## Beta Decay of $F^{21}$ <sup>†</sup>

# W. R. HARRIS AND D. E. ALBURGER Brookhaven National Laboratory, Upton, New York 11973 (Received 17 July 1969)

The  $\beta$  decay of F<sup>21</sup> has been investigated, utilizing the F<sup>19</sup>( $t, \phi$ ) F<sup>21</sup> reaction to form the F<sup>21</sup> activity and a 1.3-MeV mechanically-chopped beam. The existence of previously reported  $\beta$  branches to the ground and first two excited states of Ne<sup>21</sup> has been confirmed, and an upper limit for decay to the third excited state of Ne<sup>21</sup> has been established by detecting  $\beta$ - $\gamma$  coincidences and  $\beta$ -ray singles with NaI(Tl) and plastic scintillation detectors. The Ne<sup>21</sup> levels in keV,  $F^{21}\beta$  branches populating these levels in percent, and corresponding log ft values are 0.0,  $29\pm6$ ,  $5.23\pm0.10$ ; 350,  $63\pm6$ ,  $4.76\pm0.05$ ; 1746,  $7.6\pm1.0$ ,  $5.07\pm0.07$ . The log ft values measured in the present work differ markedly from those previously reported. Measurements of the excitation energies of the first two excited states of Ne<sup>21</sup> yielded (in keV) 350.5±0.3 and 1745.6±0.4, respectively. The upper limit on the percent branch to the third excited state is 0.15%, corresponding to a limit on the  $\log ft$  of 6.0.

#### INTRODUCTION

**D**REVIOUS studies of the  $\beta$  decay of F<sup>21</sup> have established the half-life for the decay and the existence of  $\beta$  branches to the ground and first two excited states of Ne<sup>21</sup>. A recent determination<sup>1</sup> of the half-life gives  $4.35 \pm 0.04$  sec and is consistent with measurements made previous to that. Kienle and Wien<sup>2</sup> established that  $F^{21} \beta$  decays to the first and second excited states of Ne<sup>21</sup> with limits on the log*ft* values of  $\geq 5.0$  and  $\geq$  5.2, respectively. Bunker *et al.*<sup>3</sup> observed the F<sup>21</sup>  $\beta$ branch to the Ne<sup>21</sup> ground state as well as to the first two excited states. Their data indicated  $\log t$  values of 4.8, 5.2, and 5.2 for  $\beta$  decays to the ground and first and second excited states of Ne<sup>21</sup>, respectively. The present work was undertaken to obtain more accurate log *ft* values for decays to the ground state and first two excited states of  $Ne^{21}$ , and to search for a  $\beta$  branch the 2790-keV level in Ne<sup>21</sup>. Pronko et al.<sup>4</sup> have assigned  $J=\frac{3}{2}$  to this level; and if an allowed  $\beta$  decay were observed to the 2790-keV level, its parity would be established as positive since the ground state of  $F^{21}$  has  $J^{\pi} = \frac{5}{2}^{+}$ . The strong coupling model has been applied both to Ne<sup>21 5,6</sup> and the low-lying levels of F<sup>21 7</sup> with some success. Accurate log ft values can in general provide a check on such descriptions of, in this case, the ground state of F<sup>21</sup> and the first three states of Ne<sup>21</sup>.

#### EXPERIMENTAL METHODS AND RESULTS

The F<sup>21</sup> activity was produced via the  $F^{19}(t, p)F^{21}$ reaction utilizing a 1.3-MeV  $0.005-\mu A$  triton beam from the Brookhaven National Laboratory 3.5-MV van

<sup>5</sup> I. Kelson and C. A. Levinson, Phys. Rev. **134**, B269 (1964). <sup>6</sup> A. J. Howard, J. P. Allen, and D. A. Bromley, Phys. Rev. **139**, B1135 (1965).

de Graaff accelerator. Targets consisted of CaF<sub>2</sub>, KF, or  $SrF_{2}$  1-2 mg/cm<sup>2</sup> thick deposited onto steel backings. A fast mechanical chopper<sup>8</sup> located  $\sim 12$  ft from the target enabled us to study events occurring while the beam was not hitting the target. Since the chopper was operated in a 17-msec cycle composed of 3 msec of irradiation, 2 msec of delay, 10 msec of counting, and 2 msec of delay, data were being collected about 60% of the time.



