
:4- "C:,.A:&;.'..':.YS::CS

THIRD SERIES' VOLo 1p NOo 6 JvNE 1970

Binding Energy of a A Particle in Nuclear Matter
Janusz Dabrowski

International Centre for Theoretical Physics, Trieste, Italy,
and warsaw UniversNy and Institute for Nuclear Research, TVarsazo, Poland

and

M. Y. M. Hassan*
International Centre for Theoretical Physics, Trieste, Italy

(Received 3 November 1969)

The binding energy of a A particle in nuclear matter, BA(~), is calculated self-consistently
with the help of the Brueckner theory. In the K-matrix equations for the A-N interaction,
pure kinetic energies in the intermediate states are used. The K-matrix equations are solved
numerically. The rearrangement energy is taken into account. The values of BA(~) calculat-
ed with several central A-N potentials v A ~ —though smaller than the values obtained by other
authors —are, in general, larger than the empirical value of BA(~) . An agreement with this
value is obtained only if vA~, adjusted to the binding energy of AHe, has a sufficiently large
hard core and is sufficiently suppressed in odd states. Possible ways of reducing the calcu-
lated value of Bp(~) are discussed. A critical discussion of the independent-pair approxima-
tion applied by other authors in calculating BJI,(~) is presented.

I. INTRODUCTION

The binding energy of a A particle in nuclear
matter, B~(~), is a quantity of considerable inter-
est in the phenomenological analysis of the A-nu-
cleon interaction v&~. Whereas the binding ener-
gies of light hypernuclei are determined primarily
by the S-wave part of the A-N interaction, the bind-
ing energies of heavy hypernuclei depend on the A-
N interaction in higher-angular-momentum states.
A direct calculation of the binding energy of a A

particle in a heavy but finite nucleus would be a
most difficult task. It is much easier to calculate
B~(~), the binding energy of a A particle in an in-
finite nuclear medium, i.e. , in nuclear matter.

An empirical estimate of BA(~) is a nontrivial
problem. One has to extrapolate the measured
binding energies of a A particle in hypernuclei with
finite values of A, BA(A) to the limiting case A —~.
The early estimates' of B~(~) were based on
identified hypernuclei which, however, are all
light (up to AC"), and consequently the extrapola-
tion was of considerable uncertainty. Obviously,

much more important in determining BA(~) is the
knowledge of binding energies of A in heavy hyper-
fragments, which play an essential role in all the
newer estimates' "of B~(~). Unfortunately, there
are considerable ambiguities in determining B~(A)
of mesonically decaying heavy hyperfragments.
Namely, neither the mass of the hyperfragments
nor the precise decay modes can be determined
accurately. These uncertainties are reflected in
the BA(~) values obtained by different authors.
The notable estimates are those by Lagnaux et al. '
(27+ 3 MeV), Lemonne et al. ' (27.2+ 1.3 MeV),
Goyal" (32+ 2 MeV), Bhowmik et at." (30.6+ 0.6
MeV), and Kang and Zaffarano" (27.7+0.6 or 28.3
+0.3 MeV). All these results seem to indicate a
tentative estimate":

BI,(~) =30+ 5 MeV.

As mentioned before, the importance of Bz(~) in
reconstructing v A~ is connected with the sensitivi-
ty of B~(~) to the A-N interaction in higher-angu-
lar-momentum states. To visualize it let us con-
sider the range of energies of the A-N system rel-
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TA =0.6(KA/KN)EF. (l.4)

For the value of the spacing parameter ro =1.1 F
we have

k~—- 1.35 F (l. 5)
and E~ =37.8 MeV. For this value of E~ we have
0~Th&45 MeV, and for the most heavily weighted
A laboratory energy, T A=—27 MeV. Now, the A-
proton scattering experiments" show that for A

moments, bigger than 248 MeV/c, i.e. , for T~ &30
MeV, the A-P scattering departs from isotropy.
Thus around TA ——30 MeV the A-N interaction in the
P state starts to be effective, and consequently we
expect that the P-state interaction will effect the
value of BA(~).

Another way of reaching this conclusion is to con-
sider the relative A-N momentum in nuclear mat-
ter, P =KAPN/(KA+K~). Similarly as with TA, we
have

0 ~P ~ (KA/Kg+Kg)kp, (1.6)

and for the average value:

p = (0.6)'~'(KA/KA+KN)k~.

If we assume the range of vz~ to be equal to the in-
trinsic range b = 1.5 F, corresponding to the two-
pion exchange, we get 0 ~bP 5 1.1 and bP =—0.85 for
the value of k~ [Eq. (1.5)]. By applying the classi-
cal argument with the impact parameter, we see
that both S and P waves in the A-N system are ex-
pected to be important in calculating BA(~). This
conclusion has been confirmed by all existing cal-
culations of BA(~), which also show that the D state
already plays a minor role. Actually, the role of
the P wave is enhanced compared to the S wave.
Namely, the short-range repulsion in eh~ acts pre-
dominantly in the S state and cancels a large part
of the S-wave contribution of the attractive tail of

evant in determining BA(~). In the ground state of
the system, A particle+nuclear matter, the A

particle occupies the state with zero momentum,
and the relative A-N velocity v«] is equal to the
nucleon velocity PN/hK~, where P~ is the nucleon
momentum (in units of k) and K& is the mass of
the nucleon divided by @ . This corresponds to
the A-particle kinetic energy in the nucleon rest
system (the laboratory system for A Nsc-attering):

Tp 25 KAvpp,
' = (Kp/K~)(P~'/2KN), (1.2)

where SEA is the mass of the A particle. The range
of Pz extends from 0 to the Fermi momentum kF,
and we have

TA ( KA/ KN ) EF y (l.3)

where E~ is the Fermi energy of nuclear rnatter.
The average value of PN in nuclear matter is
0.6k~', and we get for the average value of TA:

vA~. Thus the net contributions of the S and P
states to BJ,(~) are of comparable magnitudes.

