that of Myers and Swiatecki means that if the difference between curves (3) and (4) is added to the fission barrier of Ref. 5, the change in lifetime is small. The prediction of 2×10^{19} yr there will become 2×10^{21} yr. Since most of this change comes from the strongly deformed part of the fission barrier, the improvements mentioned above can be expected to shorten this lifetime. For $_{114}X^{298}$ with its short α -particle decay lifetime, this may not be important, but for $_{110}X^{294}$ where the fission and α -particle decay lifetimes are close, the fission lifetime may determine the total lifetime.

Shell-effect corrections can be calculated self-

consistently for our statistical energy surface, following Strutinsky's approach.¹³ Shell-model potentials can be obtained directly from the deformed densities¹⁴ derived here. This way we shall avoid the usual uncertainties in extrapolating phenomenological shell-model potentials and can make more reliable predictions of the variation of potential with deformation. A study of this program is presently being made.

¹³ V. M. Strutinsky, Nucl. Phys. A95, 420 (1967); A122, 1 (1968). ¹⁴ K. A. Brueckner, Wing-fai Lin, and R. J. Lombard, Phys. Rev. **181**, 1506 (1969).

PHYSICAL REVIEW C

VOLUME 1, NUMBER 1

JANUARY 1970

Decays of Tm^{170} and Tm^{171} : L_2 and L_3 Subshell-Fluorescence Yields, Coster-Kronig Transition Probabilities, and K-Shell Conversion Coefficients in Yb[†]

S. MOHAN, H. U. FREUND, AND R. W. FINK

School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

AND

P. VENUGOPALA RAO Department of Physics, Emory University, Atlanta, Georgia (Received 1 August 1969)

High-resolution Ge(Li) and Si(Li) x-ray detectors [404- and 290-eV full width at half-maximum (FWHM) at 6.4 keV, respectively] were employed to study the singles and coincidence spectra of x rays and γ rays from the decays of Tm¹⁷⁰ and Tm¹⁷¹. Measurements of the rates of L_{α} , L_{β} , and L_{γ} x-ray emission in coincidence with $K_{\alpha 1}$ and $K_{\alpha 2}$ x rays yielded the following values for L_2 and L_3 subshell-fluorescence yields $(\omega_2, \omega_3), L_2-L_3X$ Coster-Kronig transition probability (f_{23}) , and relative L x-ray intensity ratios (s_2, s_3) : $\omega_2 = 0.182 \pm 0.011, \omega_3 = 0.183 \pm 0.011, f_{23} = 0.170 \pm 0.009, s_2 = 0.192 \pm 0.010, \text{ and } s_3 = 0.165 \pm 0.009$. The Kconversion coefficient of the 84.3-keV E2 transition in Yb¹⁷⁰ is found to be 1.39 ± 0.04 by the measurement of the intensity ratio for the K-x-ray and γ transitions (XPG method). The K-conversion coefficient of the 66.7-keV transition in Yb¹⁷¹ is found to be 7.45 ± 0.36 , which leads to a value of 0.34 for the mixing ratio of E2/M1. The orbital-electron-capture branchings of Tm¹⁷⁰ to the first excited state (78.6 keV) and to the ground state in Er¹⁷⁰ are determined to be 0.04 and 0.10%, respectively.

I. INTRODUCTION

THE present investigation was carried out par-L ticularly to exploit the new high-resolution techniques developed during recent years in low-energy photon spectrometry. Detectors of Si(Li) and Ge(Li) with sufficient resolution to separate clearly the fullenergy peaks above $Z \approx 65$ of the $K_{\alpha 1}$, $K_{\alpha 2}$, $K_{\beta 1}'$, and $K_{\beta 2}$ components of K x rays and the L_l , L_{α} , L_{β} , and L_{γ} components of the $L \ge rays$ of interest are available. Coincidence methods¹ are employed to measure the L_2 and L_3 subshell-fluorescence yields and the L_2-L_3X Coster-Kronig transition probability in Yb from decay of Tm¹⁷⁰ and Tm¹⁷¹. No prior measurements on Yb exist

in which a radioactive source of L subshell vacancies is used. Jopson *et al.*² measured L_2 and L_3 subshell-fluorescence yields by coincidence methods with NaI(Tl) detection and Yb foil targets in which K and L ionization was produced by an incident beam of γ rays from a Co⁵⁷ source.

