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the 2', -0', strength to the sum of all decays from
the 0', level. This ratio is shown in column 3 of
Table IV. Although it shows variation from one nu-
cleus to the next, within an order of magnitude the
numbers are constant. This is not surprising,
since the formation of both levels is due to a com-
plex statistical process, whence large differences
in cross sections for exciting analogous levels in
neighboring nuclei are not expected. It is some-
what surprising that in Hg'" the 0', -2', transition
was not seen; that is why only a lower limit is giv-
en in column 3 for that nucleus.
The main conclusion that can be reached from

the results is that the strengths of the EO transi-
tions from 0', -0', in the nuclei studied are primari-
ly determined by the degree of competition with E2
transitions to the first 2' level. The general trend
in going from Po to Pt ~

i,s to increasing domi-
nance by the latter transition. It may be noted that
in a simple vibrational model, the EO transition is
forbidden.

In view of the sharp variations with A in the tran-
sition-rate ratio found here, it would be interest-
ing to investigate these ratios in other mass re-
gions.
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Shell-model calculations are performed for bound 0+ states of Ca and Ni . The neutron
configurations 1f&12, 2P3&, 2P~2, lf5~, and 1g~2 are included, as well as states in which one
of the neutrons is in the shell-model continuum. These continuum contributions have little
effect on energy eigenvalues, but modify the wave functions in the vicinity of the nuclear sur-
face. The calculated wave functions yield one-particle-transfer form factors whose logarith-
mic derivatives at large radius are consistent with the neutron separation energies. Com-
parison is made with other procedures for calculating form factors within the framework of
the ordinary shell model. It is found that the conventional well-depth procedure underesti-
mates the (P, d) cross sections for populating highly excited states, relative to low-lying
states, by about 50%. Two-neutron-transfer cross sections are also calculated and are found
to be in agreement with those yielded by the well-depth procedure. However, some of our
form factors exhibit an extra node at 8 F, showing that they do not decay li.ke a Hankel func-
tion.

I. INTRODUCTION

Vfhen we do nuclear shell-model calculations,
we have in mind two Hamiltonians: the shell-model
Hamiltonian and the "true" Hamiltonian. The true
Hamiltonian has a spectrum consisting of discrete
states (the bound states of the system) and a con-
tinuum (scattering states). If the shell-model po-
tential has finite range and depth, then the shell-

model Hamiltonian also has a spectrum with dis-
crete states and a continuum. Shell-model spec-
troscopic calculations generally attempt to express
bound eigenstates of the true Hamiltonian in terms
of bound eigenstates of the shell-model Hamilto-
nian. However, it is clear that an expansion of a
bound eigenstate of the true Hamiltonian in terms
of eigenstates of the shell-model Hamiltonian,
will involve continuum shell-model eigenstates as
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well as bound ones. ' We might expect that the in-
clusion of these continuum shell-model states will
have relatively little effect on the calculated ener-
gies of the nuclear bound states, or on the wave
functions of the bound states within the nucleus
where the shell-model bound-state wave functions
are large. However, in the region just beyond the
nuclear surface, where the shell-model bound-
state wave functions are decreasing exponentially,
the shell-model continuum states can make an im-
por tant contribution.

The aim of this paper is to describe some sim-
ple shell-model calculations for nuclear bound
states in which the shell-model continuum is in-
cluded amongst the basis states. The improved
wave functions we obtain will be used to calculate
cross sections for particle transfer reactions.
This will provide a check on some of the prescrip-
tions now in use for calculating form factors.

II. THEORY

We assume that the true nuclear Hamiltonian H
can be written

We have normalized our shell-model eigenstates
as follows:

(4B~I4B ~ ) ~BB ~(&

(6a)

(6b)

The coefficients a~i and a'8, are obtained by solving
Eq. (5) subject to boundary conditions depending
upon whether (; is a bound state or a scattering
state.

So far everything has been exact. However,
Eq. (5) is an infinite set of coupled integral equa-
tions. To do practical calculations we must trun-
cate it P.revious calculations for bound g; have
included only 4; we shall also include some states
of the set Cs, . To keep the calculation to a man-
ageable size, we shall follow Bloch' in consider-
ing only those 48, in which one particle occupies
a continuum single-particle shell-model orbit.

