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By means of a Faddeev-like method, a formulation of nuclear reactions leading to three-
fragment final channels is presented. It is a shell-model theory of nuclear reactions in which
one can, in principle, deal with two particles in the continuum in the intermediate states.
The amplitude also includes as one term the distorted-wave t-matrix approximation (DWTA).
An approximate treatment of the resonance-type term leads to a two-step process for (P, 2P)
reactions. The importance of such a mechanism, which proceeds via the 1p-1h or 2p-2h
states of the target nucleus, is presented for reactions which heretofore have been analyzed
by means of the DWTA.

I. INTRODUCTION

Recently, the theory of nuclear reactions of the
form (p, 2p) and (p, pn) has received quite a bit of
attention. ' ' Analysis of data is presently done in
two ways. One method treats the reaction as a
one-step or direct interaction process. The other
method treats the reaction as a two-step process
in which the incoming particle undergoes a direct
inelastic collision leaving the target nucleus in an
excited state which eventually decays by particle
emission.

For incident proton energies greater than 100
MeV the distorted-wave t- matrix approximation
(DWTA)" or various high-energy approximations
to the DWTA have, in general, provided a consis-
tent method of analysis. At lower energies the re-
action is generally a sequential one. The work of
Detenbeck' for the reaction "N(p, 2p)»C at 19 MeV
clearly shows the existence of the two-step (P, 2P)
reaction.

However, recent work by Pugh et al. and Clegg
et a/. ' indicates that there are two-step processes
occurring in the reaction "C(p, 2p) "Bat incident
proton energies of 50 MeV and 120-150 MeV, re-
spectively. This conclusion is based on the fact
that, if one believes the structure calculations for
the ground state of "C, there is a comparatively
large production of final states in "Bwhich are
forbidden by the direct process. This also implies
that in the case of an allowed direct transition
there is also a contribution to the amplitude from
the two- step process.

In Sec. II, we obtain a unified formalism which
will allow the simultaneous treatment of both the
one-step and two-step processes. The formalism
will be found to contain a direct term which corre-
sponds to the DWTA and a resonance-type term in
which it is possible to treat in the intermediate
states, as well as in the final state, one or two
bodies in the continuum. In Sec. III approaches

and approximations to calculation are discussed.
In Sec. IV we show the importance of the two-step
process when it is calculated in terms of discrete
intermediate states; namely that it is this process
which allows us to study the excited 1p-1h and 2p-
2h states of the target. This study will be done in
the spirit of nuclear-reaction investigations' "
that so far have been carried out for elastic and
inelastic scattering to unite nuclear-structure
theory, in particular shell-model theory, with re-
action theory.

II. DERIVATION OF THE UNIFIED AMPLITUDE

We will consider reactions of the type (P, Pn) and

(P, Pa). The interaction between the incident par-
ticle and the target will be denoted by V, + v,
where v is the potential between the incident par-
ticle and the particle which will be emitted. Then
Vy is the interaction betw een the incident parti cle
and the residual nucleus. The interactions in the
target will be written as V, + U, where V, is the
potential between struck particle and the residual
nucleus and U is the sum of interactions within the
residual nucleus.

The transition operator T, in prior form, is giv-
en by"

T = V, +v+(V, +V, +v)G(V, +v),

where the total Green function G= (E~'l -K-U-V,
-V, -v) ', and K is the kinetic-energy operator
for the entire system. When we expand G accord-
ing to G = G~+ G~v G, where G~ = (E ' K-U -V, -
-V,) ', Eq. (1) can be written

T = [1+(V,+V,)G~] [V, +v+vG(V, +v)] .
When G is again expanded as G = GM+ Gv G~, we
obtain

T =Q»[V, +(v +vGv)Q, ],
where Q» =1+(V,+ V, )G~ and Q, =1+ GATV, .
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GM = G, + G~ (V, + V,)G, . (4)

Multiplying Eq. (3) on the right by (1-G,v) ', and
using Eq. (4) we have

v =t+7G~(V, + V,)Got, (5)

where f =v(1 —G,v) '. The kernel of Eq. (5) is now

compact with respect to a basis that includes two
bodies in the continuum. This multiplier method of
obtaining an equation with a compact kernel was in-
troduced by Sugar and Blankenbecler. ' It is equiv-
alent to the methods of Faddeev and others. " Equa-
tion (5) and that which follows are exact for the
three-body model which consists of the incident and
struck particles and the inert residual nucleus.
However, it is possible to treat all excitations in
the intermediate states which do not have more
than two particles in the continuum, since no for-

When the cross section is calculated, matrix el-
ements of T are taken between the initial state (in-
cident plane wave plus target wave function) and
the final state (two plane waves plus residual-nu-
cleus wave function). The operator Q, distorts the
incident sta.te into a state

~ yP ) which is composed
of a distorted wave for the scattering of particle 1
from the residual nucleus and the true target wave
function. It is a scattering eigenfunction of the op-
erator II~=K+ U+ V, + V, with outgoing waves. The
operator Q» distorts the outgoing state into the
state (yq ~

which consists of two outgoing particles
both distorted by the interaction with the residual
nucleus and the true residual nucleus wave func-
tion. The wave function ~yq~) is also an incoming
wave eigenfunction of B~.