The K-shell conversion coefficient of the 84.3-keV E2 transition in Yb¹⁷⁰ following the β decay of Tm¹⁷⁰ has been of considerable interest and has been the subject of many investigations since 1952. This transition was one of the first leading to a suspicion at one time that anomalies existed in experimental E2 conversion coefficients in the deformed region. Essentially three different techniques were employed to measure α_{κ} : (1) Measurement of the intensity ratio of the K-x-ray

^{*} Work supported in part by the U.S. Atomic Energy Com-

¹ P. Venugopala Rao, R. E. Wood, J. M. Palms, and R. W. Fink, Phys. Rev. 178, 1997 (1969).

² R. C. Jopson, J. M. Khan, Hans Mark, C. D. Swift, and M. A. Williamson, Phys. Rev. **133**, A381 (1964).

Author	Ref.	Year	I_{Kx}/I_{γ}	$\omega_{\mathbf{K}}$ assumed	α_{K}	Correction for EC applied	I_{Kx}/I_{γ} (recalc) ^a	α_K (recalc) ^a
Graham et al.	3	1952	1.47	0.92	1.60±0.02	no	1.433	1.53
McGowan	4	1952			1.5 ± 0.2			
Liden and Starfelt	5	1954			1.56 ± 0.15			
McGowan and Stelson	6	1957	1.535	0.930	1.65 ± 0.12	no	1.497	1.60
Houtermanns	7	1957	1.246	0.930	$1.34{\pm}0.07$	no	1.215	1.30
Bisi <i>et al</i> .	8	1956	1.571	0.93	1.69 ± 0.02	no	1.532	1.64
			1.497	0.93-	1.61	not necessary	1.499	1.60
Hooten	9	1964	1.357	0.93	$1.46{\pm}0.05$	no	1.321	1.41
Thosar	10	1964	1.212	0.93	1.31	not necessary	1.213	1.29
Croft et al.	11	1965	1.555	0.937	$1.66 {\pm} 0.11$	yes, 6%	1.614	1.72
			1.424	0.937	1.52 ± 0.007	yes, 6%	1.478	1.58
Dingus et al.	12	1966	1.377	0.937	1.47 ± 0.05	yes, 3.3%	1.389	1.48
Jansen et al.	13	1966	1.237	0.937	1.32 ± 0.005	yes, 3.4%	1.247	1.33
Nelson and Hatch	14	1969	1.340	0.937	1.43 ± 0.04	not necessary	1.340	1.43
Present work		1969		0.937		not necessary	1.304 ± 0.039	1.39±0.04

TABLE I. K-shell conversion coefficient for the 84.3-keV E2 transition in Yb¹⁷⁰ as measured by the XPG method.

^a The values are corrected by using the correction for Er K x rays from the present work and a value of 0.937 for ω_{K} .

transition to the γ transition (XPG),³⁻¹⁴ (2) internalconversion-external-conversion method (IEC).¹⁵⁻¹⁷ and (3) Coulomb-excitation and lifetime measurements.^{18,19} Almost all measurements of method 1 employed NaI(Tl) spectrometers, even the best of which have not clearly resolved the 84.3-keV γ from the Yb K x rays. In addition, the Er K x rays from the EC decay of Tm^{170} and the unresolved iodine K-x-ray escape peaks complicated the analysis. Tables I and II present a survey of the existing measurements of the α_K of the 84.3-keV transition in Yb170. The theoretical esti-

