole mo-
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