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Experimental data are used to determine the first-forbidden matrix elements for the 2.2-
MeV P transition of La~40. The results show that the matrix-element ratio (fn/f q'r) does
not agree with the usual theoretical prediction which assumes the Ahrens-Feenberg approxi-
mation. The size of the experimental vector-matrix-element ratio can be understood on the
basis of significant off-diagonal contributions in the Coulomb Hamiltonian. The theory of
conserved vector current is used to investigate impurities in the isobaric analog to the
ground state of La~ . In addition, the contribution of third-forbidden matrix elements to
the transition is investigated.

I. INTRODUCTION

For several years, the study of first-forbidden
P transitions has been a useful method of learning
some of the details of nuclear structure. Now that
the conserved-vector-current (CVC) theory has
been used to predict the ratio of two of the vector-
type first-forbidden nuclear matrix elements (fa/
fi r), these experiments ha, ve taken on the addition-
al value of being able to test the accuracy of the
CVC predictions.

The formula which has been widely used to pre-
dict the matrix-element ratio was derived inde-
pendently by Fujita' and Eichler. ' More recently
Damgaard and Winther' have modified the calcula-
tion to obtain an expression for the matrix-ele-
ment ratio which does not depend on the assump-
tion that the Coulomb Hamiltonian is diagonal. The
Damgaard and Winther approach de-emphasizes
the. CVC ratio as a useful tool in simplifying nucle-
ar matrix-element extraction and emphasizes its

role in supplying direct information on nuclear
structure.

Previous experiments' have shown that a mea-
surement of the energy dependence of the P-y
circular-polarization correlation of La' would be
useful in determining the matrix-element ratio
more precisely. This measurement has been per-
formed by Ohlms, Bosken, and Simms. ' Their re-
sults will be combined with other experimental da-
ta to show that the matrix-element ratio for La' '
agrees with the Damgaard-Winther formulation,
but it does not agree with the calculation of Fujita
and Eichler.

The formulas used in the matrix-element analy-
sis are those developed by Buhring. ' In these for-
mulas Buhring uses the exact electron radial wave
functions and takes into account the finite nuclear
size. In a later paper' he also treats the Coulomb
screening of the nuclear charge by the atomic elec-
trons. These formulas have been presented by
Simms' in such a way that the importance of the
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higher-order terms is more clearly demonstrated.
The original matrix-element- extraction computer
code developed by Simms has been partially re-
vised to include the energy-dependence of the P-y
circular-polarization correlation and a more ac-
curate treatment of the scalar nuclear matrix ele-
ments. The most important higher-order matrix
elements have also been included in the analysis.

II. THEORY

In this section we wish to obtain an expression
for the P-decay vector-matrix-element ratio using
the CVC theory. The CVC theory allows one to ex-
tend certain relationships among electric-dipole
y-transition operators to vector (first-forbidden)
P decay. These E 1 y-decay operator relationships
will be discussed before the P-decay formulas are
pres ented.

The same nuclear Hamiltonian will be used for
both the P and y transitions.

H HK+Hc+Hn1+HNN

H~ is the kinetic energy; II, is the Coulomb energy;
H is the rest mass; and H» is the energy arising
from the potentials generated by the mesonic nu-
cleon-nucleon forces.

A. E1 y-Transition Operators

The theory of electric dipole (El) y transitions
is well known. In the dipole approximation the
transition amplitude is proportional to the matrix
element (see Fig. 1):

M„=(ftp ~a).

The operator p is shorthand notation for the ex-
pression

A

p, = ~ l(1-~.')p, ,j=l

where r is shorthand notation for

A

ry = Q —,
' (1 —r, ')r, .

j=1

From elementary quantum mechanics it is known
that

[H~, r ]=ihcn . (6)

The operator ceo& is the relativistic velocity opera-
tor defined by

A

CD&:= M 2(1 —T3 )co!J.
j=1

The operator r is a function of the same varia-
'y

bles as H, and H, and since these variables com-
mute,

[H„r]=0, (6)

[H „ry]=0.
The Siegert theorem' for nuclear y-transitions

states that electric-multipole operators are not in-
fluenced by meson-exchange effects. Therefore,

P4~ r,]=o. (10)
If Eqs. (6)-(10) are substituted into (4) and ma-

trix elements are taken between initial and final
states, the result is

(f ( [H, r ] t a) = ihc (f (
o.

( a) .
The following definitions are made to simplify

notation:

&o'), = &f t n, ~~), (12a)

(ir)
&

= i(f (
r

( a) . (i2b)

Furthermore if
t f) and ta) are eigenstates of H

with eigenvalues Ef and E„respectively, then Eq.
(11) becomes

and p is the linear momentum of the radiating nu-
cleon. The isospin convention used here is such
that g, ~p)

= —tp) and w, tn) =+tn). Since p. is pro-
portional to the time derivative of rj (the spatial co-
ordinate of the radiating nucleon), one usually con-
siders the commutator

C=[H, r ],

((n)/(i r)) z
= (E, Ef )/hc . - (13)

((o.)/(ir)) „=E,—Ez=E (14)

B. First-Forbidden "Electric Multipole"
Operators

In natural units, where m, =S=c=1, the result
is

lo)= T li )

+ECoul. ~Emoss

Ey

FIG. 1. Schematic of nuclear p and y transition to the
same final state showing notation and energy relation-
ships for p decay.

