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The shifts of single-particle energy levels caused by distortions of nuclear equipotential
surfaces is examined. Application of this approach is made to neutron single-particle states
in the heavy-element region. Typical single-particle energy shifts are displayed in figures.

The equipotential shapes studied in this paper are axially symmetric and were obtained by
the replacement

u y -up p +su z +u) (p +z )G(z )

with G(z ) of the form

G(z2) =8-Az QQ (&2t)n
2

n

A Woods-Saxon well was used for the central field, and eigenstates of the cylindrical har-
monic oscillator (~tt&, A. , nz}) were used as a basis set in these calculations. 35U is analyzed
in detail.

I. INTRODUCTION

With the development of one-particle transfer
reactions as a spectroscopic tool, many rotational
bands are being observed and identified in the
heavy-element region. If we assume that the po-
sitions of the observed bands are determined by a
single-particle Hamiltonian and residual pairing
forces, it is possible to extract single-particle
level orderings and energy spacings from these
data. This affords us an opportunity to test and
refine single-particle potential models in consid-
erably more detail than has been the case hereto-
fore. In this paper we discuss the following ques-
tions: (1) to what extent can single-particle level
orderings and energy spacings be shifted by vary-
ing the shape of nuclear equipotential surfaces,
and (2) how useful is this approach for improving
the agreement between the predictions of single-
particle models and experimental observations.
We study axially symmetric equipotential surfaces,
which deviate from purely ellipsoidal shapes. Our
answer to the second question is quite provisional;
we analyze only '"U in detail in this paper. As
analyses of experimental data are completed for
other heavy nuclei, we hope to apply the same ap-
proach to them. The fundamental question to be
raised concerning this approach is: as we analyze
neighboring nuclei, how are the shifts in equipoten-
tial surface shape correlated with the last occu-
pied nucleon orbital. Discussion of this question
must also be deferred until more nuclei are ana-
lyzed.

The first equipotential surface, other than the
spherical, to be studied was the ellipsoidal. This
has been done for both a modified oscillator' and
a Woods-Saxon' single-particle potential. More
recently, equipotential surface deformations of

the P, (cos8) type' have been studied. In our calcu-
lations, we have used a Woods-Saxon mell as the
single-particle potential. As suggested by the
work of the Dubna group, we have used harmonic-
oscillator eigenfunctions as our basis set. Our cal-
culation differs from theirs in that we have used
cylindrical oscillator eigenfunctions ( In ~, }i,n, ))
as our basis set rather than the spherical oscilla-
tor eigenfunctions. Also, we use a larger number
(14) of oscillator shells in our calculations. The
main motivation for using the cylindrical oscilla-
tor set is our expectation that equipotential surfac-
es of nuclei in the heavy-element region should ex-
hibit small deviations from ellipsoidal shapes.
This choice of basis set is also quite convenient
for making a rather detailed examination of the ef-
fects of the deviations from ellipsoidal shape on
single-particle energy level spacings. A secon-
dary advantage of using the cylindrical basis set
is the relative simplicity of the transformation'
from single-particle coordinates to coordinates of
relative motion and c.m. for this basis set. This
feature is useful in residual-interaction calcula-
tions.

In Sec. II, we discuss the details of our calcula-
tion and in Sec. III, we display some results of the
calculations. The major result is contained in
Fig. 1. In Appendix A, we list some relations
needed for the evaluation of matrix elements.

II. SINGLE-PARTICLE MODEL

The starting point for our calculation is the
Woods-Saxon single-particle Hamiltonian2
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and the parameters of this model are V„e, r„
and K; where r, is defined through the relation

Ro=roA"' (2)

where we have absorbed several quantities into
Cg and K', i.e.,

C&
= C~S/~mR, ' and K' = -2K/R, ', (6)

We have used values of V„o., and r, in rough
agreement with those of Ross, Mark, and Lawson. '
In our calculations, we have used a value of 1.35
X 10 '3 cm for r, . This value seems somewhat
large, but we find that it gives slightly better
agreement with observed single-particle energy
level spacings in "'U than does a value of either
1.3 or 1.4~ 10 "cm. The value of K is fixed in
our calculation by experimental data on single-par-
ticle states which originate as j»/2 in the spherical
limit. It shouId be noted that when we deform the
equipotential surfaces, I s does not commute with
(I/r)dV/dr. For these cases, we make the re-
placement in the Hamiltonian