The matrix elements in Eq. (5) are calculated
in the same way as in the ordinary shell-model
calculations except for (4B,[VlCB, ) which requires
more consideration. It can easily be shown' that
this breaks up into two terms:

e= JJ,+v,
V= —,'Qv(f, j),

(I)

(2)

(C B, IVIC B,.)=(4BIVb14B.)&(~ —B')

+ (4 B,- I V, 14 B, ) . (7)

where H, is the shell-model Hamiltonian and V is
the residual interaction, Let us denote a discrete
eigenstate of P, by 4 and a continuum eigenstate
by 48, . Here ~ is the kinetic energy of the nucle-
ons in the continuum and P characterizes the other
nucleons in a bound shell-model state. The set
j4„,4 B,) forms a complete set of suitably antisym-
metrized states in which we attempt to expand (;
of H:

a'4„+Q de a'B, 4 B, .
n 8

The first term describes N-1 interacting nucleons
in bound states, plus one extra nucleon in the con-
tinuum that does not interact with the other N-1
nucleons. The second term represents the inter-
action of the nucleon in the continuum with the N-1
bound nucleons. Equation (5b) may then be written

Q(4 „IV14„,)a'. , + (B B+e -E,)a'B,

+Q(4B I Vb IC B )a'BI,
Bl

+Q de'( 4BI V, 14B,.)a'B, =0.
8 I

Here a' and a'8, are coefficients to be determined
so as to make g~ a solution of the Schrodinger
equation. If g; is substituted into

It is convenient to express the continuum states
in the basis of reaction-channel states defined in
Ref. 2. We write

and we project this equation onto 4 and Cs„we
get

(4) Bt Z4xe+B x

i ~ ia Bg ~a gqugg

(9a)

(9b)

(5b)

(~„-E„)a'„+Q(4„!V14.,)a'. ,
n'

+g Il'de (4 IVICB,, ')aB„~=0, (5a)
Beg

Q(C B, I V I C „)a'„i + (e B
+ e E~)a B, —

n'

+Q de'(4B, I VIC B, )a~B, =0.
8 I

where the coefficients us& satisfy the eigenvalue
equation:

(~B -&,) ~B,+Z(4BIVB l4B )~B g-0.

Each reaction channel A describes a possible break-
up of the N-nucleon system into one nucleon and a
residual nucleus of N-1 bound nucleons. In terms
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of this new basis for the continuum we get, or in matrix notation

(»„—z~)a'„+Q (4~1 v14„)a'„.
CX

+Q ld»'(4„IV14q. ..=0,

Q(4~, 1vl4„)a„+(»+zg zg-)a)„
n'

+Q Id»'(4q, I V, 14 '...)a&,.=0.

(1la)

(1lb)

where

H2~

H~2

H22

Awl

a

(16)

where the constants ~j are the weight factors char-
acterizing the chosen method of integration. The
system of Eqs. (12) defines a, matrix eigenvalue
equation. However, it is not ideal for numerical
calculations, since the resulting energy matrix
that has to be diagonalized is not symmetric. To
put it in symmetric form, we have to multiply
Eq. (12b) by &u;''2. Taking as components of the
eigenvector the quantities

(13a)
1/2a A.e i = 4'i a),e

and introducing the states

j./2
XZi I Xci&

we obtain

g[(». —Z)6.„,+ (4. IVI 4.,)]a,

(13b)

(lca)

(14b)

These equations contain all the information we
want to know about the nuclear system.

2.1 Numerical Treatment of the Continuous
Spectrum

We evaluate the energy integrals in Eq. (11) nu-
merically by replacing them by discrete sums over
certain given energy values. Then the set of cou-
pled equations can be written

Q[(». -z)6„., + (4„ I v I c „,)]a„,
C

+ Q (uj(4„1VI4„,.)a~, , =0,
j, x'

(12a)

Q(4„.1 vlc„,)a„,+ Q [(z,+»,. -z)6», 6,,n' j, x'

+(oj(4&,, I V, 14&, .)]a„,.=0,

(12b)

(P„)„„=(4„ I VI4„,)+» 6„„,, (17)

12)R, XEg ( 21)XEg, R ( IX I VI XE'~)&

(H22) ~, ~, , = (c „,. I V, 14 ~,, ) + (», +z ~)6 ~ ~,6;J .

A determines the wave function of the N-nucleon
system

&=pa„4„+pa„.c ~,
a i, X

(16)

Note that the continuum states enter exactly in our
calculations as the discrete states, except that
they carry a weight of &o,"'. Equation (16) is the
basic equation that we will be using in all our
bound-state calculations.