FIG. 1. Delayed  $\gamma$ -ray spectrum in a 5×5-in NaI(Tl) detector in coincidence with  $\beta$  rays detected in a 3-in.-diam by 2-in.-thick Pilot-B scintillator following  $F^{21}\beta$  decay. Shoulder on the Ne<sup>20</sup> 1634-keV line is due to the ground-state decay of the 1746-keV level in Ne<sup>21</sup> and summing of the 1395- and 350-keV  $\gamma$  rays in the NaI(Tl) detector.

The target chamber was a thin-walled glass cylinder which allowed both the  $\gamma$ - and  $\beta$ -ray detectors to be placed 2 cm from the target. The  $\beta$  rays were detected with a 3-in.-diam by 2-in.-thick Pilot-B scintillator coupled to an RCA 8575 photomultiplier tube. The  $\gamma$ rays were detected with a  $5 \times 5$ -in. NaI(Tl) detector. A 0.25-in.-thick Al absorber was placed in front of the NaI(Tl) detector in order to cut down the  $\beta$ -ray flux without producing too much bremsstrahlung. The two

<sup>8</sup> D. E. Alburger, Phys. Rev. 131, 1624 (1963).

<sup>†</sup> Work performed under the auspices of the U.S. Atomic Energy Commission.

<sup>Commission.
<sup>1</sup> J. L. C. Ford, Jr., J. K. Bair, C. M. Jones, and H. B. Willard, Nucl. Phys. 63, 588 (1965).
<sup>2</sup> P. Kienle and K. Wien, Nucl. Phys. 41, 608 (1963).
<sup>3</sup> M. E. Bunker, M. G. Silbert, J. W. Starner, R. K. Sheline, and N. Jarmie, Bull. Am. Phys. Soc. 8, 317 (1963).
<sup>4</sup> J. G. Pronko, C. Rolfs, and H. J. Maier, Nucl. Phys. A94, 561 (1967).</sup> 

<sup>(1967)</sup> 

<sup>&</sup>lt;sup>7</sup> K. H. Bhatt, Nucl. Phys. 39, 375 (1962).

detectors were placed collinear and at  $90^{\circ}$  with respect to the incident beam.

Delayed  $\gamma$ -ray spectra, gated by a  $\beta$ - $\gamma$  coincidence requirement, and  $\beta$ -ray singles were recorded simultaneously. A typical  $\gamma$ -ray spectrum in coincidence with delayed  $\beta$ 's is shown in Fig. 1. The 350- and 1395-keV  $\gamma$ rays follow  $\beta$  feeding of the 350- and 1746-keV states in Ne<sup>21</sup>, respectively. The 1634-keV  $\gamma$  ray arises from the  $\beta$  decay of F<sup>20</sup> to the first excited state of Ne<sup>20</sup>. The  $F^{20}$  is formed via the  $F^{19}(t, d) F^{20}$  reaction. The peak at about 1746-keV, appearing as a shoulder on the 1634keV peak, arises from the weak ground-state  $\gamma$ -ray branch of the 1746-keV Ne<sup>21</sup> level and from summing of the 1395- and 350-keV  $\gamma$  rays from Ne<sup>21</sup>. The percent  $\beta$ branches to the ground, first excited, and second excited states of Ne<sup>21</sup> can be computed from the net yields of the 350-, 1395-, 1746-, and 1634-keV  $\gamma$  rays in coincidence with  $\beta$  rays, the recorded  $\beta$ -ray singles, and the fractions of the various  $\beta$ -ray components detected above the  $\beta$ -ray detector bias. The fraction of total  $\beta$ rays above the bias level was determined by linear extrapolation of the plateau in the  $\beta$ -ray spectrum to zero pulse height.<sup>9</sup> Since the fraction of  $\beta$  rays whose pulseheight lies above the bias level depends on the  $\beta$ -ray end point energies, it was necessary to determine this fraction separately for the  $\beta$ -ray singles,  $\beta$  rays feeding the 350-keV level, and those feeding the 1746-keV level. Therefore, spectra of  $\beta$ -ray singles and  $\beta$  rays in coincidence with the 350- and 1395-keV  $\gamma$  rays were recorded.