- ³ R. L. Graham, J. L. Wolfson, and R. E. Bell, Can. J. Phys. 30, 459 (1952).
- ⁴ F. K. McGowan, Phys. Rev. 85, 142 (1952)
- ⁵ K. Liden and N. Starfelt, Arkiv Fysik 7, 109 (1954).
 ⁶ F. K. McGowan and P. H. Stelson, Phys. Rev. 107, 1674 (1957)
- ⁷ H. Houtermans, Z. Physik 149, 215 (1957).
- ⁸ A. Bisi, E. Germagnoli, and L. Zappa, Nuovo Cimento 3, 1007 (1956).
- ⁹ B. W. Hooten, Nucl. Phys. 59, 341 (1964).
- ¹⁰ B. V. Thosar, M. C. Joshi, R. P. Sharma, and K. G. Prasad, Nucl. Phys. **50**, 305 (1964).
- ¹¹ W. L. Croft, B. G. Petterson, and J. H. Hamilton, Nucl. Phys. **70**, 273 (1965).
- ¹² R. S. Dingus, W. L. Talbert, Jr., and M. G. Stewart, Nucl. Phys. 83, 545 (1966).
- J. F. W. Jansen and A. H. Wapstra, in Internal Conversion Processes, edited by J. H. Hamilton (Academic Press Inc., New
- York, 1966), p. 237. ¹⁴ G. C. Nelson and E. N. Hatch, Nucl. Phys. A127, 560 (1969).
- ¹⁵ J. F. W. Jansen, S. Hultberg, P. F. A. Goudsmit, and A. H. Wapstra, Nucl. Phys. 38, 121 (1962). ¹⁶ P. Erman and S. Hultberg, in *Internal Conversion Processes*,
- ¹⁰ P. Elfman and S. Hulberg, in *Internal Conversion Processes*, edited by J. M. Hamilton (Academic Press Inc., New York, 1966), p. 249.
 ¹⁷ E. N. Hatch, G. W. Eakins, G. C. Nelson, and R. E. McAdams, in *Internal Conversion Processes*, edited by J. M. Hamilton (Academic Press Inc., New York, 1966), p. 183.
 ¹⁸ E. M. Bernstein, Phys. Rev. Letters 8, 100 (1962).
 ¹⁹ D. B. Fossan and B. Herskind, Phys. Letters 2, 155 (1962).

mates²⁰⁻²³ of α_K show a spread of 10%, thus making it difficult to discuss meaningfully the deviations from theory of existing experimental values.

In the case of the 66.7-keV transition in Yb¹⁷¹ fed from Tm¹⁷¹, very little effort has been made to obtain accurate information on $\alpha_{\mathcal{K}}$. The transition is of mixed E2-M1 type $(\frac{3}{2} \rightarrow \frac{1}{2})$ and an accurate measurement of α_K is of value in estimating the E2/M1 mixing ratio. Hansen²⁴ measured a value of 7.4 ± 1.0 for α_K from the relative intensities of Yb K x rays and 66.7-keV γ . Dingus *et al.*¹² measured a value of 6.9 ± 1.0 .

A detailed investigation of the EC branching of Tm¹⁷⁰ has not been made. Graham et al.³ set an upper limit of 0.3% for K capture and 0.01% for β^+ emission. Day²⁵ used a bent-crystal spectrometer to measure the relative intensities of Er K x rays and 84.3-keV γ rays and obtained an estimate of K-capture branching of 0.15%. Recently, Nelson and Hatch¹⁴ estimated the K-capture branching to be $0.19 \pm 0.04\%$. These estimates were based on the assumption that all the EC leads to the ground state of Er¹⁷⁰. The level structure of the even-even nucleus Er¹⁷⁰ is partially known from Coulomb excitation,²⁶ and the first excited state is at about 79 keV. Since $Q_{\rm EC} \approx 500$ keV ²⁷ feeding of both

²³ M. E. Rose, Internal Conversion Coefficients (North-Holland Publishing Co., Amsterdam, 1958).

- ²⁵ P. P. Day, Phys. Rev. 102, 1572 (1956).
 ²⁶ Nuclear Data Sheets, Nuclear Data Group, Oak Ridge National Laboratory, Oak Ridge, Tenn. (unpublished).
 ²⁷ J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl.
- Phys. 67, 1 (1965).

²⁰ R. S. Hager and E. C. Seltzer, Nucl. Data A4, 1 (1968).

 ²¹ C. P. Bhalla, Phys. Rev. 157, 1136 (1967).
 ²² L. A. Sliv and I. M. Band, in Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by K. Seigbahn (North-Holland Publishing Co., Amsterdam, 1965).

²⁴ P. G. Hansen, Danish Atomic Energy Commission Risö Report No. 92, 1964 (unpublished).

