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The changes in binding energy of r~4~ under deformation into prolate spheroidal shapes have been
calculated using the statistical theory of nuclei. The density is restricted only by the requirement that
each equidense surface is a spheroid. lt is found that the energy is minimized when the density has an
approximately uniform surface thickness around the nucleus. To 6rst order the change in binding energy
is given we11 by the liquid-drop model, but at large deformation the statistical theory predicts less drop
in energy and, consequently, a slightly more stable nucleus.

I. INTRODUCTION

t lHE statistical theory of nuclei has been successfully..applied to the known nuclei by Brueckner et al."
In those papers, it was shown that the saturation curves
of nuclear matter with variable neutron excess, as
derived by Brueckner, Coon, and Dabrowski, ' needed
only minor adjustments to enable the statistical theory
to reproduce the liquid-drop part of the binding energies
of nuclei over a wide range of nucleon number. The
confidence thus engendered in the statistical theory and
in the energy functional used permits us to apply the
method to study other macroscopic properties of nuclei
and, in particular, to make predictions about the change
in binding energy with deformation of the nucleus.
The energy functional is sufficiently diferent from the
Myers-Swiatecki mass formula4 that even to obtain
agreement with the predictions of that approach would
in itself be interesting. One might expect, because of
the additional degree of freedom (the changing denisty
distribution), that the binding energy would be very
different at any given quadrupole moment from that
predicted by the mass formula. However, it must be
remembered that the available parameters in the
energy functional have been selected to reproduce the
same binding energies as given by the mass formula
for a large range of relative values of surface, Coulomb,
and volume energies. Thus, a change in the relative
values of these quantities (induced by a small deforma-
tion) may not result in a significant difference between
the results obtained with the two approaches. On the
other hand, there are correction terms inherent in the
statistical theory (such as curvature effects and com-
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pressibility) that are neglected in the mass formulas
and it is possible that these change significantly with
deformation. The statistical theory only gives results
averaged over the shell structure. However, shell correc-
tions may be included in a self-consistent manner.

In this paper, we look at the change in binding
energy of 1~4X29' with deformation. This nucleus was
chosen because it was predicted to have high stability
against spontaneous fission and because of the current
interest in its properties. ~s The type of deformations
we permit the nucleus to have are such that any equi-
dense contour in the nucleus —i.e., the surface on which
the density is constant —is always a prolate spheroid.
The eccentricity of these spheroids is variable and is
taken to be a continuous function of the distance of the
spheroid from the center of the nucleus. This function
essentially determines the angular distribution of the
density, and, together with the radial density distribu-
tion, must be varied to minimize the energy.

To illustrate the method, let us first consider the case
of all density contours having the same eccentricity e.
tA'e can describe the density by its variation along the
minor axis b alone and we can scale b so that the density
could have been obtained by an incompressible deforma-
tion of a spherical distribution po. Writing b =«(1—c')
ensures that the volume of the spheroid is the same as
the volume of a sphere of radius «and p(r) =ps(rs).
We split Ega /see (5) below/ into three parts: E„,&Lpf

which contains all terms dependent on powers of p,
including the Coulomb exchange energy, E~,eLp) con-
taining terms dependent on the gradient of p, and

Eo«&gpf, the direct Coulomb energy. Expressing each
term as an integral over ro instead of r we have, for all
1Z

p
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where

so that
f(s) (1 Lrsos) /( 1 62) 1/s

~".~[p(r) ]=f(s)&:~[po(»o)],

fLP(r) p(r')/l r—r' l]d'»d'»'=g(s)

&& fLPo(»o) po(»'o)/I ro —r'o l]d'»o d'»'o, (1)
where

g(s) = (I/2o) (1—ss) /s
lnI (1+s)/(1—s) j.

The simple form of (1) (of which the usual liquid-drop
form' is a special case) results from the fact that the
equidense contours are similar concentric ellipsoidal
shells' and that the potential is constant inside such "a

shell.
Hence, finally

~[p(r)]=&o[po( )]=&-[p ( o)]

the density and energy may be obtained by minimizing

&[p]=~.t[pr &]+~ a[pr &]+gt(&)% &[P&] (4)

where pj is the density analogous to pp above. This pro-
cess is recycled until self-consistency of gr(o) and p has
been achieved. In Sec. II, we shall describe in greater
detail how the energy functional may be brought to a
form from which we can derive the associated Kuler-
Lagrange equation for the density distribution.