FIG. 2. Delayed  $\gamma$ -ray spectrum in a 5×5-in. NaI(Tl) detector in coincidence with  $\beta$  rays detected in a 3-in.-diam by 2-in.-thick Pilot-B scintillator following F<sup>21</sup> $\beta$  decay. This spectrum was used to establish the upper limit on the  $\beta$  branch to the third excited state of Ne<sup>21</sup>.





FIG. 3. Proposed decay scheme of  $F^{21}$ . The  $\beta$  branches of  $F^{21}$  to states in Ne<sup>21</sup> and the excitation energies of the first two excited states of Ne<sup>21</sup> are from the present work. The  $\gamma$ -ray branching ratios are from Ref. 11 and the excitation energies of the third, fourth, and fifth excited states are from Ref. 12.

Since the end-point energies of  $\beta$  rays feeding the 350keV level in Ne<sup>21</sup> and the 1634-keV level in Ne<sup>20</sup> are 5.334 and 5.418 MeV, respectively, the fraction of Ne<sup>20</sup>  $\beta$  rays above the bias was taken to be the same as for those feeding the 350-keV level in Ne<sup>21</sup>.

Since  $F^{20}\beta$  decays 100% of the time to the first excited state of Ne<sup>20</sup>, subtraction from the  $\beta$ -ray singles of those  $\beta$  rays arising from the decay of F<sup>20</sup> is readily accomplished. Figure 1 reveals no other contaminant  $\gamma$  radiation in coincidence with  $\beta$  rays. A source of error in the  $\beta$ -ray singles measurements arises, however, from the possibility of detecting  $\beta$  rays arising from the decay of nuclei formed by triton bombardment of contaminants that leave the daughter nucleus in its ground state. Hence, there would be no accompanying  $\gamma$  rays. Several steps were taken to check that the only contaminant of the  $\beta$  singles was the F<sup>20</sup>  $\beta$  rays. First,  $\beta$ -ray singles from a 1.5-mg/cm<sup>2</sup>-thick CaF<sub>2</sub> target on a steel backing were detected as a function of time for about 10 sec immediately after the beam was removed from the target. The resulting decay curve had a slope of  $4.4\pm$ 0.1 sec which is in excellent agreement with the known<sup>1</sup>  $F^{21}$  half-life of  $4.35 \pm 0.04$  sec. Since this measurement was started about 1 sec after the beam was removed from the target, and since the data to determine the  $\beta$ branches were accumulated with the fast chopper as described above, any  $\beta$ -ray singles to be detected erroneously as arising from  $F^{21}$  would have to (1) leave

| Level in<br>Ne <sup>21</sup> (keV) | Branch (%)<br>CaF2 target | Branch (%)<br>KF target | Branch (%)<br>SrF2 target |
|------------------------------------|---------------------------|-------------------------|---------------------------|
| 0                                  | $25 \pm 6$                | 32±6                    | 30±6                      |
| 350.5                              | $68\pm 6$                 | $60 \pm 5$              | $62\pm 5$                 |
| 1745.6                             | $7.4{\pm}1.0$             | $7.6 \pm 1.0$           | 7.7±0.9                   |

TABLE I.  $\beta$ -ray branches in the decay of  $F^{21}$  for various targets.

the daughter nucleus in its ground state and (2) have a half-life very nearly equal to that for F<sup>21</sup>, or considerably less than 1 sec. A rather remote candidate for such a  $\beta$  ray is from the 683-msec positron decay of  $Sc^{42}$  formed in the  $Ca^{40}(t, n)Sc^{42}$  reaction. Therefore, the experiment was repeated using 1.5-mg/cm<sup>2</sup>-thick KF and 1.1-mg/cm<sup>2</sup>-thick SrF<sub>2</sub> targets on steel backings. The results for the three targets are shown in Table I. The  $\beta$  branches to the first three states in Ne<sup>21</sup> agree within the experimental uncertainties for the three targets. Hence, we are confident that the only important contaminant in the  $\beta$ -ray singles measurements is that due to the decay of F<sup>20</sup>. The average of these measurements of the  $\beta$  branching to the first three states of Ne<sup>21</sup> with the three targets is shown in the third column of Table II and the corresponding log *ft* values are given in the fourth column.