Several calculations of B~(~) have been pub-
lished. '' " In the case of a regular, purely at-
tractive A-N potential, one may simply apply the
perturbation expansion. "'" However, in the case
of a realistic A-N potential with a hard core, a
more sophisticated method of calculating BA(~) is
necessary. Two such methods have been applied
in the existing calculations of BA(~): The Brueck-
ner method'" ' and the Jastrow method. "" In
the present paper we shall restrict ourselves to
the Brueckner method. Among the Brueckner-
type calculations of B~(~), only the paper by Ta-
harzadeh, Moszkowski, and Sood" follows a sys-
tematic approximation scheme based on the sepa-
ration method. " However, the results obtained
in Ref. 32 are outdated because of the assumed
form of oh~ and of the single-particle energies.
In all the remaining Brueckner-type calculations
the so-called independent-pair approximation (IPA)
has been applied. No precise justification of this
approximation has been presented so far. The on-
ly attempt ' to estimate corrections to the IPA has
shown that probably they are large. Furthermore,
the single-nucleon energies applied in all the ex-
isting calculations of B~(~) cannot be justified from
the point of view of the present state of the theory
of nuclear matter.

In the present paper'3 we solve exactly the equa-
tions of the Brueckner theory for the A-N interac-
tion. In accordance with the present state of the
theory of nuclear matter, "we use pure kinetic en-
ergies in the intermediate states. The pure nucle-
ar-matter problem is considered to be solved with
the resulting saturation density and energy in
agreement with experiment. The precise shape of
single-nucleon energies of the occupied states
turns out to be not important provided its average
value is consistent with the known binding energy
per nucleon in nuclear matter.

First calculations"'" of BA(~) along these lines
have been performed with the help of the improved
Moszkowski-Scott separation method" of solving
the K-matrix equation [Eq. (2.5)]. Recently, an
essentially identical approach has been reported
by Bodmer and Rote." The main difference be-
tween our approach and that of Bodmer and Rote is
that we use the integral form of the wave function
equation [Eq. (2.13)], whereas Bodmer and Rote
work with the integrodifferential form of this
equation.

The whole scheme of calculating BA(~) for the
case of a central A-N potential considered in the
present paper is presented in Sec. 2. In Sec. 3 we
discuss the choice of v» used in the present cal-
culations. The computational procedure is de-
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scribed in Sec. 4. The results obtained are pre-
sented and discussed in Sec. 5. Finally, in the Ap-
pendix we present a critical discussion of the IPA.

2. K-MATRIX THEORY OF B~( ~ )

V~= VA(m~) =+[(mum+I'KImump)
m+

+ 3(mum&I'KI mum&)], (2.4)

mA =0. (2.1)

Furthermore, we shall denote by p, the reduced
mass of the A-N system:

p, =5(fuslt~ j(KN +SR~). (2 1')

The binding energy of the A particle in nuclear
matter, BA(~), is defined by

—B„(~)=E(A+1A) -E(A), (2.2)

where E(A) and E(A+ lA) are the ground-state en-
ergies of nuclear matter and of the system: nucle-
ar matter+A particle. By applying the Brueckner-
theory expressions for E(A) and (EA1+~), one ob-
tains

—Bw(~) = Vw+ Vu, (2.3)

where VA is the A single-particle potential (usual-
ly denoted in the literature by -D) and Vu is the
rearrangement potential. First, we shall explain
the method of calculating VA, and afterwards, at
the end of this section, we shall discuss the rear-
rangement potential V~.

We assume that the A-N interaction wA~ is cen-
tral and charge symmetric. It is equal to 'v(r) in
the spin triplet state and 'v(r) in the spin singlet
state, where ~ is the distance between A and N.
Nuclear matter is assumed to have in each occu-
pied state four nucleons: Two protons and two neu-
trons with spin up and down. In such a system
with no neutron excess, the charge-symmetry-
breaking (CSB) component of vAN is expected to
have a minor effect only. For instance, the CSB
potential of the form considered by Herndon and
Tang ' gives a zero contribution to Bz(~) in the
first-order approximation in the attractive part of
the CSB potential. In the presence of a neutron ex-
cess [and the heavy hyperfragments used in the es-
timates of BA(~) have a neutron excess] the CSB
potential could play a role which, however, is not
considered in the present paper.

Let us introduce the following notation. By m~,
m~ we shall denote the nucleon and A momenta (in
units of I) of the occupied states; by ku, kA the
momenta of the excited states; and by p&, pA gen-
eral momenta without any restrictions. As men-
tioned before,

e N (m N ) = eu (m N ) + V N (m N )

eA(mA) = VA(m~),

(2 5)

(2.7)

where the last equation is a consequence of Eq.
(2.1). The single-nucleon potential Vu will be dis-
cussed later.

Equation (2.5) differs from the traditional form"
of the K-matrix equation by the appearance of the
kinetic energies &~ and &A in the intermediate
states. The point is that a systematic approach in
terms of the number of hole lines requires that
particle self-energy diagrams should be consid-
ered together with other three-body diagrams.
The total contribution to the energy per nucleon of
the entire class of the three-body diagrams is prob-
ably not larger than about 1 MeV in the case of nu-
clear matter, and one should expect a similar situ-
ation in our case. It seems then that the most rea-
sonable procedure is to disregard the self-energy
insertions into the particle lines, i.e. , to use ki-
netic energies in the intermediate states. The
probably small error thus committed may be left
to a perturbative estimate. ' ' ' ' Needless to say,
by using eu(ku), e~(kA) in Eq. (2.5) we essentially
simplify the problem of solving this equation.

In solving Eq. (2.5) we follow closely Ref. 41.
We introduce the relative and center-of-mass mo-
menta:

It Am ~ —Sg~m A p m ~
(5RN +%A)

M =m~+mh =m~.

(2 8)

(2 9)

The last parts of these equations follow from Eq.
(2.1). Notice that

where 'K and SK are the A-N singlet- and triplet-
state K matrices, i.e. , the effective A-N interac-
tions in nuclear matter. They are determined by
the following equation:

(pupAI KImNmA) = (PupAI vImumA)

(p up A I

'v
I ku k A) (ku 41 'K

I m u m „)
eu(mu)+eA(mq) —&u(ku) —e~(kA)

'
"u"A

(2.5)

where s =1,3; and &~, EA are the N and A kinetic
energies; and e~, eh are the N and A single-parti-
cle energies of the occupied states:

A. Calculation of VA

M =%urn/p, , (2.10)

For V& we have"
i.e. , the center-of-mass momentum is proportion-
al to the relative momentum. Because of momen-
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turn conservation, we have

(2.11)(pnrpal j~lmNm(1) =5p)i( (pl j~MI m) i

where p and P are expressed by p~, pA, by equa-
tions analogous to Eqs. (2.8) through (2.9). Be-
cause M is determined by m, we shall drop the
subscript M at the 'K matrix and also at the wave
function 4- defined by the equation

which restores the rotational invariance of Eq.
(2.13) has been checked to be fairly accurate in the
nuclear-matter case and in the A+ nuclear-mat-
ter case."