1dV 1 1dV 1dV
rdk 2 rdr rdr

In order to utilize the cylindrical oscillator ba-
sis set in our calculations, it is extremely useful
to rewrite the Woods-Saxon potential shape in the
following way

C l (r/Ro &2

1 + 0'[(r/R o) -&] ~ l (3)

p'- p "S(dm,

r' r "h/&um-,

the Hamiltonian of Eq. (1) has the form

(4)

P-Sco —~ B g g
-c

2 S(o

where the coefficients B& and C& are functions of
n. 'We have found, through trial and error meth-
ods, that a 12-term expansion is sufficient to give
a good fit to the Woods-Saxon shape for values of
n appropriate to the heavy-element region. The
difference between the right- and left-hand sides
of Eq. (3) can be kept to less than 4 && 10 3 (i.e.,
-150 keV) for all values of (r/R, ). We have also
carried out a few calculations using a 16-term ex-
pansion, in which case the deviations are less than
1&&10 ', and our results appear quite insensitive
to this refinement. By going through the interme-
diate step of Eq. (3) in our calculation, we have a
program which can be readily used for any single-
particle potential that can be expanded as a sum of

-C r2terms e +l' . Of course, the calculations are
faster when the number of terms is few. After
making the usual substitutions

2 p2 2E/3 p 2 -46/3 (7)

with the parameter & determining the shape of the
ellipsoid. By defining ellipsoidal shapes in this
way, volume conservation conditions are taken in-
to account automatically. For the more general
deforrnations in which we are interested, volume
conservation considerations are not taken into ac-
count automatically; they appear to be of small im-
portance, however, and we could correct for them
approximately by conserving equipotential volume
at a radius Ro corresponding to the nuclear sur-
face.

We find that we can represent many equipotential
surface shapes rather conveniently by replace-
ments of the form

r'- p'e'"'+z'e 4"'+ (p'+z')G(z'/R ')

with a function G(z'/R, ') of the form

(6)

G, =e & gA (z")',
0 n

(9)

where R,' to various powers is absorbed into the
constants y and A . The quantities t and n are re-
stricted to integral values in order to avoid mix-
ing of states of opposite parity, and y is an arbi-
trary parameter. As our program is now set up,
the summation in Eq. (9) may contain up to six
terms; this allows considerable flexibility in the
choice of equipotential surface shapes. As a first
step in seeing the possibilities of this approach,
we might consider functions G(z') consisting of a
single term. By suitably choosing y and t, it is
possible to move the maximum of this function
freely and to examine the effects on single-parti-
cle levels of distorting the equipotential surfaces
at any point zo. In Sec. III, we display the results
of such calculations. In Fig. 5, we have plotted an
equipotential surface shape which gives a set of
single-particle levels in fairly good agreement

and Sco is a characteristic harmonic-oscillator en-
ergy and determines the basis function set. Since
we are using a large basis set, the eigenvalues we
obtain are relatively insensitive to the choice of
Sco. We have been using a value of 5~=6 Mev
which is optimum in the sense that intershell mix-
ing of our eigenfunctions is roughly minimized for
this choice; the eigenfunctions are typically 97%
pure in terms of oscillator shell number.

At this point we consider the problem of equipo-
tential surfaces. In order to get ellipsoidal equipo-
tential surfaces, one makes the replacement
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with those observed in "'U; this gives some idea
of the scale of the effects we are discussing here.
Clearly, we are dealing with small deviations from
ellipsoidal shapes.

Before carrying out the calculation, we trans-
form to the stretched coordinate system via the
substitutions

P e P P e PP P

3z' p
2 -2&/3p s2 ~

(10)

and when we include this substitution our Hamil-
tonian has the form

1
H=S(u (

—P 'e"'+p 'e '"
) ——g&,(V, +E'1 sC )

l

& exp[-C', (p'e"'+z'e "")+(p'+z')G(z')]; (ll)

(n~, A I (p') ~e '~ In~~, A')(n~ I (z')'2e ~' In,'),
both terms of which may be evaluated analytically.
To carry out the analytic integrations, we use the
explicit forms of the basis functions In ~, A) and
In ) which are given in Appendix A.

where we have now dropped the primes from our
variables z' and p', and we ignore the factors e"'
(and e '"') in the term (p'+z')G(z') as such fac-
tors amount only to a shift in the maximum of
G(z'). The matrix elements of 1 s are also affect-
ed by this transformation, and this is taken into
account in the formulas of Appendix A.