(16)

The tg-decay "electric multipole" operators will
be treated formally in the same way as their @-
transition counterparts. The P operators are de-
fined below for P' decay:

A

ir, = Zi~, jr, ,
j=1

A

n, = Z~, jo.,j=l
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The objective of this section is to derive a rela-
tionship between the matrix elements of ns and ir 8
similar to the relationship expressed in Eq. (14).
The first step is to consider the matrix elements
of the commutator [H, irs] (see Fig. 1):

(f I [» ir s] I i) = -II'.&f I
i' s I i& ~ (17)

The commutation (6) still holds for P operators:

[H~, irs] = -bc as. (18)

The nucleon-rest-mass part of the Hamiltonian no

longer commutes with ir&, because the v, in ir&
does not commute with the 7, in H, . This result
is a reflection of the fact that the nucleon's rest
mass is changed in p decay.

[H, irs] = s(M~-M&)irs,

=+2.5me&r g g
(19)

for p' decay.
It is not obvious that the nucleon-nucleon part of

the Hamiltonian still commutes with irs. However,
Fujita' and Eichler' have used CVC theory to ex-
tend the Siegert theorem to vector first-forbidden

P decay. Therefore, it is expected that

[HNN, irs] =0. (2o)

or

c.= [(flH. If& -& iIH.
I i)]&f I

ir s I i&

+( + (flH, lf')(f'lir li&
fl gf

To evaluate the remaining term in the commuta-
tor [H, ir s], matrix elements are taken between
the initial and final states, and the expansion theo-
rem is applied by inserting complete sets of states.

c =(fI[H, irs]l i) = &&fIH. If'&&f'I irsl i&

-+(f I ir, l
i')(i'IH,

I i) (»)

ments, so the correction term in (22) is negligible.
If this approximation is valid,

(f I [H. ir s] I
i &

= 2 4 —, &f I
i r, I

i & . (24)
2p

Substitution of Eqs. (18), (19), (20), and (24) into
(17) yields an expression for the vector-matrix-
element ratio in natural units:

Acvc' =—((n&/(ir&) s
= W, + [2.4( nZ/2p) v 2.5]

for P decay. In writing Eq. (25), the following
shorthand notation was used:

(25)

&~&s= &fl ~s li&,

(ir) = (fl ir sl i&.

(26a)

(26b)

Equation (25) for p decay differs from Eq. (14) for
y decay in the extra terms present, as a result of
the neutron-proton substitution.

la&=T li&. (27)

The operator T is the isospin lowering operato~'.
The CVC theory relates ir s (containing 7, ) to ir

(containing ~,) in the following way:"

irs = -[T , ir, ] . (28)

Taking matrix elements of both sides of (28) yields

& &,
= -&fll T, ,]l &. (29)

If
I a) is the exact isobaric analog of

I i), then

(ir) s
= (f I

ir~T
I
i&. (30)

C. Isobaric-Analog-State Approach to the
Vector-Matrix-Element Ratio

The matrix elements (n& s and (ir) s for the P
transition from

I i) to
I f& (cf. Fig. 1) can be relat-

ed by isobaric symmetry to the matrix elements
(cy& and (ir) of the correspinding electromagnetic
transition from Ia) to If), where Ia) is the isobar-
ic analog of

I
i):

g & f I ir s I
i '& &

i'
I H, I i &}. (22)

Under the usual assumption that the isospin of a
ground state is equal to T, for that state, it is easy
to show that

The term in the square brackets is just the dif-
ference in the Coulomb energies of the initial and
final nuclei, generally written as"

(ir) s (2T') (ir) y
~ (31)

b E, = 2.4(nZ/2p) (23)

where e is the fine-structure constant, and Z and

p are the charge and radius of the daughter nucle-
us. Z is positive (negative) for negatron (positron)
emission.

The term in the curly brackets is a correction
term arising from the nondiagonality of the Cou-
lomb Hamiltonian, H, . The Ahrens-Feenberg ap-
proximation" assumes that the diagonal elements
of H, are much larger than the nondiagonal ele-

(34)

A similar relationship exists between (o&s and (o&,
leading to the result

(ci&s = (2T)"'&ci& . (32)

Therefore, if the state la) is the exact isobaric
analog of

I i), the following equality holds:

((o&/&iR) s = ((~&/(ir& ), . (33)

Using Eq. (14) it is also evident that

(&~&/(ir&)s = E, .
From Fig. 1 it is seen that the energy of the
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state
~ a) differs from the energy of the state ~i)

because of the change in Coulomb energy and the
neutron-proton mass difference. The y-transition
energy E may therefore be written as

z, = w, +[~z. —(M. -m, )]. (35)

Using the expression for 6E, given in Eq. (23)
leads at once to the relation (25) for the vector-
matrix-element ratio.