With the approximation (2. 19) we may expand G-
into spherical harmonics:

G-(r, r') = ) f
G1,{r,r')Y„(rr'), (2.21)

/

'lf'i m) = 'u
~

'e-). (2, 12)
where

Equation (2.5) may be written as the following
integral equation for the wave function '4'- in the
configuration space:

(F)=e'-'' e fdr G (r'r-') , (rv)''@-'(r'),

(2.13)

where the Green function

d M e~p'('(- -)- 1 pQ{M p)e {214)
2v z (m) -p'/2l1

dPP'Q(m, P)j 1(Pr)j,(Pr )
2v' z (m) —p'/2 p,

Similarly, we expand

'e -(r) =g [4~{21+1)j'"1' 'jt, (m, r) 1'&.(mr),
E

(2.23)

and from Eq. (2.13) obtain the following equations
for the radial functions 'R ~'.

where the exclusion-principle operator

Q(M, p) =1 for i(pM/SgA)+pi&k~,

= 0 otherwise, (2.15)

R ((m, r)

=j,(m, r)+4n dr'r"G' (r, r') u(r')%1(m, r')
0

(2.24)

and where
M

z (m) =e~{mN)+e~(mA)—
%p/' +SEA)

(2.16)

V, = — " dm[&mi'jCim&+3&mi'Ifim&]
27T

m( /lkF/%N ) (2.17)

where

(ml ii(m) fire ''
v(r=) e (r). -

To be able to analyze Eq. (2.13) into uncoupled
partial wave equations we approximate the exclu-
sion-principle operator Q by its angle average:

Q(M, p) =—q(m, P) = (1/4n)J dMQ(M, p'),

which may be calculated easily with the result:

(2.18)

(2. 19)

Notice that all the momenta on the right-hand side
of Eq. (2.16) are determined by m [Eqs. (2.1),
(2.8), and (2.10)f.

With the help of the wave function 'C-(r), which
describes the relative A-N motion in nuclear mat-
ter (with relative momentum m and in the spin
state s), we may write Eq. (2.4) in the form:

j((mr c)Gi'n(+, r c)s[m)r =/)mr —
Gg ( )

(2.26)

is the solution of Eq. (2.24) for the case of a pure
hard-shell interaction, and where the new Green
functions

$ I
G117&&C& ~C)

(2.27)

For a potential with a hard core of radius xz, we

encounter the difficulty of having a product vR of

the indeterminate form ~x0 inside of the hard

core in Eq. (2.24). We bypass this difficulty by ap-

proximating the hard core by the hard shell of the

same radius x~. '4' This approximation has been

shown to be quite satisfactory. "By applying this

approximation, we get in place of Eq. (2.24)»'

'g 1(m, r ) = s, (m, r)
+4m dr'r"E' (r, r') 'u(r')'R1(m, r');

Jg
(2.25)

where

Q(m, P)=0 for P &k~-SR~m/SgA,

= 1 for P &kg +Sg)vm/KAi

Equation (2.18) may be written in the form

& ml'film& = &miff lm& c+&ml'Iflm)~, (2.28)

where the pure hard-core contribution~s

(mliilm)c= fere 'v (r)e (r), -

) {2l+1)j1(mrc)'
G' (rc, rc)

(P +Sg(((m/SR j,)' —k~'
otherwise.

(2.20)
Notice that in writing Eq. (2.20) we have replaced
M by m [Eq. (2. 10)]. The approximation (2. 19) (2.29)
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(where vc is the hard-core potential) and the con-
tribution of v~, the attractive tail of v, is

(ml Klm)A = fdr@-'(r) v„(x) e (F-),

where the bars denote average values in the Fer-
mi sea. If we apply the effective-mass approxi-
mation for e&,

= 4&g(21+ 1) dr r'si(m, r)
l rC

x 'vq (r)'RE(m, r). (2.30)

eN(mN) =m„'/23tI„"+A, (2.33)

we need, besides the condition (2.32), one condi-
tion more to fix the two constants SR~ and A. Let
us consider the condition

In both equations (2.29) and (2.30) we use the nota-
tion eu(kr) = -e„,i. (2.34)

1 1
& pr + a VN = a(& ~ + &~) = -& oi ) (2.32)

0-(r) =+[4))(21+ I)]'+i 's q(m, r) Yio(mr) (2.31)
l

for the solution of Eq, (2.13) in the case of a pure
hard-core potential v =v c (with vc approximated
by a hard-shell potential). " Notice that (K)c and
si, 4 do not depend on the A-N spin because inC

all the A-N potentials to be considered, the hard-
core radius rz is the same in the triplet and sin-
glet states.

Let us summarize the procedure of calculating
V~. We simply solve Eqs. (2.25) for the radial
functions Ri(m, r) Next. , we calculate the K ma-
trix elements [Eqs. (2.28) through (2.30)] and in-
sert them into expression (2.17) for Vq. Obvious-
ly, we have to start the whole procedure with the
calculation of the Green functions &„,(r, r') and

F,', (r, r') [see Eqs. (2.22) and (2.27)]. To do it we

have to apply a certain form of the single-nucleon
energy e~(m~). We shall discuss this point in a
moment. ' Right now, let us assume that we know

eN(m&). The only unknown element in the Green
function G is then VA, and obviously we are faced
with a self-consistency problem. It is, however,
a very simple self-consistency problem because it
concerns only one number, the value of VA. We
have to assume a certain input value of V& to com-
pute the Green functions. After applying the whole
procedure we get a certain output value of VA.

Self-consistency is achieved when the output and

input values of V& are equal. Practically, one has
to perform the whole calculation for a few input
values of VA. In this way one obtains the output
value of VA as a function of the input value of VA.

From this function one then determines the point
of self-consistency.