•	Authors	Ref.	Year	Method	ακ	
	Bernstein	18	1962	Coulomb excitation	1.52 ± 0.11	
	Fossan and Herskind	19	1962	Coulomb excitation	1.41 ± 0.11	
	Tansen et al.	15	1966	IEC	1.36 ± 0.10	
	Erman and Hultberg	16	1966	IEC	1.37 ± 0.07	
	Hatch	17	1966	Magnetic and bent-crystal spectrometers	$1.47 {\pm} 0.10$	
	Hager and Seltzer	20		Theory (pure E2)	1.42	
	Bhalla	21		Theory (pure E2)	1.36	
	Sliv and Band	22		Theory (pure E2)	1.36	
	Rose	23		Theory (pure E2)	1.33	

TABLE II. K-conversion coefficient of the 84.3-keV transition in Yb¹⁷⁰ from methods other than XPG and from theory.

the ground and first excited states by EC is possible. Hansen and Hellström²³ used a Si(Li) detector with a resolution of only 1.5-keV FWHM at 84 keV to study the singles photon spectrum from the decay of Tm¹⁷⁰. By unfolding the unresolved photopeaks of K_{α} and K_{β} x rays, they measured the intensity of Er K x rays and estimated the total EC branching to be 0.25%. They observed the γ transition in Er¹⁷⁰ at 78.7 keV.

II. EXPERIMENTAL

A. Source Preparation

Thin, uniform sources of radioactive Tm¹⁷⁰ and Tm¹⁷¹ were obtained by evaporating from dilute HCl solution the activity on a Plexiglas holder. The Tm¹⁷⁰ source was of high specific activity and of approximately $10 \,\mu g/cm^2$ thickness; the Tm¹⁷¹ source was carrier free.

B. Singles-Spectrum Studies

A Si(Li) x-ray detector having a resolution of 290eV FWHM at 6.4 keV was employed to study the singles K-x-ray and γ spectra of Tm¹⁷⁰. A typical spectrum is shown in Fig. 1. A detailed description of the detector and the determination of its photopeak efficiency are given elsewhere.²⁹ K x rays of Er from the EC decay of Tm^{170} are clearly separated from Yb K x rays. γ spectra from Tm¹⁷⁰ taken with a 16-cm³ coaxial Ge(Li) detector indicated the presence of γ rays with energies of 66.7 and 443 keV. These are attributed to the presence of Tm^{171} and Tm^{168} in trace amounts in the $\hat{T}m^{170}$ source. The latter contributes Er K x rays from its EC decay, and the former contributes Yb K x rays from conversion of the 66.7-keV transition in Yb¹⁷¹. These contributions were calculated from the known values of the ratio of the intensities of Er K x rays to 443-keV γ rays in Tm¹⁶⁸ decays,^{30–32} and from the ratio of intensities of Yb K x rays to the 66.7-keV γ in Tm¹⁷¹ decay measured in the present work. A trace of Bi207 also was identified but had no complicating influence on the present studies. No Tm K x rays were observed (Fig. 1), indicating that source thickness was sufficiently small that self-excitation of K x rays was negligible. The Ge(Li)-Ge(Li) coincidence system described below was used in a β - γ coincidence arrangement at close geometry to search for β -excited K x rays, which were negligible.

In Fig. 2 is shown the spectrum of Yb K x rays and the 66.7-keV γ from Tm¹⁷¹ decay. No disturbing im-

FIG. 1. The photon spectrum from Tm¹⁷⁰ decay taken with the Si(Li) detector in the region 50-85 keV (resolution 290-eV FWHM at 6.4 keV). A Plexiglas absorber of 3.2-mm thickness was used to stop β rays. The inset shows the revised decay scheme of Tm¹⁷⁰, based on the present work. Energies are in keV.

²⁸ H. H. Hansen and S. Hellström, Z. Physik **223**, 139 (1969).
²⁹ J. M. Palms, R. E. Wood, and P. Venugopala Rao (to be published).

³⁰ J. J. Reidy, E. G. Funk, and J. W. Mihelich, Phys. Rev. 133, B556 (1964).

³¹ P. F. Kenealy, E. G. Funk, and J. W. Mihelich, Nucl. Phys. A110, 561 (1968). ³² G. E. Keller, E. F. Zganjar, and J. J. Pinajian, Nucl. Phys.