II. DIFFERENTIAL EQVATION

In Ref. 1, it was shown that the binding energies of
the known nuclei could be obtained by minimizing

&[p]= f{~~(n)p"+pV (p, n)+ os[(1—n)/2]W.
—0.7836e'[(1—n) /2]4"p4"

+ (5'/SM) rl[(V'p) '+8(1/'(pn) )'] Id'», (5)

where p= p„+p„,
+f(s)& .a[po(»o) ]+g(s)&c. t[po(»o) ], a= (p. p~)/p, — fp„ds»=E, fp,d'»= Z,

which is particularly easy to handle. As for the spherical
case, we may readily derive the Euler-I agrange equa-
tion to minimize Eo[po] with respect to po(»o) .

The intrinsic quadrupole moment of a deformed
nucleus is

Q= (Z/A) fp(r) (3ss—»') d'». (2)

For this density distribution it can also be expressed as
an integral over rp, namely,

s'72e', Z
Q= 4s"— po(»o)»o4d»o. (3)3(1—o') '" "A 0

The above method cannot yield the'best density
distribution, as the angular dependence is too restricted.
It is clear that the surface thickness, for example, is
narrow on the minor and wide on the major axis of the
nucleus. Physically, one would anticipate a more uni-
form surface thickness and this can be achieved by
permitting the eccentricities of the spheroidal shells to
be a function of b, the distance along the minor axis,
especially in, the surface region. The eccentricity func-
tion is found variationally, as will be described in Sec.
III. Now the energy can no longer be split into simple
factors as above, although the angular parts of some of
the integrals may still be done. The most difficult term
is the Coulomb energy which now becomes complicated
but only weakly dependent on the additional density
change. We can handle this by assuming that we may
still factorize out the angular part as above and choose
the factor self-consistently so the correct Coulomb
contribution to the total energy is given. In other
words, for each eccentricity function, we assume that

9 P. J. Siemens and H. A. Bethe, Phys. Rev. Letters 18, 704
(1967).

"&.C. Carlson, J. Math. Phys. 2, 441 (1961).

Ca (n) = -s (P/23f) (s s ) '"-',[(1—n) "'+(1+a)'"],

»o ——b[1—os(b) ]—'", Op=8,

we can eliminate the dependence on s(b) of terms like

V(p, a) = br (1+ara') p+ bs(1+~a') p"

+bo(1+aoa') p"'.

Here V(p, n) and g have the "improved" values given
in Ref. 2.

For simplicity, we assurue here that o. is constant
throughout the nucleus, i.e., n = (cV—Z) /A. This
approximation for the known spherical nuclei tends
to give too small a binding energy per particle for nuclei
with large a. However, here we are not comparing
nuclei with different 0. and we are only looking at
changes in energy and not at precise totals. Relaxing
the proportionality between the densities might result
in different deformations of p„and p~, thereby increasing
the rate of decrease of the energy with deformation.

. Instead of having a completely general spatial
distribution restricted only by the total particle number
condition, vie simplify the angular dependence of the
deformed density by assuming that all equidense sur-
faces are prolate spheroids with eccentricities o(b)
dependent on the length b of their minor axes. We shall
discuss this approximation later in Sec. III. This
density can be described by its variation along the
minor axis alone, p(r) =pr(»o), where

»= b/[1 e'(b) cos'8]"'. —

Hy introducing the variable rp defined by
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Jp"(r) d'» T. hat is,

Jp"(r) d'»= Jpi" (»o) d'»o, (g)

as may be seen by changing coordinates from ~, 8,
to»p, Hp, @p. It is clear that »o is the radius of the

spherical shell that would have resulted if we had
incompressibly deformed the original prolate spheroidal
shell into a spherical one. This is the physical reason
why (8) holds.