Fujita" has used these arguments to corroborate
the result [Eq. (23)] obtained with the commutator
relationships in Sec. B.

D. Damgaard and Winther Formulation of the
Vector-Matrix-Element Ratio

C c.,&(r, ) = (Ze/2p) [3 —(~/p)']

=Ze/r r~p,
the commutator C, then becomes

(f ( [H„mrs](i ) = (nZ/2p)(3 —X)(zr)&,

(37)

(33)

where the parameter A. is

&fl
' .( /p)'I ')

(39)

The vector matrix-element ratio can now be ex-
pressed as

=
(& )/&' ))

= W, + [(o.Z/2p)(3 —A) + 2. 5m, ], (40)

or in terms of the ratio obtained using the Ahrens-

The validity of the Ahrens-Feenberg approxima-
tion was challenged by Damgaard and Winther. '
They argued that while the off-diagonal matrix ele-
ments of H, might in fact be small, there is no
reason to assume that the corresponding nondiag-
onal elements of ir8 will also be small [cf. Eq.
(22)]. In fact, since ir8 is linking nuclear wave
functions which in general have different numbers
of radial nodes, its off-diagonal matrix elements
can vary by orders of magnitude. As a result,
the correction term in Eq. (22) attains sufficient
size to contribute to the value of the commutator

[H„irz], and the Ahrens-Feenberg approximation
is invalid.

To obtain a more realistic result for the commu-
tator, Damgaard and Winther suggested that the
matrix elements of [H„i'] actually be calculated,
using a realistic form for H, . If the form for H,
is chosen to be

A

H, = Z —,'(I —i,)e4c,„,(rj), (35)
j= 1

where Cc,„,(r,. ) is the Coulomb potential of a, sphere
of uniform charge Ze and radius p,

E. P - Decay Theory

1. Introduction

The theoretical formulas for first-forbidden P
decay contain many higher-order nuclear matrix
elements which are frequently neglected. Even
though the results of a matrix-element extraction
are usually not sensitive to the higher-order ma-
trix elements, it is certainly not a good general
practice to neglect them. When the theoretical
formulas are arranged properly, it is not difficult
to determine the relative importance of the higher-
order terms.

The expressions for the observables can be sim-
plified by following the procedure of Kotani and
Ross, '4 where parameters are used to represent
the matrix elements. However, a change will be
made in their definition of these parameters so
that it will be easier to estimate the relative sizes
of the various terms.

In order to understand the notation which is used,
it is necessary to review the reasons that first-
forbidden decays have smaller transition probabili-
ties than allowed decays. The relativistic first-
forbidden matrix elements are reduced in size be-
cause the relativistic operators mix the large and
small components of the nuclear wave functions.
The usual estimate for this effect is that these
first-forbidden matrix elements are a factor (v„„„/
c) smaller than allowed matrix elements. The
quantity (v,„„/c)is usually assigned an upper limit
of 0.1. It will be convenient to define all of the
first-forbidden matrix element parameters so that
they are the same size as allowed m, atrix elements.
By following this procedure, one will more easily
see why first-forbidden transition probabilities are
smaller than allowed transition probabilities. Also,
the relative contributions of the various terms to
the transition probability will be evident. For ex-
ample, the parameter z will be used to represent
the matrix element fy,

D'V=CA y (42)

The effect of mixing the large and small compo-
nents of the nuclear wave functions is contained in

Feenberg approximation [Eq. (25)]

cvc ~cvc + (oZ/2p)(0. 6 —x) .

In summary, the relationship for Acvc', derived
by Fujita and Eichler is a special case of the more
general expression for Ac~c suggested by Damga-
ard and Winther. When the contributions due to
the off-diagonal terms of H, are negligible, A. is
approximately equal to 0.6, and the two expres-
sions are identical.
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the factor D' which would be approximately equal
to v„„„/c(=0.1).

This definition of the parameters would be ade-
quate for comparing first-forbidden and allowed
transitions where in both cases there was a large
degree of overlap between the initial and final nu-
clear-state wave functions. It is well known, how-
ever, that there are many factors in the nuclear
structure which can cause the matrix elements to
be much smaller than those observed for the ideal
superallowed transitions. As far as the relative
comparison of terms is concerned, one does not
care about the absolute size of the matrix elements.
Thus, the effect of the absolute size is removed
by modifying the definition so that the matrix-ele-
ment parameter is the ratio of the matrix element
to a "size factor", q.