As mentioned above, a major purpose of this experiment was to search for a possible  $F^{21} \beta$  decay to the 2790-keV level in Ne<sup>21</sup>. In order to maximize the lowenergy  $\beta$ -ray counting efficiency, the bias on the  $\beta$ -ray detector was set as low as possible, and a  $\gamma$ -ray pulse height spectrum gated by  $\beta$ - $\gamma$  coincidences was recorded. The resulting  $\gamma$ -ray spectrum shown in Fig. 2 gives no indication of a 2440-keV  $\gamma$ -ray which would indicate a  $\beta$  decay to the 2790-keV level, and leads to the upper limit on the  $\beta$  branch and corresponding lower limit on the  $\log ft$  given in Table II.

Accurate measurements of the excitation energies of the first- and second-excited states were made by comparing the 350- and 1395-keV  $\gamma$  rays with known calibration sources.<sup>10</sup> Comparison of the  $\gamma$ -ray from the Ne<sup>21</sup>

TABLE II.  $\beta$ -ray branches in the decay of F<sup>21</sup>.

| Level in<br>Ne <sup>21</sup><br>(keV) | $J^{\pi}$       | $\beta$ Branch (%)<br>Present<br>work | log <i>ft</i><br>Present<br>work | log <i>ft</i><br>Previous<br>work |
|---------------------------------------|-----------------|---------------------------------------|----------------------------------|-----------------------------------|
| 0                                     | $\frac{3}{2}$ + | 29±6                                  | $5.23 \pm 0.10$                  | 4.8ª                              |
| 350.5±0.3 <sup>b</sup>                | $\frac{5}{2}$ + | $63\pm 6$                             | $4.76 \pm 0.05$                  | 5.2ª                              |
| $1745.6 \pm 0.4^{b}$                  | $\frac{7}{2}$ + | $7.6 \pm 1.0$                         | $5.07 \pm 0.07$                  | 5.2ª                              |
| 2790.2±1.5°                           | $\frac{3}{2}$   | <0.15                                 | >6.0                             | •••                               |

<sup>a</sup> Reference 3.

first-excited state with the  $(302.79 \pm 0.10)$ -,  $(355.95 \pm$ 0.10)-, and  $(383.80\pm0.10)$ -keV lines from Ba<sup>133</sup> led to a transition energy of  $350.5 \pm 0.3$  keV. An energy of  $1395.1\pm0.3$  keV for the  $\gamma$ -ray branch of the 1746-keV level to the 350-keV level in Ne<sup>21</sup> was obtained from comparisons with the Na<sup>24</sup> (1368.526 $\pm$ 0.044)-keV  $\gamma$ ray, the two-escape peak of the  $(2614.47\pm0.10)$ -keV  $\gamma$ ray from ThC", and the Co<sup>60</sup>-(1332.49 $\pm$ 0.04)-keV line.

The experimental results on the  $F^{21}\beta$  decay and  $Ne^{21}$ level energies from the present work are summarized in Fig. 3 and Tables I and II. In Fig. 3, the  $\gamma$ -ray branching ratios are from Ref. 11 and the energies of the triplet of states at  $E_x \sim 2.8$  MeV are from Ref. 12. The spin and parity assignments are taken from the compilation in Ref. 11.

