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We introduce a simple phenomenological model of the vertex functions (virtual decay am-
plitudes) describing the reactions ®¥0(g.s.)—a+12C, and 0(6.056 MeV)— o+ 12C. These ver-
tex functions (under certain assumptions) can be used to predict the elastic and inelastic elec-
tron scattering monopole form factors, as well as describing hadronic reactions such as
a~-cluster transfer and excitation. The monopole form factors are compared with recent
data: The ratio of the inelastic form factor to experiment is about 4 (as compared with de-
formed and spherical shell-model predictions which give <3 for this ratio), owing to the ex-
cessive collectiveness of this description of the transition.

I. INTRODUCTION

The nuclear cluster model is useful for the in-
sight it affords into the mechanisms of direct clus-
ter transfer reactions,’ and into certain structural
features of light nuclei.? However, for practical
purposes, it is as impossible to solve exactly the
4-boson problem as it is to solve the 16-fermion
problem, so it is not remarkable that few authors

have tried to describe O as an a-cluster nucleus.
(The early work of Dennison,® and the more recent
treatments by Perring and Skyrme,* and by Brink®
comprise essentially all of the literature on the
subject.) Nevertheless, in view of the success of
the 3-a cluster model in accounting for some of
the gross properties of *C,® the time may be aus-
picious for reopening the question of the a-parti-
cle structure of 0. Ultimately, we may hope to
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take into account such (obviously important) dy-
namical features as the small binding energy of
%0 with respect to dissociation into « particles,
as well as the proximity to the °O ground state

of the & +®C continuum states — features which
are ignored in the conventional shell model. The
aim of this note is much more modest: We pro-
pose “reasonable” vertex functions which describe
the virtual decays °O(g.s.) - 2C(g.s.) + @ and
160(6.056 MeV) ~ '2C(g.s.) + @, and which satisfy
certain general criteria associated with the clus-
ter model. These (model) vertex functions are
ultimately intended for phenomenological treat-
ments of various hadronic reactions involving °O;
here we shall assume that the intermediate states
which arise in calculating the elastic and inelas-
tic electron scattering monopole form factors are
saturated by the asymptotic (a +2C) parts of the
corresponding wave functions, and we shall com-
pare the resulting form factors with recent data.

II. CLUSTER-MODEL FORM FACTORS

Suppose we were given the a-cluster wave func-
tions of the (0¥) ground and first excited states of
80: Of necessity they would be totally symmetric
scalar functions, ¥, and ¥,, of the cluster posi-
tion coordinates T,,T,, T, T,. Let us also suppose
that we probe this nucleus in a manner which mea-
sures only the spatial distribution of its constitu-
ent « particles; then we should require the func-
tion

4 - >
Mba(q)=§fdfl---fdr4 ¥ eld Ty
B=1

- -> -> - * - -
XO(5(F, +T, +T,+T,)) ¥p ¥,u(Ty, ..., T,

(b,a)=(0,0),(1,0).
(1)
The amplitude defined in (1) above is related to
the elastic and inelastic electron scattering form
factors by

Fba(q)chx(q)Mba(CI)a (2)

where F,(q) is the “He elastic scattering form
factor. [Moreover, Mj,(q) is closely related to
the amplitudes for foward scattering of strongly
interacting particles, such as a particles.] Equa-
tion (1) can be simplified by changing to Jacobi
variables

> > 1> - -
r=r,-3(r,+T3+T,),

§=TF,-3(f,+7), (3)

This coordinate transformation, together with the
Bose symmetry of the wave functions, yields

Mba(q)=dee‘3"‘)’a" 0y, (4

where

so that
Mba(q=0)=fdfp,,a(r)=p,,a. (6)

In general the wave functions ¥,, ¥, will be ra-
ther complicated functions of ¥, 3, T, and p,,(7)
will therefore be hard to evaluate. Let us repre-
sent My ,(q), its Fourier transform, by the tri-
angle part of the graph in Fig. 1, where the sum
over all intermediate states of the unscattered
clusters is implied. If we were to make the dras-
tic assumption that this (three-a) intermediate
state is saturated by its lowest-mass term, the
2C ground-state pole, we could represent Mp,(q)
in the form’

*x(izr 315,
Mba(liz" E'l ) =de”Bb +1él;i28§” :;EI;Z/mOL

% va(l?”+%l?) 7
B, + 2R3 (K" + 1K) /my’

where v, and vp* are the vertex amplitudes de-
scribing the (virtual) processes

%0(a)~ @ + 2C(g.s.) - B ;(MeV) ,

and
a +12C(g.s.)~ %0(b) + Bp(MeV) .