(43)

For J= 0

D'e =~C
n

1 ia ~ r
28 = — Cg

7l P

67t =yes

D'v' =- Cg

For J=1 47t =yes

1D'y =-Cv n
n

'
1 irx=-C
n

1 axr
u — C~„

D'&' =- Cv G.

"--'"f'"'("-)'
1 (G. r)r —3 nr

v
p

2

TABLE I. Matrix elements and matrix-element param-
eters for first-forbidden P decay.

The parameter g can be determined from the ob-
served transition probability. If qv is approximate-
ly one, then there is a high degree of overlap be-
tween the wave functions of the initial and final nu-
clear states. If gv is much smaller than one, then
there is some property of the nuclear states which
causes the matrix elements to be reduced.

The radial first-forbidden matrix elements such
as fir present a different problem of notation.
These matrix elements are generally a factor of
100 smaller than the allowed matrix elements, be-
cause the order of magnitude of the nuclear radius
is typically 10 ' in natural units. Thus, in order
to be consistent with the definition of the relativis-
tic matrix-element parameters, the radial matrix
elements should be normalized by dividing by the
nuclear radius p. For example:"'f=

'0 p
(44)

Then the radial matrix element C ~ fir must be rep-
resented in the formulas by p&g.

The 15 most important first-forbidden nuclear
matrix elements and their parameters are given
in Table I. The six matrix elements which are usu-
ally used in the analysis of first-forbidden transi-
tions are listed on the left side of the table. Nine
more matrix elements which arise from third-for-
bidden terms and finite-size corrections are listed
on the right side of the table. The parameters as-
sociated with these matrix elements are identified
by a prime mark.

Since the radial matrixelements are generally an
order-of-magnitude smaller than the relativistic
ones, it might seem that the radial matrix element
would play a minor role in first-forbidden transi-
tions. Their contribution, however, is increased

For J= 2

1 i' J.z ———C~
'0 P

47t =yes

z' =--Cg

D x = -—C~
~

@5~1 f' Rf
7) PP

D't' =- Cv
rl

p
2

D=+&nZ+W, p for P' decay. (45)

The small added term in D, which contains the
transition energy W„ is present in order to sim-
plify the final formulas.

It is important to remember that, when a matrix-
element parameter is multiplied by p rather than
D, the matrix element is not enhanced by the Cou-
lomb field; and its contribution to the transition
will usually be small.

by the effect of the Coulomb force on the emitted P
particle. In several terms of the transition proba-
bility, this causes the radial matrix elements to
be multiplied by a parameter $

= nZ/2p where Z
is the charge of the daughter nucleus and n is the
fine-structure constant. This parameter usually
increases the contribution of the radial matrix ele-
ments by about a factor of 10, so that the Coulomb-
enhanced radial matrix elements have approximate-
ly the same strength as the relativistic matrix ele-
ments.

The parameter $ is not really useful when the
normalized matrix elements are used. It is more
convenient to replace $px by (,'nZ)x. Thus —a.new

parameter is defined to indicate the presence of
the Coulomb enhancement:
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(46)

It is now necessary to reexpress the vector-ma-
trix-element ratio in terms of our parameters:

=2.4 —+(W, +2.5)p,
o.Z

zr p

Buhring' and also by Simms. ' The parameters V
(for t)J = 0) and Y (for ~= 1) are defined to repre-
sent the two combinations of matrix elements
which are most important.

and

~cvc= Acvc'+ z«(0 6-&) . (47)

DV =D'[-v+v'(a -Dq+ q')]+D(w+dw'),

DY= D'[y—+y'(a+ zDq ——,'q ]

(55)

From Table I it is seen that D[(x-+ dx') + (u+ du')], (56)

D'y
Acvc- x (48)

2. ft Values and Absolute Scaling

The matrix-element scaling factor g is deter-
mined from the ft value of the p transition. If the
direction of emission and the spin of the P particle
and neutrino are not observed, the transition prob-
ability 1/7 is

1 V0
Eo(Z) W)PWq S(W)dW.

1
(49)

f = js) fs(zw-)p wq, 's(,w)dw,

where the average value of S is defined as

(50)

S= S TV dW.
0

The coupling constants can be removed from S by
setting C]/= 1.0 and C~= -1.2 and using the experi-
mental value" for the vector coupling constant.
Then

6150
S

(52)

The scale for the first-forbidden matrix elements
is defined relative to the Fermi matrix element
for superallowed transitions, i.e. , (fl) =v 2. Thus

s)so(~f z *(z=w)pwq "c'(w. )d,w]

where C(W) is the shape correction factor defined
in terms of the matrix-element parameters.

(53)

C(W) = S(W)/q'. (54)

In these formulas, p, R', q, and the Fermi func-
tion E,(Z, W) are in natural units, and the partial
half-life t is in seconds.