^{129, 481 (1969).}

purities were found, and contamination from Tm¹⁷⁰ contributed less than 0.3% to the total intensity of Yb K x rays.

C. Coincidence Measurements

Two Ge(Li) x-ray spectrometers (8 mm diam \times 5 mm depth with 0.005-in.-thick Be window) were used at 180° to observe L_{α} , L_{β} , and L_{γ} x rays in coincidence with $K_{\alpha 1}$ or $K_{\alpha 2}$ x rays. The energy resolution was of the order of 404-eV FWHM at 6.4 keV. A complete description of the coincidence arrangement has been given previously.33 The determination of the efficiency of these detectors was discussed by Freund, Hansen, Karttunen, and Fink.³⁴ Yb L x rays in coincidence with $K_{\alpha 1}$ or $K_{\alpha 2}$ x rays were observed with Tm¹⁷⁰ and with Tm^{171} sources. Typical singles and coincidence L x-ray spectra are presented in Fig, 3. The L x-ray coincidence rates, corrected for the efficiency and solid angle of the detector and the attenuation due to materials between source and detector, are related to ω_3 , the L_3 subshellfluorescence yield; ω_2 , the L_2 subshell-fluorescence yield; f_{23} , the L_2 - L_3X Coster-Kronig transition probability; s_2 , the ratio of L_{γ} to $L_{\beta+\eta}$ x rays from the L_2 subshell; and s_3 , the ratio of L_β to $L_{\alpha+l}$ x rays from the L_3 subshell. The derivation of the necessary relationships and a detailed account of the basis of the coincidence method was given in Ref. 1.

Two complete sets of coincidence runs were made

FIG. 2. The photon spectrum from Tm^{171} decay taken with the Si(Li) detector in the region of 50–70 keV. The inset shows the decay scheme of Tm^{171} from the literature. Energies are in keV.

FIG. 3. L x-ray spectra from Tm^{171} decay taken with a Ge(Li) detector having resolution of 404-eV FWHM at 6.4 keV. Top: the singles spectrum, middle: $L \ge rays$ in coincidence with K_{a2} x rays, bottom: $L \ge rays$ in coincidence with $K_{\alpha 1} \ge rays$.

with each source and coincidence resolving times of 600 and 1200 nsec, respectively. The multichannel analyzer stored $K_{\alpha 1}$ -L and $K_{\alpha 2}$ -L coincidence spectra simultaneously, one in each half of the memory, the two coincidence units being run with equal resolving times. The coincidence efficiency was found to be unity, as verified by the independence of the results on the resolving time and further confirmed by a time-topulse-height-converter spectral analysis. The minimum resolving time for 100% coincidence efficiency was only 290 nsec. Chance coincidences were observed separately by introducing $5-\mu$ sec delay in the gating channel. Bremsstrahlung due to the β continuum in the coincidence spectra is negligible, as seen in Fig. 3.

III. RESULTS AND DISCUSSION

Results of the present work are summarized in Tables III and IV, and are discussed below. The errors quoted are standard errors and include contributions from all experimental origins. No attempt has been made to include errors in quantities obtained from theory.

A. L_2 and L_3 Subshell-Fluorescence Yields and L_2 - L_3X Coster-Kronig Transition Probability in Yb

Table III presents the values of ω_2 , ω_3 , and f_{23} obtained from $L_{\alpha,\beta,\gamma}-K_{\alpha 1,\alpha 2}$ coincidence measurements using both Tm^{170} and Tm^{171} decays as sources of K and L vacancies. The average number of L x rays emitted per L_2 vacancy, ν_2 , is also included in Table III. The effects of angular correlation in the L_i x-ray- $K_{\alpha 1}$ x-ray

⁸³ E. Karttunen, H. U. Freund, and R. W. Fink, Nucl. Phys.

A131, 343 (1969). ³⁴ H. U. Freund, J. S. Hansen, E. Karttunen, and R. W. Fink, in *Proceedings of the Conference on Radioactivity in Nuclear Spectroscopy*, *Nashville, Tennessee*, 1969 (Gordon and Breach Science Publishers, New York, to be published).