To compute the cross-section it will be neces-
sary to evaluate v, where

7 =V +VGV =v +TGMV ~

However, as the expression now stands, difficul-
ties will arise. The interaction v does not affect
the residual nucleus which is assumed to remain
bound. Whether the residual nucleus is assumed
to be an inert core or a bound system with struc-
ture, the evaluation of Eq. (3) will introduce dis-
connected diagrams in the motion of the center of
mass of the two particles with respect to the resid-
ual nucleus. The solution of Eq. (3) cannot then be
calculated by any convergent scheme. " These
problems were essentially eliminated in three-
body scattering by methods mainly due to Fad-
deev. " Greider and Dodd" also made a study of
expressions of this form in the distorted-wave
formalism and showed that they diverge. To be
able to do calculations with two bodies in the con-
tinuum Eq. (3) must be modified. '

With G, =(E-K-U) ' we expand G~ as

mal difficulties are encountered by allowing the re-
siduh. l nucleus to become excited.

When Eq. (5) is rearranged and placed in Eq. (2)
the final expression for T is

T =Q„(t+t[E-H~-(U, +U, )Got] '

x(V, + V,)G,t fQ, +Q„V,. (6)

In Ref. 2 an integral equation with a compact ker-
nel was found for T and special attention was given
to the Born term. In Eq. (6) we show the solution
of the equation and explicitly display the resonance
term. The result of obtaining a formally calculable
expression is the appearance of the compact "re-
sidual" operator (V, + V,)G,t in the resonance term
and of t instead of v in the direct term.

If we neglect all but the first term in Eq. (6) we

have

g —Q,2gQ, ,

which is the DWTA and has been used by McCar-
thy. ' The second term which may lead to reso-
nance reactions will be discussed in the next sec-
tion. The third term is a recoil type of term,
wherein the incoming particle interacts only with
the residual nucleus with the struck particle acting
as a spectator. It can lead to direct formation of
final states which may be forbidden by the DWTA.
When antisymmetric wave functions are used, this
term is proportional to & "' and is usually neglect-
ed. To correspond to the physically realizable sit-
uation, the scattering amplitude should be anti-
symmetrized. This is done in the Appendix as it
does not effect the discussion which follows.

III. DISCUSSION OF TERMS IN THE AMPLITUDE

In full generality, Eq. (6) is still a very compli-
cated many-body expression. We will now consid-
er some reasonable approximations and approaches
to calculation of the (p, 2p) amplitude with the use
of Eq. (6).

How to treat the interactions V, and V, is the
first question that arises. To arrive at any dis-
torted-wave formalism, the distorting potentials
are taken to be actual interactions, as was done
to obtain Eq. (2). Then to calculate distorted waves,
the distorting potentials (in this case V, and V,
when they appear in the distorted-wave operators
Q» and Q, ) are usually taken to be complex central
potentials. This means that the many-body aspects
of V, and V, are built up in the distorted waves by
the complex potential. In all that follows we will
assume that V, and V„when they appear in 0»
and Q„areto be taken as optical potentials which
represent the scattering of a proton from the re-
sidual nucleus.

In the resonance term the potentials V, and V,
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can be treated in two ways. If they are assumed to
be central (single-particle) potentials, then there
can only be coupling to intermediate states in
which the residual nucleus is in the same state as
in the entrance channel. In this case, the residual
nucleus can be treated as an inert core (@=0) and
we have a three-body model for the problem. On
the other hand, if Vy and V, are sums of two-body
potentials, there is coupling to intermediate states
in which the residual nucleus is excited with re-
spect to the entrance channel.

In either case, H~ in the denominator of the res-
onance term can be approximated by the shell-mod-
el Hamiltonian. This entails making the standard
shell-model assumption that the central parts of
VI and V, are taken with re spe ct to the cente r of
mass of the residual nucleus. In the case of the
three-body model H~ is a single-particle Hamilton-
ian for two particles whereas, in the many-body
case H~ includes also the residual interactions be-
tween protons 1 and 2 and the residual nucleus.
The shell-model assumption is consistent with the
separation of coordinates of protons 1 and 2 in 0»
so that each distortion can be calculated separately.

A calculation that includes two particles in the
continuum could in principle be carried out by ex-
tending the Weinberg" method (which rigorously
treats the continuum-continuum coupling) to two
continua. " Whether such an attempt is practical
is, to say the least, very much in doubt. However,
the importance of contributions from the reso-
nance term can be investigated by truncating the
set of intermediate states to include only the ex-
cited states of the target that are of interest com-
bined with a scattering state of the incident parti-
cle at a discrete energy which is correspondingly
reduced from the entrance channel energy. This
is consistent with the two-step process in which
the incident particle undergoes a direct inelastic
collision. The inverse operator in the resonance
term is then calculated by inverting a finite matrix.
An even more simple (and more approximate) ap-
proach is to treat the matrix by the weak coupling
(diagonal) approximation. In the next section we
present evidence that mechanisms other than the
direct DWTA are required.