We should point out that there is no necessity to
make the transformation of Eq. (10); in fact, we
have carried out a few calculations in the un-
stretched coordinate system. As we are using a
large basis set, the eigenvalues we obtain are es-
sentially the same in both coordinate systems. A
difference between the two coordinate systems
does show up when we examine the wave functions.
In the stretched coordinate system, the wave func-
tions are typically 97% pure in terms of shell num-

ber; when we use the unstretched coordinate sys-
tem, the wave functions are -92% pure in this re-
spect.

In order to evaluate the matrix elements which
arise in our calculation, we first make a power
series expansion of the factor exp[-Cz(p'+z')G(z')].
%Ye have found that an expansion to fourth order is
sufficient for the cases we have studied so far,
and we have been carrying this expansion to fifth
order in our program. After this expansion is car-
ried out, the calculational problem is reduced to
the evaluation of matrix elements. of the form

(n, , k, n~ l(p')'&(z')'2e '~ e ' n~~, A', n~l),

which can be immediately factored to give prod-
ucts of the form

III. RESULTS

The major result of this paper is contained in
Fig. 1. In this figure, we have plotted the ener-
gies of neutron single-particle states as a function
of the value of z' for which G(z') is at its maxi-
mum; we refer to this value of z2 simply as z'
For the construction of this figure, we have taken
a set of functions G(z') with maxima spaced at in-
tervals of 1 in z'; all the functions are of the same
sign (negative); and the coefficients of each func-
tion are chosen such that

1
G(z')dz =-0.02. (12)

No great significance should be attached to the val-
ue 0.02. The magnitude 0.02 was chosen as this
seems to give shifts of roughly the right size to
explain the changes in energy of experimentally
observed levels from nucleus to nucleus. The
magnitudes of single-particle energy level shifts
can be changed by changing the magnitude of this
coefficient. On the right-hand side of Fig. 1, we
have included the single-particle energies obtained
in the ellipsoidal limit [i.e., G(z') =0.0]. A rough
rule of thumb is that changes in the magnitude of
G(z') will shift each level by an amount proportion-
ate to the amount of its deviation from the ellip-
soidal limit. Another rough rule is that changing
the sign of G(z') reflects a single-particle energy
level about its value in the ellipsoidal limit. In
Fig. 2, we have carried out this reflection to get
a picture of how the single-particle levels shift

The programming involved in the diagonalization
of the Hamiltonian is relatively straightforward
and consists mostly of careful indexing. The main
concern is to compute the matrix elements
(n, I(z')"e In') as efficiently as possible, as
there are so many matrix elements of this type
which must be evaluated. All calculations have
been done on a CDC-3600 computer, and the ac-
tual matrix diagonalizations were carried out us-
ing the subroutine AN F-202. Using a 14-shell
basis set and a 12-term expansion for the Woods-
Saxon shape, it takes -100 sec to carry out the
calculation for G(z') =0. When G(z') consists of
one term, the calculation takes roughly 140 sec
and a slightly smaller increment of time (-22 sec)
occurs for each additional term in G(z'). The es-
timates quoted above apply when we compute only
eigenvalues; if we want eigenfunctions as well,
another -35 sec should be added to each estimate
given above. The calculation is not extremely fast,
but the length of time involved seems far from pro-
hibitive in view of the results to be obtained from
such calculations.
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FIG. 1. Shifts of single-particle energies due toe o distortion of equipotential surfaces. The parameters used for thi

calculation are: e = 0 23: E = 023, V[]=392 MeV, ro= 1 35& 10 cm. & = 117 Z' = 0 130 M V d-f3
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e, an "0 6 )dk =-0.02.

from positive G(z'); no additional calculations
were done to construct Fig, 2.

A Priori, we expect to see that single-particle
states with about the same distribution of values
of n~ will shift in approximately the same way a

~ ~

y as
we vary z,„; this is what we do see.