2.2 Application to a Particle in a Square Well

In deriving the matrix eigenvalue equation in (16),
we have replaced the integration over the continu-
ous energy variable by a finite sum, the dimension
of the matrix being proportional to the number of
intervals. It is necessary from the computational
point of view to keep the size of this matrix as
small as possible. Thus, we have to use integra-
tion methods that give fairly good accuracy with
a small number of points over a large interval of
integration.

To test the possibility of practical calculations
in the framework outlined in the preceding section,
we have applied the method to an s-state particle
bound in a square-well potential utilizing Simpson's
integration formula. The purpose of the computa-
tional experiment was to study the effects on the
accuracy of the solution introduced by varying the
upper limit of integration and the integration step
size in the energy integrals.

The unperturbed Hamiltonian was taken to be the
kinetic energy of the particle. and the interaction V
was the square well of depth Vo= -1G MeV and ra-
dius R =4 F. The configuration states are free
particle waves

+ Q (4 I Vlc ~, .)u)., =0, (15a)

Q(C „.I VI4. ,)s, + Q [(Z,+», -Z)6„,6'„

+(4~, j V I4~i, )]aq, =0, (15b)

4, (p-) = (2/eke)'" sin(kr),

k = (2»jN')'",

normaIized according to

(4, (~)I4, (~)& = 6(» -»'). (2o)
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FIG. 1. Influence of the size of configuration space on
the accuracy of the solution. For a fixed integration
step size (2.5. MeV) the exact solution (solid line curve)
is compared to the results (dashed curves) obtained by
our formalism for various extensions of ~~,„ofthe con-
figuration space.

For the well parameters specified above, we get
only one bound state. Figure 1 displays the calcu-
lated wave functions in comparison with the exact
one obtained by an elementary calculation. We
have taken into account unperturbed states up to a
maximum energy E,„=21.2, 41.2, and 98.2 MeV
for a fixed integration step size. We see that for
small E~,„ the wave function oscillates about the
exact solution represented by the solid dark line.
These oscillations die down rapidly as E,„is in-
creased. There is very good agreement between
the calculated wave function and the exact solution
for E~,„=98.2 MeV. No significant change was
obtained for E~„higher than this value. This in-
dicates that a rather limited configuration space
can yield a reasonably accurate solution. The re-
maining small inaccuracy may be attributed to er-
rors introduced by the integration method and could
be minimized by using better integration routines.

The exact energy eigenvalue (8 = -3.592 MeV)
was well approximated by our calculation. For
E,„=21.2, 41.2, and 98.2 MeV, the calculated
energy eigenvalues were -3.4VO, -3.540, and
-3.579 Mev, respectively. This indicates that for
calculating energy eigenvalues, it -is sufficient to
work on a limited set of basis states.

Io~ l I I I l I I I I I I

0 I 2 3 4 5 6 & 8 9 IO II

r(F)

FIG. 2. Influence of the integration step size on the
accuracy of the solution. For a fixed &m, „(98.2 MeV)
the integration step lengths used were: 1., 1.5, 2.5,
5.0 for curves I, II, III, IV.

Figure 2 displays the influence of the step size
of the integration on the accuracy of the solution.
We find that for a smaller number of integration
points, the calculated wave function starting at
around 8 F falls off more rapidly than the exact
solution. On the other hand, the interior part of the
solution almost remains the same with respect to
variation of integration step sizes. The reduction
of the integration step size brings improvement to
the accuracy of the solution as indicated by curves
I, II, III, and IV.

The results are very encouraging. Better inte-
gration methods would allow us to reduce the num-
ber of integration points for the same accuracy.
The calculation was repeated using the Gaussian
quadrature method for the numerical integration.
We found that we can achieve better accuracy with
only half as many points as were used in Simpson's
formula.

3. APPLICATION TO SINGLE-PARTICLE TRANSFER
REACTIONS

In this section, a distorted-wave Born-approxi-
mation (DWBA) analysis of the Ca'*(p, d)Ca4' and
Ni~{p, d)Ni~ reactions is used to study the depen-
dence of the theoretical cross sections upon the nu-
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clear wave functions. In particular, we have con-
sidered the question of how the interaction of the
valence neutrons mixes into the wave functions
single-particle states from the continuum, and
consider whether the conventional procedure,
which emphasizes the asymptotic tail of the form
factor, does give a correct measure of the mixing.