TABLE III. Comparison of experimental relative values of  $(ft)^{-1}$  from the present work with those predicted by the strongcoupling model. F<sup>21</sup> is taken to be pure  $K = \frac{1}{2}$  while the first three states of Ne<sup>21</sup> are assumed to be  $K = \frac{3}{2}$ .

| Level in<br>Ne <sup>21</sup><br>(keV) | Jπ                | Relative value<br>of ( <i>ft</i> ) <sup>-1</sup><br>(Present work) | Relative value <sup>a</sup><br>of ( <i>ft</i> ) <sup>-1</sup><br>predicted by<br>strong-coupling<br>model |
|---------------------------------------|-------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 0                                     | $\frac{3}{2}^{+}$ | $0.59 \pm 0.14$                                                    | 0.26                                                                                                      |
| 350.5                                 | $\frac{5}{2}^{+}$ | $1.75 \pm 0.21$                                                    | 1.75                                                                                                      |
| 1745.6                                | $\frac{7}{2}^{+}$ | $0.85 \pm 0.15$                                                    | 1.83                                                                                                      |

<sup>a</sup> The theoretical  $(ft)^{-1}$  value has been normalized to the experimental value at the 350-keV level.

### DISCUSSION

The logft values for the  $F^{21}\beta$  decay to the ground and first two excited states in Ne<sup>21</sup> all indicate allowed transitions. This is consistent with the previously known spins and parities of the first three states of Ne<sup>21 11</sup> and the  $J^{\pi} = \frac{5}{2}^+$  assignment to the ground state of F<sup>21</sup> which follows from Refs. 2, 3, and 13.

Kienle and Wien<sup>2</sup> were only able to set lower limits on the log*ft* values for  $F^{21}\beta$  decay to the first and second excited states of Ne<sup>21</sup> of  $\geq 5.0$  and  $\geq 5.2$ , respectively, since they did not measure the relative ground-state branch. These limits on the log*ft* values and their quoted uncertainty in the ratio of 1395- to 350-keV  $\gamma$ -ray intensities lead to a value of  $0.15 \pm 0.07$  for the intensity ratio of the  $\beta$  branch to the 1746-keV level relative to the branch to the 350-keV level which is consistent with the corresponding ratio of  $0.12 \pm 0.02$  measured in the present work. Their lower limits on the logft values for decays to the first and second excited states of

<sup>&</sup>lt;sup>b</sup> Present work.

<sup>&</sup>lt;sup>c</sup> Reference 12.

<sup>&</sup>lt;sup>10</sup> Energies quoted for the calibration sources are from J. B. Marion [University of Maryland Technical Report No. 656, 1968 (unpublished)], except for the Ba<sup>133</sup> energies which were from A. Schwarzschild (private communication).

A. J. Howard, J. P. Allen, D. A. Bromley, J. W. Olness, and E. K. Warburton, Phys. Rev. 157, 1022 (1967).
 <sup>12</sup> J. G. Pronko (private communication).
 <sup>13</sup> P. Horvat, Nucl. Phys. 52, 410 (1964).

Ne<sup>21</sup> of  $\geq$  5.0 and  $\geq$  5.2, respectively, are, however, inconsistent with our values of 4.76±0.05 and 5.07±0.07.

In Table II we have quoted the results of Bunker et al.,<sup>3</sup> which are in striking contrast with the present work. The discrepancy is made more graphic by comparison of the percent  $\beta$  branches measured in the present work with those implied by the log*ft* values from Ref. 3 of 73, 22, and 5% for the  $\beta$  transitions to the ground, first excited, and second excited states of Ne<sup>21</sup>, respectively. The percentages of total F<sup>21</sup> decays leaving Ne<sup>21</sup> in the 1746-keV state measured in the two experiments probably agree within the uncertainties of both experiments. The relative  $\beta$  feeding of the ground and first excited states reported in Ref. 3 are, however, roughly the reverse of those reported in the present work.

The energy of the first excited state of  $350.5\pm0.3$ -keV measured in the present work is in excellent agreement with the value of  $350.2\pm0.8$  keV quoted in Ref. 11. The value of  $1745.6\pm0.4$  keV obtained in the present work is consistent with that of  $1750\pm7.0$  keV given in Ref. 11 and disagrees slightly with a recent measurement of  $1747.4\pm1.0$  from Ref. 12.

Our lower limit on the log ft for  $\beta$  decay to the 2790keV level in Ne<sup>21</sup> of  $\geq 6.0$  does not rule out an allowed transition and hence we cannot rule out a positive parity assignment to that level.