The gradient energy term may also be reduced bv
the same substitution:

J(V'p)'d'»= J (Bpg/'B»o)'d'»p

(1——,'io) fe' fo—e' 1+&)log, 9
(1 eo)1/3 g2 2fo 1 l.j

where
f'o = —)be/(1 —e') $ (de/db)

The Coulomb energy cannot be expressed as an
integral in ro space unless e(b) is a constant. Hence, let
us write

p(r) = p. (r)+bp(r), (10)

where p, (r) is a density distribution formed from
constant eccentricity prolate spheroids and bp(r) may
be positive or negative. Then

Ec..imp(r) 1=Ec..iLp. (r) j
+ (e'Z'/A') JLbp(r) p, (r') /( r—r' ~/do» d'»'

+(e'8'/2A') JPp(r)bp(r')/I r—r' l3d'» do»' ( 1)

The first term can be evaluated as in (1).The second
represents the energy of bp(r) in the potential of an
ellipsoidal charge distribution. This potential is known
analytically so that the whole term may be expressed as
a three-dimensional numerical integral. The Anal term
is best evaluated by expanding bp(r) in Legendre poly-
nomials and using the well-known expansion formula
for 1/~ r—r' ~. Only even-order polynomials are needed.
The necessary convergence is obtained with the maxi-
/mum order of 14, in less than 30 sec of computation
time on a CDC 3600. A comparison of numerical and
analytical evaluations of Ec,„qLp, (r)$ shows that the
accuracy of the numerical methods employed is excellent.
Each of the last two terms is a small correction to the
first term so we may take p&(»p) as being equivalent to
some pp(»p) and include in the energy functional an
expression of the form

Ec..)gp(r) )= D„(e'Z'/2A')

X Jgpi(»o) px(»'o) /~ ro —r'o Gd'»od'»'o, (12)

where D is a constant that gives the correct total
Coulomb energy when p(r) is known. This approxima-
tion enables us to minimize E(p) in the usual manner
and may be checked by taking the output p and
evaluating Ec.„&fpj again. Although the total energy is

fairly sensitive to D because of the large value of the
Coulomb energy contribution, this contribution itself
is not very sensitive to p(r) 'and self-consistency of
D„ is easily obtained. We were able to test the approxi-
mation by making the same assumption for E~,d. We
calculated the minimum energy using (9) and also by
replacing the bracketed expression by a constant, chosen
to give the same gradient energy. Despite the fact that
the density should be much more sensitive to the weight
function in E~,e than to that in Eco„~, neither it nor the
total energy was altered by more than 0.001%.

Substituting (8), (9), and (12) into (5) gives us an
energy functional in ro space. From this the Euler-
Lagrange differential equation may be derived as
described in Ref. 1. It only divers from the spherical
case by a function of »o, the bracketed expression in (9)
and the factor D„ in front of the electrostatic term.

Finally, the quadrupole moment for this density
distribution is

Z ~ 2 eo—xP (2+e&)
Q= 4o. — px(»o)»o'd»o — „,, (13)

5 1—e' '" 1—-,of'o

III. VARIATIONAL ECCENTRICITY FUNCTION

The function e(b) is found. variationally. We can get
an estimate of the function we are looking for by assum-
ing that the surface has the same thickness on both
the major and minor axes. Then e(b) would be given
by

where X is a constant. Alternatively, we can require the
eccentricity to have a given value e, at the edge of
the nucleus, i.e., at a known value of b, thus determining
the value of X. It is easier to predetermine the quad-
rupole moment this way. As a further variational
parameter we may make e(b) vary more or less rapidly
than (14), still keeping the value e,„at the edge of the
nucleus by writing

e(b) —L1—b'/(b+X)'j'"(1+N) —Ne„. . (15)

The values u can take are limited by the requirement
that e cannot exceed unity and also that no two ellip-
soids can cross. Equation (15) is then used in the
"surface region" of the nucleus but e(b) may be taken
as constant in the central region of the nucleus, where
the density is nearly constant anyway. We thus have
three variational parameters: e, (or X), the "surface
region" thickness t, and N. These parameters are deter-
mined self-consistently with the density. In practice,
the energy is only slowly varying around the optimum
value of N and is very insensitive to t provided it is
large enough, i.e., t&5.0. Other possible forms of
eccentricity function have been tried but gave higher
energies. We also evaluated E~~ using a strictly uni-
form surface outside an ellipsoid. The difference
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TAsLE I. The changes in total energy, volume energy, gradient, and Coulomb energy with each deformation.
Energies are given in MeV and the quadrupole moment in barns.