The well-known relation® between vertex ampli-
tudes and single-particle wave functions leads to
the expression

p, (N =4 (IYs(), (8)

where ¥,(7) and ¥5(7) are “single-particle wave

& «

FIG. 1. Diagrammatic representation of the a-clus-
ter model of electron scattering from 160, in the first
Born approximation.
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functions” in the a-'2C relative coordinate, 7.
Although this model for p,, is far removed from
the wave functions ¥, and ¥,, it is so much sim-
pler than Eq. (5) that it merits consideration de-
spite this flaw. Indeed, Eq. (8) clearly exhibits
the correct asymptotic behavior in 7 since the
longest-range components (in 7) of the true wave
functions, ¥, and ¥,, correspond to the most
weakly bound channel, «+2C(g.s.).

III. VERTEX FUNCTIONS

In order to apply this simple picture, we re-
quire “single-particle wave functions,” (7). As
we lack a theory of these functions, we shall have
to conjecture them, guiding our guesses by our
prejudices as to their behavior. We would gener-
ally expect that (ignoring Coulomb effects) a con-
figuration-space wave function must be finite at
the origin and should have the asymptotic form
e~ "' /r at large spatial separations, where K is re-
lated to the separation energy in the usual way:

Kz(zmred. Esep. /h—2)1/2. (9)

Since we wish to avoid introducing the nucleon de-
grees of freedom explicitly, let us put in the ef-
fects of the exclusion principle by hand, as it
were, to simulate the behavior of a properly anti-
symmetrized wave function. What sort of behav-
ior should we aim at? Clearly, it must be a mod-
ification of the wave function at short distances,
since the effects of antisymmetrization vanish
when the clusters no longer overlap appreciably.
Some time ago, Perring and Skyrme* in a remark-
able paper showed that the isotropic harmonic-
oscillator—model ground states for the 4n nuclei
®Be, 2C, and 'O were exactly equivalent to prop-
erly antisymmetrized a-cluster wave functions.
They were generally able to find two linearly
independent functional forms for the cluster wave
functions which became indentical upon antisym-
metrization. When we isolate the dependence of
these two wave functions on one a-particle coordi-
nate, we obtain the functional forms (1 +ar?+b7?)
Xe™r% gnd v%e™’%, Clearly, when they are gener-
alized to the case of localized clusters (that is,
when the internal oscillator constants differ from
that describing the relative motion), the two forms
are no longer identical after antisymmetrization.
To decide which is preferable, we may guide our-
selves by two analogous previous cases: First,
Kudeyarov ef al.? found that the Coulomb quadru-
pole form factor of the transition 1*(g.s.)~3"
(3.56 MeV) in °Li could be fit with the function
r2e ™ 2, but could not be fit with its shell-model
equivalent, (1-ar2)e™?, Similarly, Scholz and
Neogi® have found that the "Li—~°H + *He vertex

function, as measured by several direct reactions,
could be fit with the function »°Y,, (?)e™" 2 but not
with the (shell-model equivalent) function 7Y, ,(#)
X(1—-ar®e . If we generalize the °Li and “Li re-
sults to the present case, we should prefer a wave
function proportional to »* at small distances, to
describe a-particle motion relative to a nucleus
with a filled 1s,, shell. For the moment, we
leave the precise power behavior of the wave func-
tion at the origin as a parameter, and take for our
ground-state wave function

—KAr
ll)o(’)’) =N0(1 —eT/R )n +1 6_0_

(10)
"

b
and as the corresponding wave function of the first
0* excitation

1,1)1(7') =N1(1 _ e-r/R)n +1(1 _ e(ro-r)/R)f—_Kl:

(11)

The position of the node, 7,, is fixed by the orthog-
onality condition

fo " dr v g 1) =0. (12)