B. Single-Nucleon Energy e&

There are a few ways of fixing the spectrum of
eu(m~):

(i) Let us assume that the Brueckner theory is
correct, and with the proper form of the N-N in-
teraction it leads to the observed value of the bind-
ing energy per nucleon in nuclear matter, &„~, at
the observed value of the equilibrium density of
nuclear matter determined by k~. Then

At the equilibrium density, the energy per nucleon
in nuclear matter, -e„&, is equal to the separa-
tion energy. Hence it may be stated, based on Eq.
(2.34), that the single-nucleon energy at the Fer-
mi surface is equal to the separation energy. Ac-
tually, in the Brueckner theory, the rearrange-
ment energy should be added to eA (k&) in Eq.
(2.34)." Nevertheless, we shall use both condi-
tions (2.32) and (2.34) to fix eN(m~), assumed in
the form (2.33).

(ii) In the crudest approach we may approximate
eN(m~) in the energy denominator of G, [Eqs.
(2.22) and (2.16)] by its average value:

e~(m)v)=—&~ =-[-', e~(k~)+2m„„], (2.35)

C. Rearrangement Potential VR '

A detailed derivation of the expression for the
rearrangement potential V~ has been presented in
Ref. 40. The source for V~ is the difference in the
nucleon-nucleon K matrix in the case of nuclear
matter plus A particle and in the case of pure nu-
cleae matter: namely, the presence of a A parti-
cle changes the single-nucleon energies slightly.
In the present approach, we tacitly assume that
the nucleon-nucleon K matrix equation also con-
tains pure kinetic energies in the intermediate
states, and thus only the single-nucleon energies
eN(m~) of the occupied states are affected by the
presence of the A particle. Consequently, the to-
tal rearrangement potential V& is equal to the hole
rearrangement potential V~„(the particle rear-

calculated from Eq. (2.32).
(iii) We may use the values of e~(m~) obtained

in one of the successful nuclear-matter calcula-
tions. Here, we shall use e~(m~) obtained by
Brueckner and Gammel. ' In order that Eq. (2.32)
be satisfied for the values of k~ and &„] applied in
the present work, we shall shift the whole Brueck-
ner-Gammel spectrum a little bit (by less than 6

MeV).
Actually, the calculated value of VA turns out to

be not sensitive to the particular method, (i)—(iii),
of fixing eN(m~), provided Eq. (2.32) is satisfied.
After this was determined, the eN spectrum (i) was
applied throughout the present work.
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rangement potential V~p vanishes). By applying
the simple and accurate approximate expression
for Underived in Ref. 40, we may write

V~= U~h = wV~,

where the dimensionless parameter

p(fd=rj ,'I'ym -(r)l'+''I'x '(r)l'

+~I'xH; (r)I'+-.'I'x- (r)I'DA„

(2.36)

(2.37)

where p is the density of nuclear matter. The nu-
cleon-nucleon difference function is

')(~'(r) = 'q -'(r) —(e™~r)', (2.38)

where pm' is the wave function of the relative
motion of two nucleons in nuclear matter in a
state with the relative momentum m = (m, —m, )/2,
with the parity +, and with the spin defined by s
(s =1, 3 for the singlet, triplet state), and where
(e

' ')' is the part of the unperturbed wave func-
tion e™r with the parity + (r denotes the relative
position vector of the two nucleons). The sub-
script Av at the nucleon-nucleon correlation vol-
ume ( j indicates the average value in the Fermi
sea, i.e. , one has to average over the momenta
m, and m, of the two nucleons. Actually, Eq.
(2.37) is an obvious generalization of the corre-
sponding expression derived in Ref. 40 in the case
of a spin-independent Serber N-N potential.

3. CHOICE OF v & &

The central, spin-dependent, charge-symmetric
A-N interactions used in the present calculation of
BA(~) are listed in Table I. The parameters char-
acterizing the interactions are: The hard-core ra-
dius rz, the intrinsic range b; the singlet and trip-
let well-depth parameters s, s,; the singlet and
triplet scattering lengths a„a,; and the corre-
sponding effective ranges x~, x, . In all the poten-
tials considered, xz and b have the same values in
the singlet and triplet states. Some of the poten-

tials are weaker in odd-angular-momentum states,
i.e. , their strength in these states is equal to g
times the strength in even states. The shape of the
attractive part of &AN is also shown in Table I.

The HTS potential is an old potential fitted by
Herndon, Tang, and Schmid" to the binding ener-
gies of the S-shell hypernuclei. Its intrinsic range
is equal to the intrinsic range of a purely attrac-
tive two-pion- exchange Yukawa potential. Typical-
ly, HTS is much stronger in the singlet than in the
triplet state.

The AGE potential has been fitted by Ali, Grype-
os, and Kok" to A-P scattering under the assump-
tion of a common intrinsic range b for both the
singlet and triplet interactions. Charge symmetry
has been assumed. No fit to hyperfragment ener-
gies has been attempted. It should be mentioned
that the recent analysis" shows that, by fitting the
~-P scattering without the assumption concerning
b, one gets a wide spectrum of acceptable values

+Sr t) S~ +t ~

Potentials E, E', IJ, I' ' have been determined by
Herndon and Tang" in the following way. For a
given b and rc, the spin- and charge-dependent vA~
has been adjusted to Bz(&H'), B„(AH ), B~(~He ).
Next, the parameter y has been adjusted to A-P
scattering data. Among the potentials thus ob-
tained we have chosen the best potential H and al-
so the potential E. An alternative set of potentials,
which we denote by primes, has been obtained by
applying the same procedure, except that their
charge-independent components have been adjusted
to B~(AH') and B~(~He'). The best of the alterna-
tive set are the potentials E' and I" ', although they
lead to total A-P cross sections about 20/o too
small compared to the experiment. In the present
work we shall also consider potentials identical
with those of Ref. 39 except that they are not sup-
pressed in odd states (& =1). They are denoted by
the letters NX (for no exchange) added to their
original symbols. All the potentials of Ref. 39 are

TABLE I. Parameters of the charge-symmetric &-N potentials. All lengths are in fermis. The figures inparenthe-
ses are the corresponding values of the parameters of the &-P potentials (with the CSB components included) .