Bhatt<sup>7</sup> has successfully explained the fact that F<sup>17</sup> and  $F^{21}$  have  $J^{\pi} = \frac{5}{2}^+$  and  $\frac{1}{2}^+$  ground and first excited states, respectively, while the order is reversed for F<sup>19</sup>, by assuming a strong-coupling model description for these nuclei. In particular, these states are taken to be members of a  $K=\frac{1}{2}$  rotational band, and in F<sup>21</sup> some credence is given to this picture by the enhanced E2 decay of the first excited state.14 Ne21 has also been described quite successfully within the framework of the strong-coupling model.<sup>5</sup> In particular, the first three states of Ne<sup>21</sup> have been described in Ref. 5 as predominantly a  $K = \frac{3}{2}$  rotational band with some  $\hat{K} = \frac{1}{2}$ and  $\frac{5}{2}$  "contaminant" amplitude. Howard *et al.*<sup>6</sup> have shown that many properties of these three states are quite well explained by assuming them to be pure  $K=\frac{3}{2}$ . Since the deformation of Ne<sup>21</sup> is characterized

by  $\eta \sim +4.0^6$  and that for F<sup>21</sup> by  $\eta \sim +2.0^{7,14}$  and within the Nilsson model  $\beta$ -ray transition probabilities can be calculated only for initial and final states having the same deformation, we cannot compare the absolute  $\log ft$  values measured here with ones predicted by the above models for the two nuclei. Under the assumption that the F<sup>21</sup> ground state is a pure  $K = \frac{1}{2}$  level and the first three states in Ne<sup>21</sup> are in the same rotational band are are pure  $K = \frac{3}{2}$  levels, we can compute the ratio of  $\beta$  moments for the decays to the first three states of Ne<sup>21</sup>. Explicitly, the collective model predicts,<sup>15</sup> under these assumptions, for decays to states 1 and 2 in Ne<sup>21</sup>

$$\left[\frac{(ft)_1}{(ft)_2}\right]_{\!\!-\!\!1}^{\!\!-\!\!1} = \left\{\!\frac{(\frac{5}{2} \frac{1}{2} \, 11 \mid J^{(1)} \frac{3}{2})}{(\frac{5}{2} \frac{1}{2} \, 11 \mid J^{(2)} \frac{3}{2})}\!\right\}^2\!\!,$$

where  $J^{(1)}$  is the spin of state 1 and  $(\frac{5}{2} \frac{1}{2} 11 \mid J \frac{3}{2})$  is a vector-addition coefficient. Experimental values of  $(ft)^{-1}$  are compared with those computed from the above relationship in Table III. The agreement is at best qualitative in that the  $\beta$  moment for the ground state is somewhat less than that for the first two excited states. Comparison with the experimental values given in column 3 of Table III reveals that the simple assumption of pure  $K = \frac{3}{2}$  levels (column 4) for the first three states of Ne<sup>21</sup> predicts that the ground-state moment is about a factor of 2 too low and the second excited state about a factor of 2 too high relative to the first excited state. According to Kelson and Levinson<sup>5</sup> the major contaminant amplitude in the first two excited states of Ne<sup>21</sup> is from the  $K=\frac{5}{2}$  band. Assuming  $K=\frac{1}{2}$ for the F<sup>21</sup> ground state, this  $K = \frac{5}{2}$  contaminant amplitude won't contribute to the allowed Gamov-Teller  $\beta$ moments ( $\Delta K = 2$ ). Therefore, assuming the F<sup>21</sup> ground state is pure  $K = \frac{1}{2}$ , the lack of good quantitative agreement in the  $(ft)^{-1}$  values in Table III is apparently due to the small mixing of the  $K=\frac{1}{2}$  band into the wave functions for the first three states of Ne<sup>21</sup>.

### ACKNOWLEDGMENTS

The authors are grateful to C. Z. Nawrocki and F. A. Mahnken for preparing all targets used in the present work.

<sup>&</sup>lt;sup>14</sup> R. A. Mendelson, Jr., and R. T. Carpenter, Phys. Rev. 152, 1002 (1966).

<sup>&</sup>lt;sup>15</sup> G. Alaga, K. Alder, A. Bohr, and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 29, No. 9 (1955).