3. Treatment of Higher Order Terms-
The complete forms for the matrix-element

combination used in this analysis are presented by

S(W) is the shape-correction factor in terms of the
actual matrix elements —not the matrix-element
parameters. For first-forbidden transitions, the
following definition of the Fermi integral is most
consistent with the definition for allowed transi-
tions:

where:

a= —~[(Wp+ zoZ) -p'],
d= —(I/5D)[znZ —a(3D+ 2q)],

g= 3$Pq

P =3Po.

(57)

(58)

(59)

(60)

-(u+-', au')+ —', s'D'(D —q)]

(1+a)M'„' = zv3 q[(s+ az') + 2r'D'(D —aq)

t'D '(D —-q)], -
(1+-,'a)M,",'=,'~S j[(zi ,'az )

(66)

(67)

+ 2r'D'( —', D+-', q)- t'D'(-', D —-', q)],
(68)

(1+a)m,",'= —,'&3q[-,' pD'(2r ' —t')],
(1+5za)mz(z) = z&3p[ —,'pD'(2r' —t')].

(69)

(70)

We consider first the treatment of the third-for-
bidden parameters r', s', and t'. The contribution
of these parameters is reduced by factors of DD'
(=0.01) and D'p (=0.001) from the contributions of
the first-forbidden parameters. Thus, in order
for r', s', and t' to contribute to the matrix-ele-
ment combinations, they must be approximately a

W and p are the p-particle energy and momentum,
respectively, and q is the neutrino momentum. If
there is no selection rule operating and there is
no internal cancellation, the combinations V and Y
are defined so that their order of magnitude is
unity.

All of the matrix-element combinations M~~~
A~ Al,

used by Buhring in his formulas for the transition
probability are listed below. E is the tensor rank
of the combination, and k„k,are the quantum num-
bers for the electron and neutrino partial wave.

(1+a)MI, ) = DU, - (61)

(1+a)m,",'= -3p(w+-,'aw'),

(1+a)M„' = DY+ 2q[(u+ au') D's'(D —q-)], (63)

(1+a)m„' = ——,'p[(x+ ax')+ (u+ —,'au')], (64)

(1+a)M„' = (I/v2)q[2 (x+ ax')+ (u+ au')

+ (D —q)D'(s'+'-, y')], (65)

(1+-,'a)M ' = (1/v2)P[2(x+-', ax')
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x+ ax' x+ —,'ax' x+ —„ax'
1+a ' 1+-a ' and 1+a

Therefore, the following notation is introduced:

x+4ax'
xp 1+4

5

The parameter x, now serves as an average rep-
resentation of the contributions made by the com-
binations of x and x' listed above. The para-
meters up vp zp Ãp and yp are introduced in the
same manner:

(71)

u+5au
1+4a

5

v+ av'
1+a '

z+4az'
1+-a5

I +-„'am'
1+

(72)

(73)

(74)

(75)

y+ ay'
y'= «+a (76)

Because of Coulomb enhancement, the parame-
ter u' and x' make a larger contribution in DY than
elsewhere. Thus they cannot be represented in
DY by an average value, using x, and u, . Since
the operators in u and x have the same radial form,
it is reasonable to assume that the ratio of u' and
u is nearly the same as the ratio of x' and x. This
ratio is just the parameter X [cf. Eq. (39)].

With the above simplifications, the matrix-ele-
ment combinations can now be written in the follow-
ing form:

factor of 100 times larger than the first-forbidden
parameters. This would be possible only if the
first-forbidden parameters were reduced in size,
and q were small, because g times any matrix-
element parameter must be less than W2. Since
the contribution of these third-forbidden parame-
ters is usually small, it is reasonable to assume
that they can be neglected. However, once g is
determined in the analysis, the validity of this as-
sumption must be considered.

The remaining higher-order terms can be handled
in a different way. For example, consider the pa-
rameter x'. This parameter occurs in the formu-
las as

m„' =-—,'p(x, +u,),(z)

M&,'~ = (1/D2) q(2x, +u,),
m,",~ = (1/&2)f (2x, —u,),
I&;~ = —,'v3 qx„

4. &he Correlation Eunc~ion

(82)

(83)

(84)

(86)

(86)

The general P-y angular-correlation function is
presented below.

3

N(w, 8, s) = Z s'A, (w)p, (8), (87)
n=p

The 2.2-MeV 3 - 2'-O' P transition of La"'
was analyzed by a set of computer codes originally
developed by Simms. ' These programs used the
energy dependence of the P-y directional correla-
tion coefficient [A, (w)/A, (W)],

' the energy depen-
dence of the p-y circular-polarization correlation
[P (W&, 8& )],' and the spectrum shape factor [C(W)]"
to determine the size of the nuclear matrix ele-
ments.

The computer program has been improved in
order to treat the parameter I}more accurately.
Usually the matrix-element combination DV is
much more important than w[(see Eqs. (79) and
(80)]. That is,

M",,' w/3p p
(89)

However, if there is internal cancellation in DV,
then the experimental observables can become sen-
sitive to zv.