Shape ss st Qs +s Symbol

23
51
39

39

39

39

21

Exp
Yuk
Exp

Exp

Exp

Exp

Exp

0.4
0.4
0.45

0.45

0.6

0.6

0.4

1.5
2.07
2.0

2.0

2.1

2.0

1.9

0.865
0.805
0.790

(0.761)
0.803

(0.774)
0.834

(0.810)
0.852

(0.830)
0.578

0.675
0.669
0.703
(0.712)
0.662

(0.672)
0.792

(0.800)
0.766

(0.773)
0.578

—2.89
—3.35
—2.63
(- 2.16)
—2.91
(-2 31)
—2.78
(-2.25)
—2.79
(-2.29
—0'.75

—0.71
—1.47
—1.52
(- 1.60)
—1.19
(- 1.26)
—1.96
(- 2.08)
—1.36
(-1.44)
—0.75

1.94
2.84
2.92

(3.15)
2.82

(3.03)
3.04
(3.29)
2.84
(3.05)
5.49

3.75 1.0
4.07 1.0
3.71 j1.0
(3.61) ),0.6
4.27 ) 1.0

(4.14) (O.e
3.49 j1.0
(3.4o) ) o.e
3.91 )1.0

(3 79) ),0.6
5.49 1.0

HTS
AGE
ENX

. E'NX
El
HNX
H
E' NX

DW



BINDING ENE RGY OF A A PARTICLE IN. .. 1889

50-

0
X

0

X
QP

-50-

0.5 10 p„/k

p =0.0(0.015)1.5k~,

r, r ' = rc(0.05)rc + 0 3(0.1)rc + 1 1(0 2)rc

(4.2)

where r, =max(r, r'), r, =min(r, r'), and a
= [-2tLz (m)]' '. Notice that z(m) &0 [see Eq. (2. 16)].
The form (4.1) of G' has the advantage that, be-
cause of the [Q —1] factor, the integral in Eq.
(4.1) extends over a finite range of P values, name-

ly, P & k~+ p.k~/%~ &1.5 kF [see Eq. (2.20)].
All integrations have been performed by means

of Simpson's rule. The following meshes have
been used:

(a) Green functions [Eq. (4.1)]:

~e,(m, ) +1.9(0.5)rc +3.9 F. (4.3)

(b) Wave functions: Eqs. (2.25) have been solved

by iteration with the zero-order ansatz:
-100- 'ft((m, r) = s,(m, r) (4.4)

4. NUMERICAL PROCEDURE

The present calculations have been performed
for k& ——1.35 F ', which corresponds to the spac-
ing parameter r, = 1.12 F. In fixing the single-
nucleon spectrum (Sec. 2B) we have used the value

&„,& -—15.8 MeV for the coefficient of the volume
term in the semiempirical mass formula. The
three energy spectra considered are shown in Fig.
1. As mentioned in Sec. 2B, the spectrum (i) has
been used in the present calculations.

To compute Green functions we transform Eq.
(2.22) into the form4'

1 dp p'[Q (m, p) —1]j,(pr)j q(pr')
IH I 2 2 z(m) -p'/2g

+ (p/2m)ah[" (iar, ,)j~(iar, ), (4.1)

FIG. 1. The three single-nucleon spectra, adjusted to
k~ =1.35 F and &~0~=15.8 MeV. The parameters of the

(i) spectrum are A=-112.0 MeV, %~ = O.393~. The
constant value of the (ii) spectrum is e~(m~) = —54.3
MeV.

charge dependent. The parameters" in Table I
characterize the charge-independent components
of these potentials used in the present work (com-
pare with the remarks at the beginning of Sec. 2).
These parameters differ from those characteriz-
ing the full A-P potentials of Ref. 39 (which con-
tain the CSB component) shown in parentheses in
Table I.

The DW potential is one of the old spin-indepen-
dent potentials considered by Downs and%are" in

their calculation of B„(~) We incl.ude this poten-
tial into the present work for the sake of a compar-
ison with the independent-pair approximation dis-
cussed in the Appendix.

with

+1.9(0.5)rc+ t.9 F, (4.5)

'R&( mr) =j~(mr) for r &rc+ 3.9 F.

(d) V~ [Eq. (2.1t)]:

m = 0.0(0.25)1.0juk~/K~.

(4 6)

(4 &)

It was found to be sufficient to calculate VA

twice: first with an input value of VA of about
-40 MeV, and next with an input value of V& equal

to the output value of the first run. The self-con-
sistent value of Vz was then determined by a linear

interpolation.
All the numerical calculations have been per-

formed on the IBM7044 computer of the Centro di

Calcolo dell' Universita di Trieste.

5. RESULTS AND DISCUSSION

The results of our calculations are shown in Ta-
ble II. We have restricted ourselves to calculating
the contributions of the first three partial waves

S, I', D to VA, and our results show that there is
no need to go beyond the D wave. The remarkable
size of the P-state contributions is the result of
the hard core, which acts predominantly in the S
state and partly cancels the S-state contribution of
the attractive part of vA~. An example of typical
behavior of the wave functions is presented in Fig.
2, showing the ji, s&, and the singlet 'Rq functions
in the case of the potential H for m& = 0.25k&.

In the case of the potential H we have calculated

The r mesh has been the same as in Eq. (4. 3).
The sixth-order iteration has been found to be suf-
ficiently accurate.

(c) ('K)A matrices [Eq. (2.30)]:

r =rc(0 05)re+0..3(0.1)re+1.1(0.2)rc
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1,0

05

2,0 3,0 r(F)

value of about 0.4 F would reduce the S contribu-
tion to K to the magnitude of the 'S contribution,
and this would reduce the value of ~ about twice.
Also the value ~ =0.15 of Ref. 40 should probably
be considered as an overestimate because the
Bethe-Goldstone' function cp applied in Ref. 40 in
the calculation of the nucleon-nucleon correlation
volume heals slower than a more realistic function
obtained with the type of single-nucleon energies
shown in Fig. 1. On the other hand, the low esti-
mates of tc= 0.0—7 (e.g. those of Ref. 37 and Kohler")
neglect the contributions to & of partial waves high-
er than S and probably are too low. We feel that
at the moment the most reasonable estimate is

~ =—0.10. (5 1)

FIG. 2. The j», s» and the singlet R» wave functions in
the case of the H potential for m~=0.25k~ (A~ =1.35 F ).
The & potential is also shown (the v curve, in an arbi-
trary scale).