Coincidence	Quantity	Presen	t work			Scofield ^b
method	measured	Tm ¹⁷⁰ decay	Tm ¹⁷¹ decay	Average	Jopsen et al.ª	(theory)
$L_{\alpha,\beta,\gamma}-K_{\alpha 1}$	ωვ	$0.185 {\pm} 0.011$	0.180±0.011	0.183±0.011	0.20 ± 0.02	
	53	0.170 ± 0.009	0.161 ± 0.009	$0.165 {\pm} 0.009$		0.175
$L_{\alpha,\beta,\gamma}-K_{\alpha 2}$	ν_2	$0.218 {\pm} 0.013$	0.210 ± 0.013	0.214 ± 0.013	$0.34{\pm}0.05$	
	ω_2	0.185 ± 0.011	0.179 ± 0.011	0.182 ± 0.011		
	f23	0.174 ± 0.009	0.165 ± 0.009	0.170 ± 0.009		
	<i>S</i> ₂	0.187 ± 0.011	$0.196{\pm}0.010$	$0.192{\pm}0.010$		0.181

^b Reference 41.

TABLE III. Results on the L_2 and L_3 subshells in Yb.

^a Reference 2.

coincidence measurement are taken into $\operatorname{account}^{35-38}$ in obtaining the value of ω_3 . This correction amounts to 2%. There is agreement with the previous work of Jopson *et al.*² in the case of ω_3 , but the present value of ν_2 seems to be considerably lower, as is generally found in comparisons of radioactive source methods with methods based on fluorescent excitation of foils. A recent study³⁹ of the *L* Auger-electron spectrum in the EC decay of Hf¹⁷⁵ gave a value of $\omega_3 = 0.19 \pm 0.05$ for Z = 71, in good agreement with the present result for Z = 70. The present work also confirms the earlier results^{1,37,40} that a considerable number of L_2 vacancies are filled by nonradiative Coster-Kronig transitions of the L_2 - L_3X type ($f_{23} \neq 0$).

The relative intensities of the resolved groups of L x rays from the L_2 and L_3 subshells also are obtained from the present coincidence experiment and are compared with theoretical values derived from the recent work of Scofield.⁴¹ The ratio of L_{β} x rays to $L_{\alpha+1}$ x rays, s_3 , is determined to be 0.165 ± 0.009 (Table III) and compares well with Scofield's estimate⁴¹ of 0.175. Similarly, the ratio of L_{γ} to $L_{\beta+\eta}$ x rays from the L_2 subshell s_2 is determined to be 0.192 ± 0.010 (Table III) and compares well with Scofield's estimate⁴¹ of 0.181.

B. K-Conversion Coefficient of 84.3-keV Transition in Yb¹⁷⁰

Table IV contains the relative intensities of the Yb K x rays and the γ rays observed from the decay of Tm¹⁷⁰, after correction for detector efficiency and attenuation of the 3.2-mm Plexiglas β absorber. The ratio of intensities of Yb K x rays and 84.3-keV γ rays (I_{Kx}/I_{γ}) is calculated to be 1.304 ± 0.039 . The value is compared with the results of earlier work in Table I,

 $\omega_{\mathcal{K}}$, the *K*-shell-fluorescence yield of Yb, used to obtain the reported values of $\alpha_{\mathcal{K}}$. To facilitate comparison with the present value of $I_{\mathcal{K}x}/I_{\gamma}$, the intensity ratio from the various authors has been recalculated by using the correction for Er *K* x rays arising from orbital electron capture as found in the present work (Sec. III D). The spread in the recalculated values apparently is due to the low resolution of the NaI(Tl) spectrometers used. The most recent measurement by Nelson and Hatch,¹⁴ in which a bent-crystal spectrometer was employed to obtain the monoenergetic response function of an NaI(Tl) spectrometer, is in fair agreement with the present result.

which contains the intensity ratios and the values of

The present value of α_K of the 84.3-keV transition was obtained from the relationship

$$\alpha_{K} = (1/\omega_{K}) \left(I_{Kx}/I_{\gamma} \right), \qquad (1)$$

where a value of 0.937 for ω_K is used.⁴² For comparison we have listed the literature values of α_K , determined by the XPG method, which are recalculated using $\omega_K = 0.937$ and recalculated values of the intensity ratio. Taking into account only the recent XPG results (Ref. 13, 14, and the present work) and the other conversion-electron methods, the agreement with theoretical estimates (Table II) for pure E2 multipolarity is good. On the other hand, the accuracy of any of the experimental methods is insufficient to distinguish among the various theoretical estimates.