3.1 Ca"2(p, d)Ca '

We represent Ca as a doubly-closed-shell struc-
ture. Then the low-lying states of Ca4' are single-
particle neutron states, and the ground state of
Ca ' is a superposition of two-neutron states cou-
pled to zero total angular momentum:

~o(rp'& r3o3)

nlj = 1f7/2 2P3/2 2P1/2, 1fs/2

anlj[4 "j(r,a, )C "(rna3)]00

d~ &enlj
4 0

[c (r,a,)4 'l (r,v, )], —[4 (r,a,)c ' (r,o,)],'
W2

(21)

c'„,"(ro) =u( &l, (r) [v'(r)x"'(o)l' .

The a,» and a„zj satisfy the coupled equations

(2E ll E)anil+ ) ([4&& 4&3& ](&Iv l[C&',
&

'
'4&3&

'
'](&)an l.l

n '1'j '

n IJljl

E@n'1'j '@e '1'j ')0 [ n '1'j '@,e 'I'j 'lo
~ ~

~

p@,n IJ@nlj]0 L (1) (2) Jo L (2) (1) ]0 =0
L (1) (2) Jo V +6 n g jJ ~2

(&+&nil F)a nlj+
n'1'j '

t
~nlj~&lj ]0 f~nlj~e Jj ]0

(1) (2) JO L (2) (1) Jo $@n 'I'j '@,n 'l' j']0

ca [C, nljC, E lj]0 [@,nljCn lj ]0 [@n 'l'j 'C, E 'I j ']0 [gn 'l'j 'C, e''l'j']0

n 'I'j' (23b)

XIZ2
('(r&=(', (f(r& —,, —

d s I), (24)

The n Ij 'su'm's correspond to the four states lf»„
2p3/2t 2pll2i and 1f

The core-particle interaction representing the
Har tree-Fock self-consistent field was simulated
by a Woods-Saxon we11

experimentally observed value.
The discrete and continuum single-particle states

were calculated by solving the Schrodinger equa-
tion with the potential V(r) given above. The con-
tinuum shell-model states satisfy 5-function nor-
malization. This is equivalent to the asymptotic
behavior

f (r) =jl + exp [(r —r jt"n)/a0]l '. (25) u, lj (r) - (2m /lib 'k)"' [ sin(kr —3lll+ 5lj )] /kr—,

(26)
The well geometry and depth listed in the first row
of Table I have been chosen from the requirement
that they reproduce as nearly as possible the ex-
perimentally observed single-particle ener gies
in Ca" (see Table II), while at the same time fit-
ting the energy of the 1f, , state exactly with the

TABLE I. Woods-Saxon well parameters for neutron
single-particle states.

k = (2m'/k3) "3

v (r„r,) = vn exp(-I r, —r, l3/cr 3), (27)

where 5&J is the phase shift due to the shell-model
potential. The discrete states are normalized in
the usual way.

For simplicity, ,we have used a simple two-body
interaction of Gaussian form,

Nucleus

Ca4'-

Ni

&o
(MeV)

-54.63
-53.30

19.9'

15.

tp
(F)

1.24
1.25

ap
(F)

0.65
0.75

with v0= -43.5 MeV and o = 1.5 F. The strength of
the interaction has been chosen so as to yield the
correct Ca ground-state binding ener gy. Since
our primary objective. was to study form factors
we made no attempts to investigate whether this



SHELL -MODEL CONTINUUM IN NUCLEAR BOUND STATES

force could give a reasonable description of the
low-lying levels of Ca4'. The matrix elements of

I

v between two-particle states are simple and are
given by

[@njj@Blj ]0 [@njj@Bjj ]0 [co'.'j'j'@8'j'j ']0 [cn'j'j'@8'j'j']0

= [(2j'+ 1)/(2j+ 1)]"'QF~(o.(8lj; n'P'l'j')(kj'02 Ij~)', (28)

where F is the generalized Slater integral:

I' "p" [u~„(r,)u 8„(r,)+u~ jj(r,)u ()jj(r,)]* 2 2
(&(8fj & P f j ) Uo I l ( g ~& &]|i2 u+ j j (r,)u8.j j. (r2)f&(r» r,)r, r2 dr,dr»

o Jo
(29)

f~(r„r,)=(i)~(2k+1)e ' '' " jq( . ','). (30)

As in our test calculation, the number of inte-
gration points and maximum energy of integration
have been varied to test the convergence of the nu-
merical integration over the energy variable. The
Gaussian quadrature technique was used in evalu-
ating the energy integrals because of its better ac-
curacy. This and the fact that the energy integra-
tions involved matrix elements which varied slowly
as functions of energy, have allowed us to use an
integration step size as large as 10 MeV. A value
of 300 MeV for E,„gave satisfactory results for
the energy integrations. All our calculations were
done on the CDC 6600 computer of the University
of Minnesota Numerical Analysis Center.