In (10) and (11), N, and N, are normalization con-
stants. Assuming these functions somehow repre-
sent the ground and first excited states of '°0, we
determine their asymptotic decay constants «,

and £, from the corresponding *O— « +'2C separa-
tion energies. The cutoff radius, R, and the ex-
ponent » remain as free parameters. The func-
tional forms (10) and (11) interpolate smoothly be-
tween the conjectured short-range behavior and
the correct asymptotic form; our hope is that they
are reasonable at intermediate distances also.
Furthermore, they are eigenstates of the Hamil-
tonian

H =——ﬁz—V2+i2—n(n+1)[e”“?—1]'2
" Tom, 2m,R?

~VleR-1]"1, (13)

with ¥V, chosen appropriately. We note the appear-
ance of the singular short-range repulsion, pro-
portional to [e”/#~1]"2, which simulates the ex-
clusion principle.

We can use the functions (10) and (11) to calcu-
late the monopole form factors

Moo(q) = f P dr 2| 0 o(n) 2g(2an) (14)
4]
and
Ma)= [T are v *Difken,  (19)

which yield the following differential cross sec-
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tions for elastic and inelastic electron scattering,
in the first Born approximation (Fig. 1)°.

doe), /dS2 =(dog/dQ) | F o (9)Myo(a) I, (16)
doyy, /d=(dog/dQ) | F o ()M ()17, (17)

where F(q) is the empirical a-particle elastic
form factor, and (dog/dQ) is the elastic differen-
tial cross section for electrons scattering from a
point charge with Z =8.

IV. COMPARISON WITH EXPERIMENT

Rather than trying to vary the parameters R and
n to obtain best fits to the data, we shall test the
model form factors, My, (q) and M,(q) by fixing R

for each n, and then varying n» to see what happens.

How shall we fix R? We can use it to fit one of
the three experimental numbers: (1) the position
of the 0% excited state relative to the ground state;
(2) the mean-square matter radius, (7,2), of the
ground state; or (3) the pair-emission monopole
matrix element. The excitation energy of the 0*
state is given in MeV by*?

T T T T T A T
10— 4 -
=3
- —7.0
£ s
= 3
A c—>—60 =
o« %
v w
5 —15.0
—a
le—b —4.0
—3.0
| | ] ] ] | | |
o I 2 3 4 5 6 7 8 9

R (fm)

FIG. 2. Functional dependence of the excitation ener-
gy of the 0% state (dashed curves, right-hand vertical
scale), mean-square matter radius (upper three solid
curves), and monopole matrix element (lower three solid
curves) on the interpolating distance, R. The left-hand,

vertical scale pertains to both sets of mean-square radii.

The parameter 7 is explained in the text. The arrows
labelled a, b, and c indicate, respectively, the experi-
mental values of the mean-square matter radius, 4.74
fm?, the monopole matrix element, 3.8 fm2, and the ex-
citation energy, 6.056 MeV.

(n +1)(2¢,R-1) T 7
E =17.15- -
xn,R)="1.15 [ oy 1 WL

(18)

(that is, by the mass less the binding energy), the
mean-square matter radius®® by

(ra2>=1%j;wdrr4| bo(n) 2, (19)

and the pair-emission monopole matrix element
by 14

(0% 6.056] 3 7,2l g.s.) =§—§f°° dr v*y (), (r)
) 0

=3.8 fm?®. (20)

These quantities are plotted against R, for n=3,
4, and 5 in Fig. 2; their experimental values are
indicated on the figure by arrows. The casen=3
can be ignored, since for no value of R is the ob-
served monopole matrix element of 3.8 fm® repro-
duced. When n =4, the values of R which fit the
three data are, respectively, 2.05, 1.95, and 2.8
fm; while at n=5 they are 1.95, 1.6, and 2.1 fm.
The elastic form factor [ Eq. (5) multiplied by the
empirical *He elastic form factor] is plotted as a
function of momentum transfer in Fig. 3 for n =4,
R=2.8fm, andn=5, R=2.1fm." The first and
second diffraction minima occur at the correct
values of ¢, but we observe that the form factor
falls off too rapidly at large momentum transfers,