The P-y circular-polarization correlation is giv-
en by

A (W) = Z b~ggi. (W)GPq~. (88)
i&A'

P„(e)are the Legendre polynomials, and G&&) are
combinations of 3-j and 6-j symbols which are de-
fined and tabulated for some important spin se-
quences by Kotani. " The particle parameters
b~~&(W) are defined in terms of the matrix-element
combination M&+& by Simms. ' The helicity factor
s is +1 (-1) for right- (left-) handed circularly-
polarized y rays.

III. ANALYSIS PROCEDURE

DV= D'v, + D(w +dw'),

DF=D'y -D[(1+de)/(1+a)](x+u),
m(:) = -DV,

Mg~ =DY+2qup,

(77)

(78)

(79)

(80)

(81)

N(w, e, 1) —N(w, 8, —1)
N(W, 8, 1) +N(W, 8, —1)

which, with Eq. (87), reduces to

A, (w)p, (e) + A, (w)p, (e)
A, (w) +A, (w)p, (e)

(90)

(91)
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3

N,~, (W, 8, S) = Z S'egA, (W)P, (8),
D=O

(92)

where the e, are the attenuation factors for the
various multipole orders. The expression (91) for
the degree of circular polarization of the y ray be-
comes the expression for the observed effect,

e,A, (W)P, (8) + e'P, (W)P, (8)
X,(W)+ ~~, (W)P, (8)

(93)

The relationship between P and 5 is obviously
very complicated. In fact it is impossible to ob-
tain P from an energy-dependent measurement of'y

5. The relative sizes of A, to A, and A, to A,
must be known in order to determine P; but in
order to get the A' s, the matrix elements must
be extracted. Therefore, the analysis program
was coded to use 5 instead of P to restrict the
values of the matrix-element parameters.

IV. RESULTS

The analysis of La' shows considerable devia-
tion from the Fujita-Eichler CVC prediction for
the vector-matrix-element ratio. With X = 0.6, the
experimental vector-matrix-element ratio and the
theoretical prediction are as follows:

Acvc (A. =0.6) =0.5524,

Acvc (X 0 6) 0 336 + 0 049

(94a)

(94b)

The analysis was repeated with variation in the
value of the parameter ~. For ~ = 2.45, agreement
between theory and experiment was obtained.

When an actual measurement of the JB-y circular-
polarization correlation is made, there is attenua-
tion due to the efficiency of the circular-polariza-
tion analyzer and geometrical factors such as fi-
nite solid angle. The effect is represented by:

parameters for La' are presented in Table II for
zo = 1.0.

The experimental result of ~ =2.45 provides a
measurement of the higher-order matrix-element
parameters u' and x'. The extracted vector-ma-
trix-element ratio, Acvc'"~, is actually D'y, /x in-
stead of D'y/x Th. us there is an uncertainty in

Acvc due to the uncertainty in the size of y'. This
error is only a few percent if y' is about the same
size as y. In the worst possible case for La'", y'
can be no larger than W2/q;„, which is 44. For
the largest allowable value of D'y, and the smallest
value of x obtained from Table II, the ratio D'y/x
is only 0.50. Thus even for the most extreme set
of values for the matrix elements, agreement
with the Fujita-Eichler result is still not possible.

Table II shows that the limits of error on Acvc"I'
and Y are smaller than one might expect from the
errors given for D'y„x, and u. This is true be-
cause the extreme values of D'y„x, and u do not
occur in the same acceptable set of matrix ele-
ments. Therefore, as the limits of error on the
matrix elements are being determined, the com-
puter records the maximum and minimum values
o Acvc an 7 a occ r

Figures 2, 3, and 4 show the data that were
used to extract the matrix elements. Also plotted
in these figures are the theoretical results for
each of the observables using a typical set of ma-
trix elements which agree with the data. Several
P transitions contribute to the circular polariza-
tion, so the experimental points in Fig. 4 are not
expected to agree with the theoretical curve below
W= 3.2. The variation of the experimental limits

Acvc and " h oretical prediction fo Acvc

Acvc (A. = 2 45) = 0 160 I

Acvp (II. = 2 45) = 0 160 + 0,019

(95a)

(95b)

TABLE II. Extracted matrix-element parameters for
La~4P. D= 0.2397, a = —0.0781, p = 0.0158.