The calculated amplitudes for the different com-
ponents in the Ca4' ground-state wave function are
listed in Table III. Also shown are the amplitudes
obtained by the usual shell-model calculation that
did not include the shell-model continuum states.
We see that the wave function from the second cal-
culation contains slightly less (2P»,')', (2P»,')',
and (lf„,')' but more (lf», ')' than the more "ex-
act" calculation. However the changes are too
small to have any significance. We have also
shown in Table III the contribution of the continuum
states to the wave function. Although their admix-

tures are small, continuum states have relatively
larger amplitudes near the nuclear surface than
bound states which then increase their contribution
to the cross sections.

The changes in the calculated energies as a re-
sult of the introduction of continuum states were
quite insignificant. In each case, the observed
shift in energy was less than 0.15 MeV.

This completes the nuclear-structure part of the
calculation. The form factor for the pickup reac-
tion was calculated by taking the overlap of the
Ca42 wave function [E(l. (21)] with the single-parti-
cle state of Ca4'. The resulting expression for the
radial form factor Fjj(r) is,

F„(r) 1= a„jju„j&(r) +— de a, „jj(r) .

In the discussion that follows, the "exact" form
factor refers to Fjj(r) given by E(l. (31), using the
a zj and a, zj- obtained by solving the set of Eqs.
(23).

TABLE III. Configuration mixing amplitudes in the
ground-state wave function of Ca42.

TABLE II. Single-particle energies in Ca4 and Ni~

in MeV.
Configuration

"Exact"
calculation

Qrdinary
shell model
calculation

Nucleus

Ca4i

Level

p3/2

p i/2

1fs/2

2p3/2

p i/2

Calculated

—8.361

—5.483

—3.859

—2.782

—10.25

—9.64

—9..17

Experimental

—8.361

—6.291

-4.231

—2.861

—10.25

—9.47

—9.17

(1f ')'
2)0

(2p3/2 )

(2P 2) 0+

0+(1f@2~fr/2)

(1fp2Ef5/2)

(2p3/2ep3/2)

(2pi/2~pi/2)

0.989

0.0828

0.1024

0.0406

0.0518

0.0151

0.0259

O.$144

0.991

0.0807

0.1021

0.0404
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If use is made of Eqs. (23) and the completeness relation

gu,*zj.(~,)u, » (r,) + d~u,*» (~,)u„, (r,) = (32)

then it can be shown that Ilzj (v) of Eq. (31) satisfies the differential equation

= —Q rj/jtdr, dr[4" J(r,(F,) g J(io)]0*'v(lr, —r l)(II(r~g„rv)
0

rv„„v (r) 2 ffv)Fv)F[4 v'(Fv")4"" r (r v )] v(IF, —r, l)F (F, ', Fvv ) .
n" 1' 2

(n "&n}

(33)

Here III', is the "exact" two-particle wave function,
Eq. (21). The n" sum in the second term on the
right-hand side of Eq (33).extends over all bound
lj states except nlj. For example, if nlj refers to

2p3/» then n "Ej takes on the single value 1p3/2 If
F~ (r) were obtained by solving Eq. (33) without
the u&z„ term on the right-band side, then this
E~„,(r) would not be orthogonal to u,~ „(r). This
would be inconsistent with out assumption that the

1p3/2 neutron shell is full in both Ca ' and Ca . If
nlj refers to 1f»„ then there are no n "lj terms on
the right-hand side of Eq. (33).

Prakash and Austern' and Philpott, Pinkston,
and Satchler4 have worked with an approximate
version of Eq. (33) in which: (a) the n" sum is
neglected, (b) the exact wave function (II,'on the
right-hand side of Eq. (33) is replaced by an ap-
proximate wave function obtained from a shell-
model calculation. In the framework of our discus-
sion, this would correspond to including only the
bound-state terms in the expression II),'for Eq. (21).