Type of Quadrupole
deformation moment

Spherical —2057.39 —3969.23
&~&a
421.26

Aolli
1490.08

{1)
(2)
(&)

14.15
14.15
14.32

+2.80
+1.86
+0.11

0
+5.72

+5.38

+10.97
+5.27
+4 35

—8.17
—9.13
—9.62

(1)
(2)
(3)

23.10
23.10
22.80

+6.10
+3.87
—0.01

0
+13.40
111.91

+25.61
+11.87
+9.66

—19.31
—21.40
-21.58

(1)
(2)
(3)

41.28
41.28
40. 14

+14.03
+7.40
—1.47

0
+32.12
+28.56

+62.72
+28.66
+22.92

-48.69
-53.38
—52.95

(1)

(3)

56.27
56.27
54.98

+21.24
+9.58
—2.85

0
+48.35
+43.80

+96.65
+43.30
+35.47

—75.41
—82.07
—82. 12

between the value obtained and that found using (14)
was negligible even at the largest deformation. Equa-
tion (15) gives lower total energy a,nd is simpler to use.

It should be noted that the deformed density given
by this method is not as general as might be wished.
The density along both major and minor axes of the
deformed nucleus has a similar profile. Thus if there
is a bottleneck effect on the major axis, there is also one
on the minor axis. The Coulomb energy, however,

might be further reduced by piling up the density at
the far ends of the nucleus but this effect cannot be
reproduced by our density. A density distribution in
which the density is higher at the ends than in the
middle has some density contours that intersect certain
radius vectors more than once. Although it is possible
to write down relationships between ro and r, 0 that.
generate families of curves of this type, they are not as
easily handled as the curves used in this paper. The
restricted density we have used will only be valid while
the nucleus shows no trace of necking. More explicitly,
our deformations are restricted to Nilsson's c distor-
tions"; we have no e4 contribution. In view of this, we
have made a comparison with predictions from the
Myers-Swiatecki mass formula, when only the same
restricted form of density contours are allowed. This
will be discussed in Sec. IV.

three different types of deformation. Curve (1) cor-
responds to an incompressible deformation to ellipsoidal
shape with no density redistribution. The spherical
gradient energy is multiplied by f(e) and the spherical
Coulomb energy by g(e), so curve (1) plots

There is no change in E, ,i for an incompressible
deformation.

~ 4

CD 2
UJ

0

2

C3
uJ

IV. RESULTS

The results are shown in Fig. i and in Table I. In
Fig. 1, curves (1)—(3) show the changes in total binding
energy with deformation, i,e., deformation energy, for

"S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 29, 1 (1955).

I t I I t

0 I 0 20 30 40 50 60 70

QUADRUPOLE MOMENT(bari)s)

FIG. 1; The change in binding energy of »4X plotted against
quadrupole moment for three dHferent types of deformation: (1)
no radial redistribution of density and equidense surfaces re-
stricted to be similar prolate spheroids, (2) with radial redistribu-
tion of density, and (3) equidense surfaces prolate spheroids of
general eccentricity. Curve (4) is the Myers-Swiatecki (Ref. 4)
liquid-drop model prediction for a prolate spheroidal deformation.
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Curve (2) plots the deformation energy for the same
type of deformation as in curve (1) but in addition
allowing the radial density to redistribute itself to
minimize the energy. This demonstrates the amount
of reduction in energy that may be obtained by allowing

p(r) to freely minimize Egpj
Curves (1) and (2) rise sharply because the surface

of the nucleus has been deformed in such a way that it is
stretched along the major axis and contracted along
the minor axis. Curve (3) is obtained by allowing the
eccentricity of the ellipsoidal contours to vary in such a
was as to minimize this effect. It is clear from the figure
that the minimum energy of a deformed nucleus will
not be obtained unless the surface thickness of the
nucleus is permitted to be roughly uniform.