C. K-Conversion Coefficient of the 66.7-keV Transition in Yb¹⁷¹

The ratio of intensities of Yb K x rays and 66.7-keV γ rays following β decay of Tm¹⁷¹ was measured to be 6.98±0.34. With $\omega_{K}=0.937$, a value of $\alpha_{K}=7.45\pm0.36$ is obtained. The two previous measurements of this value are $\alpha_{K}=7.4\pm1.0^{24}$ and 6.9 ± 1.0^{12} and these are in agreement with the present work. The mixing ratio is calculated to be 0.34 using the theoretical estimates of Hager and Seltzer,²⁰ so that the transition is a mixture of 74% M1 and 26% E2 multipolarity.

³⁵ H. W. Beste, Z. Physik **213**, 333 (1968).

³⁶ R. E. Price, Hans Mark, and C. D. Swift, Phys. Rev. 176, 3 (1968).

 ⁶⁷ R. E. Wood, J. M. Palms, and P. Venugopala Rao, Phys. Rev. 187, 1497 (1969).
 ⁸⁸ A. L. Catz and C. D. Coryell, Bull. Am. Phys. Soc. 14, 85

^{(1969).} ³⁹ J. Gizon, A. Gizon, and J. Valentin, Nucl. Phys. A120, 321

^{(1968).} ⁴⁰ P. Venugopala Rao and B. Crasemann, Phys. Rev. **139**, 1926

^{(1965).} ⁴¹ J. H. Scofield, Phys. Rev. 179, 9 (1969).

⁴² R. W. Fink, R. C. Jopson, Hans Mark, and C. D. Swift, Rev. Mod. Phys. **38**, 513 (1966); W. Bambynek, B. Crasemann, R. W. Fink, H. U. Freund, Hans Mark, R.E. Price, P. Venugopala Rao, and C. D. Swift, *ibid*. (to be published).

D. Electron-Capture Decay of Tm¹⁷⁰

In Table IV are presented the intensities of $\operatorname{Er} K \mathbf{x}$ rays and 78.6-keV γ rays from the EC decay of Tm¹⁷⁰. The 78.6-keV γ is attributed to the first excited state in Er¹⁷⁰. This energy state has not been previously established conclusively, although a value of 79.3 keV has been quoted.25 Chupp et al.,43 who investigated the first excited states by Coulomb excitation of natural Er targets, identified two γ rays at 78.59 and 79.31 keV, and assigned them to Er¹⁶⁷ or Er¹⁷⁰. They were unable to determine which γ is associated with each Er isotope. In the present work, the 79.3-keV γ was not found, but γ rays at 78.6 \pm 0.4 keV were observed, leading to the conclusion that EC in Tm¹⁷⁰ decay leads to both the ground and the first excited states in Er¹⁷⁰.

From data in Table IV, a value of $2.64 \pm 0.40 \times 10^{-2}$ is obtained for the ratio of intensities of Er K x rays to Yb K x rays in Tm^{170} decay. The former arise from internal conversion of the 78.6-keV transition and from K capture to the ground and first excited states in Er¹⁷⁰. Taking the theoretical conversion coefficient $\alpha_K = 1.77$ from Hager and Seltzer²⁰ and a value of $\omega_{K} = 0.933$ for $Z = 68^{42}$ the total number of K x rays arising from the K conversion of the 78.6-keV transition can be estimated. The fraction of total $\operatorname{Er} K$ x rays due

⁴³ E. L. Chupp, J. W. DuMond, F. J. Gordon, R. C. Jopson, and Hans Mark, Phys. Rev. 112, 518 (1958).

TABLE IV. Relative intensities of K x rays and γ rays from the decay of Tm¹⁷⁰ and Tm¹⁷¹ from the present work.