T T T T T T
= n=5,R=2]
n=4,R=28
10" ~
5 102 —
W
x
G4
W 1073 —
1079 —
—~
// \\
|
r/\
i
| | | | | |
[ 1 2 3 4 5 6 7
q (fm™")

FIG. 3. Elastic form factor (theory) as a function of
g, the momentum transfer to the electron, for the pa-
rameter sets =4, R=2.8 fm (solid curve), and n=5, R
=2.1 fm (dashed curve).
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n=4,R=2.8

Fin (Q) X Fq (q)

104

q (fm™")

FIG. 4. Inelastic form factor, for n=4, R=2.8 fm,
together with several data points from Ref. 13.

for both sets of parameters. At the first maxi-
mum, ¢=1.9 fm™!, the experimental form factor®
is about 2X107%, whereas the cluster form factors
with n=4 and 5 give 1.25X1072 and 1.5%107%, re-
spectively. The fit becomes progressively worse
at higher ¢ — for example, at ¢=~4 fm~' the ratio
of experiment to theory is between 5 and 10.Y
Figure 4 displays the inelastic form factor for
the parameters n=4, R=2.8 fm. The form factor
withz=5, R=2.1 fm is only slightly different, so
it was not plotted. Some of the experimental val-
ues recently measured by Bergstrom ef al.’ are
included on the figure. The theoretical form fac-
tor is too large by a factor of 4 or 5 and has the
correct general shape. We would surmise (by
comparison with the elastic fit) that the position
of the first diffraction minimum is correctly pre-
dicted (although, of course, one cannot ascertain
this from the data). At least it agrees with other
calculations using finite-well wave functions, as
does the predicted position of the first maximum.™
The size of the inelastic form factor at maximum
is insensitive to the value chosen for R. Thus we
could fit {(7,2) (R =1.95) or E,(R = 2.05) without
substantially modifying this prediction.

V. CONCLUSIONS

What can we deduce from the behavior of these
form factors? Since the elastic form factor cor-
rectly predicts the positions of the diffraction

minima, its length scale must be correct. How-
ever, the corresponding matter density p 00('r)

= | y4(r)|? is clearly too smooth and/or insufficient-
ly peaked at the nuclear surface, since its higher
Fourier components decrease too rapidly. For,
suppose we had p_ (7) =(R)™25(r —(R)), which
yields the corresponding form factor, j,(3g{R))
XF(g): This expression, with (R) chosen to re-
produce the minima, overestimates the experi-
mental form factor by a factor of ~2 at ¢=1.9 fm™,
The true matter density may be considered to lie
somewhere between a surface 8 function (1 =),
and p, (7) (for n=4 or 5).

It is encouraging that the inelastic form factor
comes out too large: For the « +'2C intermediate
states certainly do not span the 16-nucleon space,
and we should therefore expect a certain amount
of renormalization to take place. Several au-
thors'?° have calculated the inelastic monopole
form factor using shell-model wave functions, and
have obtained results which underestimate the am-
plitude by factors of 2 or greater. That is, while
the form factors calculated inthis paper describes
the transition as being strongly collective, the
shell-model wave functions are not collective
enough. Whether this result implies the necessi-
ty of distinct cluster components (with the asymp-
totic @+ C form) in the various O states is not
entirely clear; it ¢s clear, however, that the con-
ventional shell model does violence to the physics
when it ignores the lowest-lying continuum states
in the O system.

While one would hesitate to make extravagant
claims for the model form factors presented here-
in since their derivation lacked the foundation of
basic theory, it is nevertheless true that they
work suprisingly well. With suitable caution as to
their normalization, we should be able to apply
them and the vertex functions v,(g), v,(g) [corre-
sponding to the “single-particle wave functions”
(10) and (11)] to various hadronic reactions which
emphasize the cluster properties of '°0,

Finally, we should not ignore the potential use-
fulness of wave functions such as (10) and (11)
based on eigenstates of the Eckart®! potential
n(n+1)/(e”-1)>-1/(e”- 1), both as models of clus-
ter vertex functions in transfer reactions, and as
variational trial functions in microscopic cluster
calculations. Singular short-range potentials of
the Eckart type may also prove useful in analyzing
composite-particle scattering, where singular
short-range potentials of other forms have al-
ready proved to be necessary.??
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