The form factors given by the Prakash-Austern
method provide a good approximation to our (more
exact) form factors. This will be seen below in our
discussion of the Ni"(p, d) reaction. Theirs is a
much quicker calculation than ours, and so will be
more useful for generating comparisons with ex-
perimental data on one-particle transfer reactions.
Qur method has the advantage that it provides us
with an explicit two-particle wave function, which
can be used for the calculation of form factors for
two-particle transfer reactions (see Sec. 4).

The results of the form-factor calculations are
summarized in Figs. 3-6. Radial functions de-
rived in the spirit of ordinary shell-model theory
are denoted by (OSM). In this approximation, the
form factor is proportional to the single-particle
radial wave function, calculated in a fixed shell-
model potential. This generally leads to a form fac-
tor whose logarithmic derivative beyond the nu-
clear surface is inconsistent with the neutron sep-

0
IO

I
'

I
'

I
'

I
'

I
'

I

42 4I
Ca (p, d) Ca

fr~2 FORM FACTOR
4

I
DERIVED FORM FACTOR

NO FORM FACTOR

——— OS M FUN C T ION

IO

Ff
7/2

IO

4

IO I, I ( I, I ( I

I 3 5 7 9 II

r(F)

FIG. 3. Pickup form factors for Ca (p, d}Ca . Our
f&&2 form factor (solid line curve) is compared with the
VfD form factor and the OSM radial function.

aration energy. However, within the nucleus the
OSM and exact form factors are similar.

The well-depth (WD) form factors were derived
by adjusting the depth of the Woods-Saxon potential
in the single-particle Schrodinger equation until
the shell-model radial function has the correct log-

arithmic derivative at large x. The spectroscopic
amplitudes that multiplied these radial functions
were those determined from the ordinary shell-
model calculation without the continuum. They
were approximately equal to the amplitudes de-
rived from the normalization of our exact form
factors. In order to indicate how much the depth
had to be varied to give the underlying state the
right asymptotic behavior, we have listed in Table
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FIG. 4. Pickup form factors for Ca (p, d)Ca . Our
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FIG. 6. Pickup form factors for Ca (p, d)Ca . Our

f&2 form factor (solid line curve) is compared with the
WD form factor and the OSM radial function.
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IV the depths needed to calculate the WD form fac-
tors.

An important result in the comparison of the the-
oretical form factors is the observation that the
%D form-factor peaks at a slightly smaller radius
than our exact form factor and consequently is
smaller in the surface region. This is character-
istic of cases for which the separation energy ex-
ceeds the single-particle energy of the orbit and is
most frequently met in pickup reactions, particu-
larly in going through its small components. ' This
behavior explains the features seen in Fig. 7 which
compares angular distributions using our exact
form factors and the WD form factors. The dis-
torted-wave calculations were done for 26.5-MeV
protons in the zero-range DNBA code of Smith us-
ing the optical parameters' listed in Table V. For

TABLE IV. Depths of Woods-Saxon wells used to cal-
culate WD form factors (rp=1.25 F, ap=0, 65 F A, =19 9).

-4

I

I . I

5 7 9
r(F)

FIG. 5. Pickup form factors for Ca 2(p, d)Ca . Our

p«, form factor (solid line curve) is compared with the
WD form factor and the OSM radial function.

Level

f7/2

f5/2

pe/2

p&2

Calculated
separation energy

(MeV)

11.47
17.04
14.34
15.97

Vp

(MeV)

59.21
77.69
69.63
76.20
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of the angular distribution provided the finite-
range' DWBA code is used. However, nothing has
been found which might correspond to the excited
single-particle states of Ca". This is rather un-
fortunate, because this is where our findings differ
from the predictions of the well-depth procedure.
Further experimental exploration would therefore,
be interesting, since this would be a good testing
ground for the theory.

C)
IL IO 10

3.2 Ni (p, d)Ni (5/2 )

eV)

IO IP

IO' I I I

0 30' 60 ' 90' I 20'

ec.m.

I I I I, IO

0 50' 60' 90' l20'

FIG. 7. Comparison of the Ca (p, d)Ca angular dis-
tributions for the f&i2, pat 2, p~i2, f&2 pickup obtained
from our form factors and the WD form factors. The
optical parameters are given in Table V.