The extracted matrix elements and other pertinent
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Value

0.5456+ 0.2102
3.243 + 1.260
2.043 + 0.783

—0.284 + 0.066
1.0000
0.0439 + 0.0114
0.160+ 0.019

2.45 + 0.20
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FIG. 2. The shape correction factor, C(W), as a func-
tion of P energy, measured by Langer and Smith (Ref.17).
The solid curve is the theoretical shape correction fac-
tor for the matrix-element set D yp=0 567 &=3 53,
u = 2.32, z p

=1.0, and A, = 2.45.
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FIG. 3. The P-y directional correlation coefficient,
A2(W)/Ao(W), as a function of p energy, measured by
Steffen. et al. (Ref. 4). The solid curve is the theoreti-
cal directional correlation coefficient for the matrix-el-

I
ement set D y 0

= 0.567, x =3.53, u =2.32, z 0
=1.0, and

A, =2.45.
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FIG. 4. The measured P-y circular polarization, &,

as a function of P-paxticle energy, measured by OMms,
Bosken, and Simms (Ref. 5). The solid curve is the the-
oretical prediction for the raw effect for matrix-element
set D yo = 0.567, +=3.53, u=2.32, z0=1.0, and A. =2.45.
Several P transitions contribute to the circular polariza-
tion, so the experimental points are not expected to
agree with the theoretical curve below TV= 3.2.

are shown as a function of the parameter A. in Fig.
5. The difficulty in obtaining P from 5 has been
discussed in Sec. III. The general nature of the
circular polarization is illustrated in Fig. 6 by
plotting P for the set of matrix elements used to
calculate the other theoretical curves.

In order for the neglect of the contributions of
the third-forbidden parameters x', s', and I,

' to
affect our results, these parameters must be at
least I/DD' (=30 for La'4G} times as great as the
largest of the first-forbidden parameters, as
pointed out in Sec. II. E3. Since the smallest value
of q consistent with its limits of error is 0.032,
the largest possible value of the third-forbidden
parameters is v2/q or 44. In the absence of any
known mechanism which would be expected to re-
duce the first-forbidden matrix elements without

A
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0.5

0.4

0.3

O. I

I.O 2 p 42.Jts 3'p

V. DISCUSSION

There are several interesting features about the
matrix elements of La' . The matrix elements
are reduced in size by more than an order of mag-
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FIG. 6. The theoretical prediction for the true p-y cir-
cular polarization, I', as a function of p-particle ener-
gy for the matrix-element set Dip=0, 567 x=3 53,
u=2.32, z0=1.0, and A. =2.45.

FIG. 5. The theoretical vector-matrix-element ratio,
Acvc, compared to the upper and lower limit on the ex-
tracted vector-matrix-element ratio, D yo/x, as a func-
tion of the parameter A, .
also reducing the third-forbidden matrix elements,
it is extremely unlikely that the third-forbidden
matrix elements x', s', and t' can influence our
results.

A recent measurement" of the P-y directional
correlation differs slightly from the one used in
this analysis. 4 Matrix elements were therefore
extracted using these newer data. The primary
result was that Ac~~"P was permitted to have even
lower values, but its upper limit was essentially
unchanged. The extracted value for the parame-
ter X was 2.76, so the disagreement with the Fu-

jita-E ichle r prediction still persists.
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nitude relative to their maximum possible physical
size. This diminished size is reflected in the large
logft value (logft= 9.1) for the decay. The large
logft is also a result of the substantial cancellation
among the parameters x, u, and D'y, . This can-
cellation reduces Y by about an order of magnitude.

The reduced size of the matrix elements cannot
be explained by the standard selection rules. In
the La"' nucleus (Z= 57, N= 83) the shell model
predicts a nucleon configuration with one hole in
the proton g», shell and one neutron in the f»,
shell above the filled N= 82 shell. Since the trans-
forming nucleon is expected to have the same total
angular momentum before and after the P transi-
tion, a j selection rule would not be expected to re-
duce the vector-type matrix elements relative to the
&;, matrix element. The K selection rule applies
only to deformed nuclei. Since the neutron config-
uration in La' ' is very close to that of a filled
shell, a K selection rule seems very unlikely.

The point of greatest interest in the analysis of
La'" is the serious disagreement between the mea-
sured value for the vector-matrix-element ratio
and the value predicted by the Fujita-Eichler form-
ula [Eq. (25)]. For La"' the measured value of x
is not 0.6 but 2.45. This information on the sizes
of the matrix-element parameters x' and u' is use-
ful new data for nuclear-structure studies.

The disagreement with the Fujita-Eichler predic-
tion can be understood in light of the discussion in
Secs. II B, C, and D. The off-diagonal matrix ele-
ments of H, are usually considered to be at least
an order-of-magnitude smaller than the diagonal
ones. However, as is shown in Eq. (22), the size
of the correction term also depends on additional
matrix elements of ir8 which do not contribute to
the P transition. Damgaard and Winther' have sug-
gested that these additional matrix elements
(f '

( i' ~
i) (f '

w f) and (f ~
ir~

~

i') (i' c i) can be an
order-of-magnitude larger than (f ) ir8[ i). When

the additional matrix elements are large, the cor-
rection term in Eq. (22) cannot be neglected even
if the off-diagonal matrix elements of H, are small.