IV. APPLICATIONS

We now consider through what kind of states the
two-step process can go. If V, and V, are sums of
two-body interactions, the expression (V, + V,)G,t
can couple to intermediate states no more compli-
cated than 3p-2h. If one of the particles is in the
continuum, the intermediate states consist of
2p-2h or 1p-1h states of the target. The continuum
particle can be interpreted as the incident proton

participating in the reaction inelastically. If that
proton carries off enough energy, the intermediate
state of the target can be in a region of distinct res-
onances even if the incident proton energy is in the
50-MeV range. The excited state of the target can
then proton decay via t to a variety of states of the
residual nucleus.

In the reaction "C(P, 2P) "Bmentioned in the In-
troduction, it was observed that the 2 level at
4.46 MeV and the-,', 6.V6-MeV level in "Bcould
not be reached by a direct transition. ' According
to structure calculations, there is not enough of the
needed component in the ground state of "C for
this to occur. Thus, for these transitions to occur
they must proceed through the second or third term
of Eq. (6). Other studies"" clearly show that in
the excitation region 16-35 MeV there are reso-
nances, including the giant dipole resonance at
23-MeV excitation, which are of the 1p-1h type.
Contributions from the 2p-2h states in this same
excitation region have also been found. " The mul-
tiplier method we have introduced automatically
gives this particle-core excitation by means of the
interactions V, and V, which appear in the numer-
ator of the resonance-type term.

We recall that in the three-body model U = 0 and

V, and V, are central potentials. If this model is
to be reasonable, it is required that the target
state be well represented by a single-particle state
outside an inert core. The intermediate states
that t or (V, + V,) G,t can couple to consist of two

particles in single-particle states outside the core.
If one of the particles is in the continuum, the tar-
get in intermediate states is in an excited single-
particle state.

The single-particle description is valid for a
'~Y target. " The 89Y(P, 2P)"Sr reaction has been
investigated by McCarthy' in the DWTA using a
phenomenological t. He finds that the DWTA de-
scription is inadequate in that the angular corre-
lation cross section decreases too fast at larger
angles. However, it should be remembered that
the three-body aspects of the problem are not ex-
hausted by the use of the DWTA. The two-step
process can again be simply (but approximately)
included and could very well account for discrep-
ancies between the DWTA and experiment.

V. SUMMARY

We have obtained an expression for reactions
that lead to three-fragment final channels which
contains a direct term which corresponds to the
DWTA and a resonance term in which it is possible
to treat two bodies in the continuum. After discuss-
ing approximate ways of dealing with the resonance
term, we have shown its importance to reactions
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which have only been analyzed with the DWTA term.
We have begun calculations to obtain a good ap-

proximation of the contribution of the other direct

terms; namely the recoil term and direct-exchange
term. In the future we hope to include the two-step
process also.

APPENDIX

To complete the formulation we obtain an antisymmetrized (p, 2p) amplitude. We assume the wave func-
tions for the target and residual nuclei are properly antisymmetric. If N is the number of relevant protons
in the target, the antisymmetrized amplitude is given by "

(flTla& =(a&)"(iX, (P, )Xa(ta) -X, (Pa)Xa(P, )]4~ 11"IX(P, )4 r&-(&-1) (a&)' '&t g, (P )ya(Pa)

-X,(Pa)Xa(P.)]4 ~IT..IX(P, )i r&, (A1)

where p, is the incoming proton, pa is the proton emitted, p is one of N-1 protons exchanged. Also Qz.
and Q~ are the target-and residual-nucleus wave functions, respectively.

The first matrix element on the right side of Eq. (Al) is evaluated by using the T operator given in Eq.
(6). The second matrix element represents the exchange amplitude. The T operator for exchange is

Tex = V, +v + (V, + Vr +v»)G (V, +v),

where G is the total Green function, and V, and v are defined as before. The exchanged particle r that is
emitted interacts with the other emitted particle through v„and with the residual nucleus through V,.
When we extract the distorting operators and rearrange, as was done previously to obtain Eq. (6), we ar-
rive at

&ex =~ar(tex +&ex ~E ffM (Va+Vr)aotar~ (Va+Vr)GO&ar~~l+~ar( i+v var)

where t,„=v+t„G,v, and t„=v„+v„G,t„,and all other quantities not explicitly defined, such as Go,

BJ, 0, appear the same as before except the incident proton labeled 1 is exchanged with the proton from
the residual nucleus labeled by r. Other than in the third (recoil) term, we see that the difference between
Eqs. (6) and (A2) is the appearance of t,

„

instead of t.
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