TABLE V. Proton and deuteron optical parameters.
Ca (p, d) Ca4 (8& = 26.5 MeV).

v m's

(MeV) (MeV)
7o
(F) (F)

«o)s
(F)

«o)s
(F)

P 47.6 5.679 1.117 0.69 1.229 0.751 .

d 13.6.8 15.7 0.997 0.787 1.422 0.579

the lf„, pickup, our exact form factor was well re-
produced by the WD procedure, and no significant
change was observed in the cross section. This
is understandable since (If»,')' is the major com-
ponent in the ground-state wave function of Ca4',
and a single-particle description would be a good
approximation. However, for transitions to the
excited states, our theory predicted a much larger
magnitude for the form factors in the surface
region than those predicted by the WD procedure,
thus increasing the predicted cross sections by
significant amounts. The calculation indicates that
well-depth form factors underestimate, by about
507p, the cross sections for populating highly ex-
cited single-particle states compared with the
ground state.

The transition to the + ground state of Ca ' has
been observed in the Ca4~(P, d)Ca4' reaction by
Smith, Bernstein, and Hickey. ~ It was found that
the well-depth procedure can give a good account

v(1, 2)=v, e I'& '2 ' (P, +(u, P,),
0 5 0' 1 85 F 50 27 5 MeV

(34)

The operators P and P, project the singlet and
triplet components of the wave function, respec-
tively. The value used for n, was obtained by re-
quiring that the calculated ground-state energy of¹i~agreed with the observed value. Note that this
is a little different from the value used by Prakash
and Austern.

Pickup form factors resulting from the various
prescriptions are shorn in Fig. 8. Again we ob-
serve that for large radial distance our form fac-
tor lies above the well-depth form factor, but a1-
ways paral1el ta it, indicating the internal consis-

The 2 transition is particularly interesting
because it exhibits a peculiar angular distribution
that cannot be explained by the standard DWBA
calculation. "' The experimental angular distri-
bution (see Fig. 10) for the neutron pickup leading
to the 0.78-MeV —', level of Ni" shows a more
rapid fall-off beyond the first maximum than that
given by the DWBA calculation with the well-depth
form factor. Prakash and Austern' have shown
that agreement with experiment is improved if
configuration mixing effects are included in the
form-factor calculation. We will now apply our
method to this case.

We consider Ni" as a doubly closed shell struc-
ture plus two neutrons paired off to zero total an-
gular momentum in the unoccupied orbits 2P3/2,
1f„„2P»„lg, i„and the single-particle contin-
uum states. The well parameters that were used
to calculate these shell-model states are tabulated
in the second row of Table I. This potential re-
produces closely the single-particle levels of Ni",
including the spin-orbit splitting of the 2p», and

2P», levels. However, it is not possible to fit all
the single-particle levels exactly with the same
potential (see Table II). The depth needed for the
1f», level is somewhat different from that for the
levels 2p31, and 2p„,. The difference is, however,
small and was ignored in the calculations.

The two-body interaction was taken from the
Praka, sh-Austern paper:
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FIG. 8. Pickup form factor for Ni (P, d)Ni (2 ).
The exact form factor (solid line curve) is compared
with the WD form factor and the OSM radial function.
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tency of our theory. The magnitude of our form
factor, in the tail region, is about 25/o larger than

that of the WD form factor which resulted in a
large increase in the magnitude of the cross sec-
tion. The OSM radial function is also shown for

FIG. 10. Peak-to-peak comparison of the Ni~ (p, d)Ni 7

(2 ) angular distributions given by our form factor and

the WD form factor. The experimental points (open cir-
cles) are from Ref. 9. The optical parameters are list-
ed in Table VI.

comparison and again displays the wrong asymp-
totic form.

Figure 9 shows how the Prakash-Austern approx-
imation to the f», form factor compares with our
"exact" form factor. The curves are normalized"
so as to agree at 4 F. It is seen that the Prakash-
Austern approximation gives a good representation
of the shape of the form factor over the entire cal-
culated range.

Finally, Fig. 10 shows a comparison of our theo-
retica1 f», angular distribution with that of the
well-depth method for the optical parameters in

Table VI. The curves are normalized arbitrarily.
%e find that our curve has moved a good way down

from the well-depth curve towards the experiment-
al curve. ' The improvement in the calculation is
comparable to that obtained by the Prakash-Austern
calculation.

3.3 Varying the Well Radius as well as the Well Depth

-2
IO

In the WD procedure, the depth of the single-par-
ticle well is varied, but its geometry is kept fixed.
The variation of the depth of the-we11 is supposed

TABLE VI. Proton and deuteron optical parameters.
Nis (p, d)Ni 7 (E& = 28 MeV).