Curve (4) is the liquid-drop model results of Myers
and Swiatecki, where the drop is assumed to be de-
formed into an spheroid. The close agreement between
the curves (3) and (4' for small deformations is the
result of adjusting the saturation curves' so that the
binding energy per particle agrees closely with those
predicted by the Myers-Swiatecki liquid-drop formula.
A small deformation is equivalent to a slightly different
relative weighting of surface, volume, and electrostatic
energies, as is a change of A or Z. At large deformations,
however, corrections from the curvature of the surface
and the nonuniformity of the charge start to be im-
portant and the two results cannot be expected to agree.
It should be emphasized that the curve (4) in no way
represents a variational limit to our results. The two
approaches are entirely different and an agreement
between them is only because the parameters in both
formulas have been adjusted to fit the same initial data.

Table I breaks down the total energy changes into
contributions from the various components. The
numbers (1)—(3) correspond to those of Fig. 1 and the
types of deformation described above. Comparison
between (1) and (2) shows that redistributing the
density radially allows the gradient energy to decrease
at the expense of an almost exactly equal increase in
the volume energy and that the major part of the total
energy change comes from the change in Coulomb
energy. (Here the exchange Coulomb energy has been
included in E,~ instead of E~,„~ because of its volume-
dependent form. This is in contrast to the E~,„~ given
in Ref. 2.) Thus the surface energy, defined as

E,„,r (E...—Ec.„g—A E„,) /A——'"
with E„& being the minimum in the saturation curve
for ~~4X"', hardly alters with a redistribution of the
radial density at a given quadrupole moment. To mini-
mize E,„,& we have to allow the angular density distribu-
tion to alter as is done in (3). Table I shows that
between (2) and (3) the main part of the total energy
change comes from E~~ plus E,y and that E~,„~
decreases only slightly. Note that the quadrupole
moments are not exactly equivalent in (2) and (3).

TABLE II. The variational parameters needed in the eccen-
tricity function to minimize the energy. The last column gives
Xilsson s (Ref. ii) parameter e giving rise to the same intrinsic
quadrupole moment.

&mgx

14.32
22.80
40. i4
54.98

0.6
0.7
0.805
0.855

8.293
7.998
7.566
7.276

—0.2
—0.2
—O. i
—O. i

0.223
0.34i
0.544
0.68i

V. CONCLUSION

We have shown that the energy-density formalism
may be successfully used to study deformed nuclei as
well as spherical ones. It has the advantage over liquid-
drop models in that internal changes in the density
distribution with deformation can be made, resulting
in correct handling of energy changes. On the other
hand the liquid-drop model is considerably simpler
to use and gives very similar results. The confirmation
that the Myers-Swiatecki mass formula may be
extended beyond the known nuclei into the region of
large deformations is an important outcome because it
has been shown" that the predictions of mass formulas
are very sensitive to the parameters used.

A number of improvements on the procedure used
in this paper may be made. First, the proton and
neutron densities should be able to deform indepen-
dently. Second, the charge density should be allowed
to pile up at the ends of the major axis instead of being
symmetrically spread around the origin. Both these
effects would act to drop the energy at large deforma-
tions (Q &30b).

The approximate agreement between our curve and

"Cheuk-Yin Wong, Phys. Rev. Letters 19, 328 (1967).

The variational parameters used in e(b) to obtain the
results in (3) are shown in Table II. b,„corresp onds

approximately to the length of the minor axis of the
deformed nucleus. The fact that I is negative means that
the density has a slightly larger surface thickness on
the major axis than on the minor axis. Also shown in
the last column of Table II is the value of Nilsson's
parameter' e that wouM give the same quadrupole
moment to a liquid-drop nucleus, To obtain this we use
the fact that e is exactly related to co, the ratio of the
major axis to the minor axis of an ellipsoidal nucleus,
by

(o= (3+e) /(3 —2e)

and. that Q, the quadrupole moment, is given by

Q =—,'$ ((gs —1)/(gs~sgg (rs ).
In the last column of Table II and in (4) of Fig. 1, we
have taken (r') =0.6A' 'rs' where rs 1.2249 fm.4——
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that of Myers and Swiatecki means that if the diGerence
between curves (3) and (4) is added to the fission

barrier of Ref. 5, the change in lifetime is small. The
prediction of 2&(10"yr there will become 2X10"yr.
Since most of this change comes from the strongly
deformed part of the fission barrier, the improvements
mentioned above can be expected to shorten this life-

time. For ~~4X "with its short o.-particle decay lifetime,
this may not be important, but for tiex"4 where the
fission and n-particle decay lifetimes are close, the
fission lifetime may determine the total lifetime.