VA with the help of the two other single-nucleon
spectra, (ii) and (iii), discussed in Sec. 2B (see
Fig. 1). We have found a negligible difference of
less than 0.1 MeV in the resulting values of VA

compared with the case of the spectrum (i).
Our method of calculating V& is expected to con-

tain all terms of order p, ' ' ' ' and obviously the
value of V& is sensitive to the value of k~. Let us
consider a change of our value of k~ —-1.35 F ' into
the value of kz -—1.366 F ' applied in most of the
existing calculations of VA. This change in k~ by
-1.2%%up corresponds to an increase in p by -3.6%%uo,

and we would expect a corresponding increase in
the depth of Vz. We have confirmed this conclusion
by calculating VA in the case of the DW potential
with kz =1.366 F ', with the result VA= —36.3 MeV
(see Table Ill).

Within the present scheme, the calculation of VA

requires no detailed information concerning nucle-
ar matter. We only need the value of the density p
and of the binding energy per nucleon, e„q [to fix
e~(m&)]. However, to calculate the rearrangement
potential V~ [Eq. (2.36)] we must know ~, determined
by the nucleon-nucleon correlation volume in nucle-
ar matter, Jdr~ y~', a quantity which depends on the
nucleon-nucleon interaction. The nucleon-nucleon
correlation volume has been calculated by several
authors with results for ~ between about 0.07 and
0.21 (see Ref. 48, where references to some of the
earlier calculations may be found). The largest
value, v=0.21, has been obtained in Ref. 48 with
the hard-core Reid N-N potential. The main source
for this large value is the large 'S contribution to
I(. , connected primarily with the large size of the
hard core (vc =0.51 F) of the Reid potential in the
'S state. A reduction of r~ to the usually accepted

This is a tentative estimate only, but our present
knowledge of the N-N interaction does not allow us
to make a more precise estimate. However, the
error of this estimate does not seem to be larger
than about + 0.05. The corresponding uncertainty
in BA(~) would then be about a2 MeV. In the pres-
ent work we have assumed for ~ the value of 0.1.
Equations (2.36) and (2.3) then lead to the values of
B~(~) shown in Table II.

Results of other calculations are shown also in
Table II. In principle, the calculation of Bodmer
and Rote" is equivalent to our calculation. The es-
sential difference is in the procedure of determin-
ing the E matrix, namely, an integrodifferential
form of Eq. (2.13) is applied in Ref. 38. It is then
encouraging to see that the agreement between the
results of the two calculations is very good indeed.
Actually, the differences in the results obtained in
the two calculations for -V& are surprisingly
small, especially when we consider the following
three differences in the two calculations. (1) Bod-
mer and Rote calculate -VA for a few single-nucle-
on spectra, all of them being of the form (2.33).
The results of Bodmer and Rote given in Table II
have been obtained with that single-nucleon spec-
trum e~(m~), which is closest to our spectrum
e~(m~), in the sense that its average value, e~
= —45.0 MeV, is closest to the average value of
our spectrum, eN = —54.3 MeV, determined from
Eq. (2.35). [I et us note that inserting e& into Eq.
(2.35) leads to the binding energy per nucleon in
nuclear matter, &„&=10.9 MeV, which is about 5
MeV smaller than the empirical value. ] This shal-
lower spectrum e~ should produce a deeper sin-
gle-A-particle potential than our spectrum e~
(e.g. , in the case of the potential H we would ex-
pect an increase in -&A of about 1-2 MeV).
(2) There is the difference in the treatment of the
hard core which in our calculation has been re-
placed by a hard shell. The exact treatment of the
hard core by Bodmer and Rote is expected to di-
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minish slightly their value of -Vq compared with
ours. Thus the two differences, (1) and (2), act
in the opposite directions. (3) The value of k~
=1.366 F ' of Ref. 38 differs slightly from our
value, kF -—1.35 F '. As we have noted, -V& is
approximately proportional to p-k&'. We have as-
sumed this proportionality in correcting the results
of Ref. 38 for this difference in k~, and consequent-
ly the Bodmer and Rote results of Table II are ap-
proximate.

The IPA results, similarly to the results of
Ref. 38, do not contain the rearrangement energy
and thus should be compared with our results for
V&. On the other hand, the Jastrow-method re-
sults should be compared directly with our results
for B~(~) As .seen from Table II, the Jastrow
method values of Bz(~) are systematically and

quite appreciably larger than our results. So far,
we do not know why the Jastrow method results for
B~(~) are so large Cer. tainly, it would be very in-
teresting to find out the reason. The independent-
pair-approximation results for V& are, in general,
larger in absolute value than our results, although
in the case of the HTS potential the situation is re-
versed. It seems to us that the independent-pair
approximation is not reliable for reasons explained
in the Appendix.

Before discussing our results, let us try to ad-
vocate the accuracy of our method of calculating
B~(~). The general scheme of the contemporary
Brueckner-type theory of an infinite system con-
sists of grouping diagrams according to the num-

ber of hole lines. ' ' ' ' In the case of nuclear mat-
ter plus one A particle we always have one A hole
line [at least in the calculation of B~(~)], and in

the successive steps of the scheme we increase the
number of nucleon hole lines. Thus the small pa-
rameter of the whole approximation scheme is the
same as in the case of pure nuclear matter, name-

ly a quantity of order z [Eq. (2.37)]. In the present
calculation we have included all two-hole-line dia-
grams in V~ and the hole-self-energy class of the
three-hole-line diagrams in V~. The remaining
three-hole-line diagrams form the class of the so-
called three-body (ANN) diagrams. We assume
that similarly as in the case of pure nuclear mat-
ter, the contribution of the three-body diagrams is
small, of the order of 1 MeV. " This would mean
that in our procedure all the important three-hole-
line diagrams are included, and we would expect
that by going one step further and considering four-
hole-line diagrams we would get a correction to
our values of B~(~) of the order of tP, i.e. , of the
order of one percent.

There is no need to discuss our value of B~(~)
obtained with the very old DW potential, included
in the present work only for the sake of the discus-
sion of the IPA (see the Appendix). The value of
B~(~) = 60.1 MeV obtained with the AGK potential
seems to disfavor this potential as a realistic
representation of the A Ninteractio-n (compare
also the remarks in Sec. 3). The value Bq(~) = 36.9
MeV calculated with the help of the HTS potential
is reasonably close to the range of the empirically

TABLE II. The calculated values of —Vp and Bp,( ). The results of other authors are also shown (IPA stands for the
independent-pair approximation). All energies are in MeV.