We have not made any detailed examinations of
our wave functions as yet, but we have looked at
their distributions in terms of N, the oscillator
shell number, and X, the projection of angular mo-
mentum on the z axis. The value of X given as a
label for each single-particle state corresponds to
the dominant value in the wave function. The only

real surprise in the level ordering of Fig. 1 is that
the second state labeled 3' [70] occurs at an energy
lower than the first state 2 [71]; aside from this
the single-particle levels are where we expect'
them. If we know the distribution in ~ of our wave
functions, we also know (S,). There appears to
be some differences in the values of (S,) which we
calculate and the values used to calculate magnetic
moments in work of Lamm. ' These differences oc-
cur only in some of the positive-parity (N= 6) sin-
gle-particle states.

One thing to learn from Fig. l is the limitation
of the effects of equipotential surface deformation
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TABLE I. Expansion of G(cos 8) of Eq. (13') in terms
of Legendre polynomials.
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FIG. 3. Low-lying band heads in 2 Cm and ~Cm. The
information is obtained from the Table of Isotopes (John
Wiley & Sons, Inc. , New York, 1967), and (d, P) and (d, t)
experimental data (see Ref. 9) currently being analyzed.
Hole states are indicated by dashed lines.

0
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+0.0053

ergies computed under the assumption that G(z')
=0; and in the second column, we give the exper-
imentally' determined single-particle energies
(energy shifts due to pairing forces" have been
removed from the experimental data). The main
discrepancy between calculation and experiment
occurs for the hole states of "'U; also some of
the particle states occur at too high an energy in
the calculation. From Fig. 2 we can see that the
hole-state spectrum would be improved by choos-
ing G(z ) such that z ~,„=5. In the third column
of Fig. 4, we display a single-particle spectrum
computed under the assumption that

I

G(z )=3.3xlP (z 4e +6
) (13)

and this leads to a marked improvement in the
agreement with the experimental spectrum. The
major remaining discrepancies are in the energies
of the 2 [61] hole state, and the 2"[62], and 2 [60]
particle states. Undoubtedly, there are other
choices of peak height and width that give roughly
the same single-particle spectrum; the essential
features appear to be that z',„=5 and that the
sign of G(z') be positve. There is no great resem-
blance between this form of G(z') and a deforma-
tion of the form P46(cos8); perhaps we might say
that it corresponds roughly to the peak at 0' for
levels in the N= 5 and N= 6 oscillator shells.

It is, of course, possible to expand the function
G(z') in Legendre polynomials on any sur'face of
constant R . For R =8, we have

- I 400—
-1600—

5/2
5/2

G(cos'8) = 2.37x 10'cos"ge "'"'

G(2 )=0 EXPT. G(Z~)=3.3x lo ~

224 -2.4Z

FIG. 4. Comparison of calculated and observed single-
particle states in U. The calculated values of column
1 are obtained with the parameters used in Fig. 1, with
G(z ) = 0. The experimental (see Ref. 9) values of column
2 have been corrected for pairing effects. The calculat-
ed values of column 3 are obtained with the parameters
of Fig. 1, with the changes K' = 0.134 MeV and G(z )
=3 3x 10 Sz24g-2. &2

In the table, we list the first six nonzero coeffi-
cients in the Legendre expansion of this function.

In Fig. 5, we show the equipotential shape im-
plied by the G(z') of Eq. (13) as well as the equipo-
tential shape of an ellipse of the same deformation
radius and a circle of the same radius. In Fig. 6,
we give a somewhat more complete calculated sin-
gle-particle spectrum for ' 'U which includes some
states not yet seen in "'U. The calculations are
done with the G(z9) given in Eq. (13) and pairing
interactions" are also included in the calculated
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3

FIG. 5. Equipotential shapes. The solid line repre-
sents the equipotential shape used for U setting Ro =8.
With dashed lines, we show the deviation from the ellip-
tical shape obtained by setting G(z ) = 0. We also show
the circle obtained by setting c = 0.
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FIG. 6. Predicted energies of single-particle states
in U. Pairing effects are included in this calculation
of the excitation energies of single-particle band heads.

spectrum; so this calculated spectrum can be com-
pared directly with experimentally observed single-
particle ener gies. We hope that it will be of value
in future experimental studies.