Source	Photon emission	Relative intensity
Tm ¹⁷⁰	Er K x rays	$3.44{\pm}0.14$
	Yb K x rays	130.4 ± 3.9
	78.6-keV γ	0.122 ± 0.024
	84.3-keV γ	100
Tm^{171}	Yb K x rays	698 ± 34
	66.7-keV γ	100

to K conversion of this transition is 0.059. The EC branching can be calculated using theoretical EC ratios44-46 to the ground and first excited states. Taking the value of $Q_{\rm EC} = 460 \text{ keV}$,²⁷ the theoretical values of the probability of K capture, P_K , to the ground and first excited states in Er¹⁷⁰ are 0.800 and 0.837, respectively. These values, together with the relative intensities presented in Table IV, yield 0.04% EC decay to the 78.6-keV level and 0.10% to the ground state in Er¹⁷⁰, if one assumes that 76% of the $Tm^{170} \beta$ emission leads to the ground state of Yb¹⁷⁰.

PHYSICAL REVIEW C

VOLUME 1, NUMBER 1

JANUARY 1970

Fissionability as a Function of Angular Momentum for the Re¹⁸¹ Compound Nucleus at an Excitation Energy of 70 MeV^{*}

L. KOWALSKI, A. M. ZEBELMAN, † J. M. MILLER, G. F. HERZOG, ‡ AND R. C. REEDY Columbia University, New York, New York 10027 (Received 28 July 1969)

A method is described which allows the calculation of the spin dependence of the probability for fission of compound nuclei from experimental data. The method is applied to the study of the behavior of Re¹⁸¹ compound nuclei formed in three different ways with an excitation energy of 70 MeV: C12+Tm169, 016+Ho165 and $Ne^{22} + Tb^{159}$. The experimental fission cross sections were taken from Sikkeland. The fission probability is found to increase with increasing angular momentum in accord with liquid-drop-model calculations.

INTRODUCTION

IQUID-DROP-MODEL calculations¹⁻⁴ have shown L that the fission barriers of compound nuclei at a given excitation energy decrease with increasing spin.

* Work supported in part by the U.S. Atomic Energy Commission.

National Aeronautics and Space Administration Predoctoral Trainee.

¹G. A. Pik-pichak, Zh. Eksperim. i Teor. Fiz. 34, 341 (1958)
¹English transl.: Soviet Phys.—JETP 7, 238 (1958)
² J. Hiskes, University of California Radiation Laboratory
Report No. UCRL-9275, 1960 (unpublished).
³ S. Cohen, F. Plasil, and W. Swiatecki, in *Proceedings of the Third Conference on Posting Pattern Pattern Conference on Posting Pattern Pattern Conference on Posting Pattern Pat*

Third Conference on Reactions Between Complex Nuclei, edited by A. Ghiorso, R. M. Diamond, and H. E. Conzett (University of California Press, Berkeley, 1963), p. 325. ⁴ F. Plasil (private communication).

The relatively large fission cross sections observed in reactions⁵ with heavy ions leading to compound nuclei with low values of Z^2/A seem to confirm these predictions. The effect of angular momentum was further elucidated by experiments in which the same compound nuclei were formed by several different entrance channels which differed only in their spin distributions.^{6,7} However, even these latter experiments did not produce a quantitative relationship between angular momentum and fissionability. The principal difficulty in a detailed interpretation arose from the broad distribution of

 ⁴⁴ L. N. Zyryanova and Yu. P. Suslov, in Proceedings of the International Conference on Electron Capture and Higher-Order Processes in Nuclear Decay, Debrecen, Hungary, 1968 (Eötvös Lorand Physical Society, Budapest, Hungary, 1968), p. 45.
 ⁴⁵ H. Behrens and W. Bühring, Ref. 44, p. 61.
 ⁴⁶ B. L. Robinson, Nucl. Phys. 64, 197 (1965).

[†] National Science Foundation Predoctoral Trainee.

⁶ E. K. Hyde, *The Nuclear Properties of Heavy Elements* (Pren-tice-Hall, Inc., Englewood Cliffs, N.J., 1966), Vol. 3. ⁶ J. Gilmore, S. G. Thompson, and I. Perlman, Phys. Rev. 128, 2276 (1962).

⁷ T. Sikkeland, Phys. Rev. 135, B669 (1964).