Shell-effect corrections can be calculated self-

consistently for our statistical energy surface, following
Strutinsky's approach. " Shell-model potentials can be
obtained directly from the deformed densities' derived
here. This way we shall avoid the usual uncertainties
in extrapolating phenomenological shell-model poten-
tials and can make more reliable predictions of the
variation of potential with deformation. A study of this
program is presently being made.

"V. M. Strutinsky, Nucl. Phys. AQS, 420 (1967); A122, 1
(1968).

'K. A. Srueckner, Wing-fai Lin, and R. J. Lombard, Phys.
Rev. 181, 1506 (1969).
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Decays of Tm»' and Tm"': L s and l, s Subshell-Fluorescence
Yields, Coster-Kronig Transition Probabilities, and

X-Shell Conversion Coefficients in Yb t'

S. MOHAN, H. U. FRZUND, AND R. W. Fam
School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 3033Z

P. VENUGOPACA RAO

Department of Physics, Emory University, Atlanta, Georgia

(Received 1 August 1969)

High-resolution Ge(Li) and Si(Li) x-ray detectors $404- and 290-eV full width at half-maximum (FWHM)
at 6.4 keV, respectivelyg were employed to study the singles and coincidence spectra of x rays and 7 rays
from the decays of Tm" and Tm"'. Measurements of the rates of L, Lp, and'PL~ x-ray emission in

coincidence with X & and E 2 x rays yielded the following values for L2 and L3 subshell-Quorescence yields

(cog (03) Ls L3X Coster-Kronig transition probability ( f23) and relative L x-ray intensity ratios (ss ss)
co~=0.182&0.011, co3=0.183&0.011, f23=0.170&0.009, s2=0.192&0.010, and s3=0.165&0.009. The E-
conversion coefficient of the 84.3-keV E2 transition in Yb"' is found to be 1.39&0.04 by the measurement
of the intensity ratio for the E x ray and y tran-si-tions (XPG method). The E-conversion coefficient of
the 66.7-keV transition in Yb"' is found to be 7.45~0.36, which leads to a value of 0.34 for the mixing
ratio of E2/M1. The orbital-electron-capture branchings of Tm"' to the erst excited state (78.6 keV)
and to the ground state in Er"' are determined to be 0.04 and 0.10'Po, respectively.

I. INTRODUCTION

t lHE present investigation was carried out par-.. ticularly to exploit the new high-resolution tech-
niques developed during recent years in low-energy
photon spectrometry. Detectors of Si(Li) and Ge(Li)
with sufficient resolution to separate clearly the full-

energy peaks above Z 65 of the E &, E 2, Ep&', and
Ep2' components of E x rays and the L&, L, Lp, and L~
components of the L x rays of interest are available.
Coincidence methods' are employed to measure the L&

and Ls subshell-fluorescence yields and. the Ls-L~
Coster-Kronig transition probability in Yb from decay
of Tm' and Tm'~'. No prior measurements on Yb exist
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' P. Venugopala Rao, R. E. Wood, J. M. Palms, and R. W.
Fink, Phys. Rev. 178, 1997 (1969).

in which a radioactive source of L subshell vacancies is
used. Jopson el ttl. s measured Is and Ls subshell-fluores-
cence yields by coincidence methods with NaI(T1)
detection and Yb foil targets in which E and L ioniza-
tion was produced by an incident beam of p rays from
a Co'~ source.

The E-shell conversion coefficient of the 84.3-keV
E2 transition in Yb"' following the P decay of Tm"' has
been of considerable interest and has been the subject of
many investigations since 1952. This transition was one
of the first leading to a suspicion at one time that
anomalies existed in experimental E2 conversion
coefficients in the deformed region. Essentially three
diGerent techniques were employed to measure 0.~.
(1) Measurement of the intensity ratio of the E xray--

' R. C. Jopson, J. M. Khan, Hans -Mark, C. D. Swift, and M.
A. Williamson, Phys. Rev. 133, A381 (1964).