Partial-wave contributions to —Vp
'S 'S '~ 'S 'D 'D —V~ a~(~)

Results of other authors
Bodmer and Rote IPA Jastrow method

~~(-)

17.4 2.9 5.9 0.1
28.2 6.1 14.8 0.6
25.5 5.4 14.0 0.4
26.2 2.8 7.2 0.4
20.4 5.5 13.0 0.4
21.1 2.9 6.6 0.4
14 8 5.6 13.9 0.3
16.3 2.2 5.4 0.3
20.5 6.1 16.9 0.4
22.3 2.6 7.1 0.4
15.7 3.3 9.9 0.3

HTS 14.4
AGE 15.4
ENX 12.6
E 12.8
E'NX 13.4
E' 13.6
F ' NX 10.4
F ' 11.0
H NX 9.5
H 10.1
DW 5.2

41.0
66.8
59.0
50.6
53.7
45.6
45.9
36.1
54.7
43.8
35.2

0.2
1.6
1.1
1.1
1.1
1.1
0.9
0.9
1.2
1.2
0.8

Corrected for the difference in their (1.366 F ) and
The Bodmer and Rote (see Ref. 38) results for their

(2.33), A=-81.4 MeV, K~ =0.638RN].
See Ref. 23.
See Bef. 53.

~See Ref. 31.
See Ref. 27.

~See Ref. 21.

36.9
60.1
53.1
45.5
48.3
41.0
41.3
32.5
49.2
39.4
31.7

59.6
50.1
54.1
45.5

54.8
44.0

36.3

56.4-61.8
44.8-49.4
37.8~

45.9'

60.3-60.6

54.9-55.1

69.1'
61.7-62.9"

our (1.35 F ) value of k~ with the help of the factor (1.35/1.366)3.
first set of nuclear-matter parameters [in our notation, Eq.
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determined values of B~(~), especially if we re-
call the uncertainty in the value of K. However,
the HTS potential, which is not fitted to the A-P
scattering data, has been outdated by the newer
potentials of Herndon and Tang. ' As is seen from
Table II, a large part of B~(~) results from the P
state A-N interaction. Consequently, the suppres-
sion of the interaction in the odd-l states, intro-
duced in Ref. 39 to fit the A-P scattering, essen-
tially reduces the values of Bz(~) Am. ong the po-
tentials of Ref. 39 applied to the present work, one
has to distinguish between the unprimed potentials
E,II, determined by fitting the three- and four-
body hypernuclear data, and the primed potentials
E', &', determined by fitting the three- and five-
body hypernuclear data. Hexndon and Tang" argue
that the unprimed potentials form a more reliable
representation of an effective central interaction in
an isolated A-N system. Namely, the inclusion of
the hypernucleus ~He' in the determination of the
primed potentials may lead to an underestimate of
the triplet interaction due to tensor and isospin
suppression effects. "'" However, these effects
are expected to operate in the A+nuclear-matter
system in much the same way as in &He'. Conse-
quently, in a calculation of B~(~), the use of the
primed potentials seems to be more meaningful.
It is then encouraging to see that the I" ' potential
gives B~(~) = 32.5 MeV, which is in agreement with
the empirical estimate [Eq. (1.1)]. We conclude then
that a A-N central interaction with a sufficiently
large hard core (rc =0.6 F), which reproduces the
experimental binding energy of qHe', also repro-
duces the empirical value of B~(~), provided the
interaction in odd-angular-momentum states is suf-
ficiently suppressed (y =0.6). Notice that the large
size of the hard core is essential for our conclu-
sion. The &' potential with re=0.45 F, but other-
wise similar to the I" ' potential, leads to too large
a value; B~(~) =41.0 MeV. This is connected with
the higher kinetic energies of the A-N system in
nuclear matter compared with the case of ~He'
(see Sec. 1). At these higher energies the hard
core is more effective in reducing B„(~).

All the unprimed potentials of Ref. 39 lead to
overbinding of a A particle in nuclear matter. The

II potential, considered by Herndon and Tang to be
the best representation of the interaction in an iso-
lated A-N system, gives BJ,(~) = 39.4 MeV. And the
problem obviously remains of how to reconcile the
A Nin-teraction in an isolated system (in particu-
lar the A-P scattering) with properties of systems
such as &He' and A+nuclear matter. A reduction
in the calculated value of B~(~) by a few MeV could
be achieved with a larger value of ~ and a smaller
value of y, which determines the odd-state suppres-
sion (neither tc nor y is known precisely). Let us
mention some other possibilities of reducing the
value of B~(~):

Tensor forces. In the case of pure nuclear forc-
es it is well known that tensor forces effective in
an isolated N-N system are much less effective,
i.e. , suppressed in nuclear matter. In principle,
a similar situation might be expected in the A-N
case (see, however, Ref. 38)."

Three-body ANN interaction. No doubt, there
are theoretical reasons to expect the existence of
an appreciable ANN interaction, and several au-
thors have investigated its possible effects in hy-
pernuclei. "'~ Obviously, with a repulsive ANN
force, one should be able to reconcile the A-P scat-
tering data with the hypernuclear data. The un-
pleasant thing about introducing ANN forces v&~,q
is that with the present amount of hypernuclear da-
ta, with the present possibilities of solving the hy-
pernuclear few- and many-body problem, and with
the present possibilities of deriving theoretically
v»&, the task of determining v&~~seems to be ex-
tremely difficult.

Isospin suPPxession effect. This effect, pointed
out by Bodmer, "would lead to the conclusion that
the whole idea of treating hypernuclei as systems
of nucleons and a A particle with the same v&~ as
in an isolated AN system is wrong. Instead, one
should use an effective A-N interaction, which
would depend on the hypernucleus considered. If
this turns out to be the case, as it very well might
be, any attempt to correlate hypernuclear data
would become most difficult.
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APPENDIX

In almost all published Brueckner-type calculations
of B~(~), a different approximation of Eq. (2.30)
has been applied, namely

(ml lm)A re=—fdre ' 've(r)r (r), -
= 4 E(2) r )v)f dr r'j&(mr) ve(r)cpm, r) .

(A. 2)

In other words, 4- has been approximated in Eq.
(2.18) by 4 . This approximation is usually called
the independent-pair approximation (IPA). In con-
tradistinction to Eq. (A. 1) the IPA is not a full first
order aPProximation" in vz. This in itself is not
a disadvantage of the IPA because a first-order ap-
proximation in v~ is not expected to be a good one.
The trouble is, however, that the precise meaning
of the IPA is not clear.