Of course this explanation is not acceptable un-
less it is physically possible for the matrix ele-
ments (f '

(
irs [ i) and (f [ irs (

i') to be much larger
than (f ( irs

(
i). This can happen only if (f ( ira (

i) is
much smaller than v2, since none of the matrix
elements of ir8 can be larger than u2. The matrix

element (f ~
ir8

~
i) is gx which has a typical value of

0.14 for La'". Therefore, it is possible for La'"
that the large deviation from the Fujita-Eichler
prediction is caused by (f'(irs~i) and (f ~ir~~ i')
being an order-of-magnitude larger than (f

~
irs~ i)

rather than by the off-diagonal matrix elements
H, being large.

The discussion in Sec. II C shows that a simple
relation IEq. (34)j exists between the vector-ma-
trix-element ratio and the energy of the exact iso-
baric analog to the initial state in La'". When one
considers the large amount of systematic evidence
which is available on the energy of isobaric analog
states, it seems unlikely that the analog state
would exist at the very low energy (3.1 MeV above
the initial state) which would be required by the
measured vector-matrix-element ratio. (An ef-
fort has been made" to locate this analog state,
but the results were not conclusive. ) Further-
more, if the explanation given above for the La'"
vector-matrix-element ratio is correct, then the
mixing in the analog state due to the Coulomb field
need not be large. The essential point is that when
the P-decay matrix element (f ~

ir& ~i) is small, the
vector-matrix-element ratio can be quite sensitive
to the off-diagonal matrix elements of H, . The
impurities in the analog state which would be pro-
duced by small off-diagonal matrix elements
would not necessarily cause the energy of the ana-
log state to be significantly different from the ob-
served systematic trend.

This nucleus offers a significant challenge for
nuclear model calculations. It would be necessary
to explain the relatively small size of (f ~

ir8
~
i),

and also permit some of the matrix elements
(f '

~
ir8

~
i) and (f ~

ir8
~

i') to be much larger than

(f
~
ira

~

i) The nu. clear-model calculation could
then be used to estimate the size of the off-diagon-
al matrix elements of H, .

The Fujita-Eichler expression for predicting the
vector-matrix-element ratio can still be quite use-
ful in matrix-element extractions. If the experi-
mental data indicate that the P-decay matrix ele-
ment (f ~

ir&
~
i) is not small, it is unlikely that the

correction term in Eq. (22) will be significant.
Then the Fujita-Eichler expression can be used to
limit the values of the matrix elements (o.) and (ir)
which are acceptable.
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Search for Spontaneously Fissioning Elements in Nature
P. B. Price

General Electric Besearch and Development Center, Schenectady, New York 12301
and Department of Physics, University of California, Berkeley, California 94720

and
R. L. Fleischer and R. T. Woods

General Electric Research and Development Center, Schenectady, New York 12301
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The failure to observe fission tracks in old Pb-rich and Au-rich minerals restricts the
spontaneous fission rates of Au and Pb to &1&&10 per year per Au atom and &3X10 per

-25 -24

year per Pb atom (at 95% confidence level). No fission-track evidence for superheavy ele-
ments in these or other minerals rich in heavy elements has been found. These negative re-
sults are not compatible with recent proportional-counter data and track data of Flerov and
co-workers.

Although it is not even clear whether superheavy
elements can be made in known astrophysical pro-
cesses, ' the recent prediction that nuclides with
Z = 110 and A = 184 may have' half -lives ~ 10 yr
has stimulated searches and suggestions for where
to search for "element X" in terrestrial bodies, ' 4

in cosmic rays, ' ' and in meteorites. ' " In a
recent report of work prior to publication, Flerov
et al."claim to have established the existence of
a long-lived spontaneously fissioning element that
is present in lead glasses and in the mineral ga-
lena (Pbs), and that may be element 114. In a
proportional counter they recorded large pulses,
at rates ranging from —10 ' to 10 'per h, which
they claim were not due to induced fission of the
lead or thorium impurities, or to spontaneous
fission of uranium impurities in the samples.
The measured spontaneous fission rate per lead
atom was found to be 10 "to 10 per yr. Re-
cently Cieslak has found spontaneous-fission
tracks in lead glasses that support this rate. "

The implications of their interpretation of their
result, if it is correct, are profound and far-
reaching. Although our own search for element
X is incomplete, we believe it is important to
present our negative results, since they are al-
ready in conflict with the remarkable conclusions
drawn by Flerov e t al."

Our method of establishing the existence of a
long-lived spontaneously fissioning superheavy
element is far more sensitive than the counter
method, or the method based on tracks in man-
made glasses; we seek fission tracks stored over
millions of years in ancient minerals. '3 These
tracks should be distinguishable on a statistical
basis from those caused by either spontaneous or
induced fission of known heavy elements. Their
average length should be 25 to 40% greater (be-
cause of the much greater kinetic energy of the
fragments), "and a detectable fraction of the
tracks should be three-pronged and indicative of
ternary fission. "