In the hope of saving others some unfruitful la-
bor, we mention an approach for improving the
agreement between calculated and observed single-
particle energies in '"U that we believe to be in-
correct. The main difficulty in the calculated sin-
gle-particle spectrum is that the hole states —, [51],
—, [53], and —,

' [72] are too close to ground. The &
= 5 shell levels can be moved farther away from
the ground state by making some changes in the
radial form of the Woods-Saxon potential and keep-
ing G(z') = 0. By making the potential well some-
what deeper at the origin, i.e., making the replace-
ment

1 1 &2(&i&P )2

1+ nr(riRp)-zj 1+ o.r(ri p)-yj

(14)
and suitably choosing parameters, it is possible
to obtain improvements in the calculated single-
particle energies relative to experiment for ' 'U.
The N= 5 hole states are moved further away from
the Fermi surface. However, one also gets single-
particle wave functions that appear to be quite un-
realistic; i.e., bear little resemblance to the ex-
pected asymptotic labeling.

IV. SUMMARY AND CONCLUSIONS

The possibility of explaining observed spectra is
considerably increased by allowing general axially
symmetric deformations of the equipotential sur-
faces. Figures 1 and 2 of this paper indicate many
of the changes in level ordering and spacing that
can be made in this way. They also indicate the
limitations of this class of deformation in shifting
ordering of levels. The approach appears to be
useful in a study of 2 'U, but quite powerless to ex-
plain a level inversion between ' 'Cm and 'O'Cm.

In order to see the ultimate limitations of single-
particle models, calculations must be made in
which the restriction to axially symmetric shapes
is dropped. This would seem to involve a hercu-
lean calculational effort. When and if such calcula-
tions are made, we should be in a position to an-
swer the fundamental question: how well can sim-
ple models consisting of single-particle interac-
tions and residual pairing forces account for low-
energy excitations observed in real nuclei~
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We present here some relations needed for the computation of matrix elements, many of which can be
found' in the literature.

For computing matrix elements of p ' and Pz', we note

(n Ip
' In, ) = (n lz' ln ),

(n Ip In~) = (n, Iz-' In~),

with similar relations holding between p' and P&'. We have

z In~) = (n~+ z) ln~)+&[(n~+ l)(n~+2)]"'ln +2)+2[n~(n~ —1)]'~'In~ —2),
and

p' I n ~, A) = (n ~ + 1) I n ~, A) + —,
'
[(n ~ + A + 2) (n ~ —A + 2) ]"z In ~ + 2, A) + 2 [ (n ~ —A) (n ~ + A) ]"2

I n ~ —2, A) .

We evaluate matrix elements of the form

(n, A. lp' e "' In', A. ') and (n Iz'~e "' In,')
by direct integration. Explicit forms for the basis states are

[2'~(n !)]"'~(J!)(n, —2J)!
J

and

p ~" ' ~ n —A. n +A "' (-1) p'"i
(2w)"' 2 2

'

q, (n,
—

x) q, (m, +z)

(A1)

(A2)

(A4)

(As)

where J is constrained to those integer values in Eqs. (A4) and (As) such that the factorials are nonnega-
tive integers.

Finally, we need matrix elements of l s. The diagonal elements are

(n ~, &, n„+—,
'

I l,s, In ~, &, n„+&)=+2&,

and the nonvanishing off-diagonal matrix elements needed in the calculation are

(n~ —1, A. 1,+~ n1,+——', ll Kin» A., n~, ~&) =+(e"'+e "')[(n~+ l)(n~ —A)]'~',

(n, +1, A. +1,n, —1, ——,
' ll s In„h., n„z)= , (e"'+-e—"')[n(n~+X+2)]'",

(n ~ + 1, X+ 1,n, + 1, ——,
'

ll s In ~, X, n~, &) =
~ (e"'—e "

)[(n~ + 1)(n ~ + & + 2)]' ',
and

(A6)

(A7)

(A8)

(A9)

(n~ —1, X+1,n, —1, -z ll s ln~, &, n„&)= &(e'~' —e ' ')[n (n& —&)]' (A10)

together with the relation

(a ll s lb) = (b ll s la) . (A11)

We note that it makes very little difference if the N, N+2 matrix elements of I s are set equal to zero, and
K' is adjusted slightly.

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission.
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