The most detailed presentation of the IPA has
been given by Downs and Ware. " To discuss the
IPA more fully, let us investigate one of the A-N
potentials considered by Downs and Ware, namely,
the potential DW of Table I. To compare our re-
sults for the DW potential with those of Ref. 21, we
shall use here the value of k~ ——1.366 F ' and the
single-particle energies appearing in the K-matrix
equation (2.5) in the form

ei(pl, ) =pA'/23RI(+C~,

e~(pN) =p 'l2N%&+C~, (A. 3)

where the effective nucleon mass %~ =O.V»~,

In an early paper by Gomes, Walecka, and Weiss-
kopf, "an approximation of the Brueckner theory
has been applied. The essence of this approxima-
tion is the division of v into the hard-core part v ~
and the attractive" part v~, an exact treatment of
v(-, and a first-order approximation in v~. In our
case of &A(~), the approximation amounts to the
replacement of the exact Eq. (2.30) by the approxi-
mate equation

(mid(m) „—= fdrr (r)v „(r)r,-(r'),
= 4&Q(2l + 1) dr r's&(m, r) v~(r)s~(m, r)

l rg
(A. l)

and C~, CA are constants [they are canceled in the
expression for the energy denominator of Eq. (2.5)].
Needless to say, this form for the single-particle
energies, valid for all momenta, is difficult to
justify from the viewpoint of the present state of
the nuclear-matter theory.

We shall not discuss here how the wave function
4- has been approximated in Ref. 21, because theC

Cdifference between our function 4-, calculated with
the single-particle spectra (A. 3), and those of Ref.
21 turns out to be of no practical importance. '

Our results for VA are shown in Table III. Be-
sides the results obtained with the single-particle
energy spectra of Eq. (A. 3), Table III also con-
tains the self-consistent results obtained with our
original single-particle spectra of Sec. 2, adjusted
to the value of k~ =1.366 F '. The "exact" results
have been obtained by solving the wave-function
equation (2.24), whereas the IPA and the first-or-
der results in v~ have been obtained by applying
the approximation (A. 2) and (A. 1), respectively.
The small differences between our IPA results and
those of Ref. 21 may be traced back to some addi-
tional approximations applied by Downs and Ware
[Q(M, p) =—Q(0, p) and approximations for the Bethe-
Goldstone function, in particular in the P state].

The difference between the exact results obtained
for the total VA with the two types of single-parti-
cle energies (-35.9 vs —36.3 MeV) is surprisingly
small. However, the contributions of separate par-
tial waves, as well as the pure hard-core contribu-
tions and the first-order results in v~, do differ in
the two cases." The full first-order results in v~
are systematically much smaller than the exact
results.

Our main purpose here is to compare the IPA
results with the exact results, obtained with the
help of the single-particle spectrum (A. 3) (from
now on we restrict ourselves to this spectrum).
We have V~(exact) =-35.9 MeV and V~(IPA) = —39.9
MeV. The sizable differences in the contributions
of separate partial waves are partially canceled,
and we are left with a difference of 4 MeV. Thus
the magnitude of this difference is accidental and
depends on the form of v~~ (see Table II). Still,
we may ask why the difference is so small. To
answer this question let us notice that the IPA
amounts to replacing the Rq functions under the r
integral of Eq. (2.30) by the jq functions. Now, jq
is larger than Rq close to the hard core and small-
er than Rz at larger distances but still within the
range of v (compare with Fig. 2). Thus the net ef-
fect of the replacement is partly canceled in the
course of the x integration. On the other hand, in
the first-order approximation in v~ we replace Rz
by sq, which is smaller than Rq within the range of
v, and thus we get

~
V~(first order)~ «(VA(exact) ).
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A velocity-dependent nucleon-nuclear potential approximated to the well-known Morse
function has been employed to generate the single-particle wave functions and eigenvalues
for all nuclei. A general method of treating the perturbation is prescribed which gives a
very good agreement with the data on separation energies and with other theoretical work.

1. INTRODUCTION

The velocity-dependent potentials have appeared
in the literature pertaining to the nuclear and par-
ticle physics. Most of the workers while dealing
with velocity-dependent potentials have employed
numerical techniques in solving the Schrodinger
equation. Recently, in a previous paper' (to be
designated by I from now on), a method of treating
a velocity-dependent potential analytically was
presented. It provided a simple technique for pro-
ducing single-particle energy levels based on the
velocity-dependent nucleon-nuclear potential. The
nucleon-nuclear potential studied in I is based on

a relatively realistic nucleon-nucleon interaction
which is replaced by an effective nuclear potential.
A simple prescription for approximating this so-
called effective potential by an analytically solv-
able potential was given. The analytically solv-
able potential used for that purpose mas of the
well-known Morse-function type. The Morse pa-
rameters were expressed as functions of A and l

explicitly in semiempirical formulas. As an ap-
plication of this method, neutron energy states
for nuclides with 2-A'" 7 mere obtained and are
in general agreement with other works. At the
outset of I, the primary concern was with the ap-
plication of the method developed there and to dis-
cuss the results qualitatively. Accordingly, many

important terms, such as spin-orbit coupling,
etc. , which must be considered in predicting the
nuclear properties, were ignored. The purpose
of the present work is to inquire whether the mod-

el discussed in I would still be consistent when

extended calculations are performed. In particu-
lar, the spin-orbit effect has been treated as a
perturbation to the potential used in I, where the
results were very encouraging. The splitting of
levels thus obtained was reported in another paper'
(hereafter referred to as II), which, in general,
is consistent with experiments. In this work it is
desired to develop a generalized technique for
modifying the four parameters of the Morse-func-
tion-type potential in response to an arbitrary
perturbation. The technique developed here works
quite well if the perturbation is not outsized com-
pared to the original Morse potential. The gener-
al formulation of the scheme is undertaken in the
following section. Some particular forms of per-
turbation, such as the spin-orbit effect, are dis-
cussed in Sec. 3 and applied to several finite nu-

clei.

II. EFFECTIVE VELOCITY-DEPENDENT
POTENTIAL

In I an effective potential equivalent to a real-
istic velocity-dependent nucleon-nuclear potential
was used in the independent-particle model (IPM)