2 5 4 5 6 7 8 9

r(F)

V Ws ro
(MeV) (MeV) - (F)

&o (&o)s
(F)

«o)s
(F)

FIG. 9. Comparison of our f5/& form factor with the .

Prakash-Austern form factor.

p 44.6
91,0

17.1 1.30 0.458 1.070 0.341
18.75 1,15 0.68 1'.340 0.680
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to reflect the way the valence nucleons cause the
separation energy to deviate from the single-par-
ticle shell-model energy. It has been pointed out
by Austernaa and by Pinkston and Satchler" that the
valence nucleons should also change the radius of
the effective well. Thus, one could use methods in
which the well depth is kept fixed, but the radius is
varied until the single-particle binding energy
equals the separation energy. Or perhaps both the
depth and radius should be varied simultaneously.

Table VII shows some choices for well depths and
radii which yield well-depth form factors that agree
with our exact form factors. The fact that the ef-
fective radius is larger than the single-particle
radius is consistent with the arguments of Austern
and of Pinkston and Satchler. Of course the num-
bers jn Table VII are not unique; other combinations
of well depth, radius and diffuseness would do just
as well. Unfortunately, we were unable to find a
general radius-plus-depth variation prescription
that would always yield a well-depth form factor
in agreement with our exact one.

4. APPLICATION TO TVfO-PARTICLE TRANSFER
REACTIONS

By limiting our attention to the study of single-
neutron transfer reactions we have considered
only a very small part of the Ca~' wave function.
To study it further, we have used it to predict the
differential cross sections for the 0' to 0' transi-
tions in the Ca42(p, t)Ca4o reaction and its inverse
process, Ca '(t, p)Ca~'.

The radial form factor for an I.=O transfer of
two neutrons (see Ref. 13) is given by

+0(R) =RQ((la), (l2), I(ll)o(-,'2)o)0
Ij

+ I r, —
r~l

'+
I r, —r, I ')] . (37)

A value of ~=0.24 F 'was used. This is equiva-
lent to taking the triton mean squared radius to be
(1.7 F)'

Equation (35) was evaluated by using a technique
developed by Bayman and Kallio" for performing
integrals of this type with arbitrary two-particle
radial functions u JJ (r„r,) without resorting to the
Talmi-Moshinsky transformations to relative and
center -of-mass coordinates.

Figure 11 displays the theoretical form factor
for the Ca4'(p, t)Ca~' reaction predicted by using
our nuclear wave function. This is represented by
the solid dark line. The ordinary shell-model and
well-depth curves were calculated on the assump-
tion that the wave function of the transferred neu-
trons was a linear combination of shell-model
bound-state components: (lf,~,')', (2p~„')',
(2p», ')', and (lf», ')' . The expansion coefficients
listed in the third column of Table III were calcu-
lated by diagonalizing the Hamiltonian in this trun-
cated basis. In the ordinary shell-model case all

IO

IO

4p
I

I
'

t
'

1

Ga t p, t) Go {g.s.)42 40

—DERIVED FORM FACTOR

o-o-o WD FORM FAGTOR-- —OSM FORM FACTOR

The orbital part of the triton wave function was as-
sumed to be of Gaussian form:

4,(r„r„r3)= (216///w )"'exp[—x(!r,—r~I'

l~r =R-—ra z

where

dr e ' '""
upj ra r, F ra F r",

(35)

Fo(R)

IO

„-(r„r,) = (([y'(r",)x"'(o,)]'
x[& (r,)x"'(o,)] g!g',(r„P,)). '

(36)

TABLE VG. Results of a search for equivalent %oods-
Saxon potentials that give correct form factors for
Ca4 (P, d) Ca (A. = 19.9, ao = 0,65 F).

\

\

Vo
{MeV)

ro
IO

5 5

8 (F)
~a 2

P'2
Pi/2

S.P. VEeQ

-62.40
-64.02
-66.3.2
-54.63

1.42
1.32
1.37
1.24

.FIG. 11.. Pickup form factor for anL =0 transfer of
two neutrons in Ca42{P,t)Ca4o. The exact form factor
(soBd line curve) is compared with the %D form factor
and the OSM form factor.
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the shell-model states were calcula:ed in the same
well with depth t/"o = -54.63 MeV. In the well-depth
case, a different depth was used for each single-
particle state; it was chosen to give each single-
particle state a binding energy equal to half the
two-neutron separation ener gy.

The form factors depicted in Fig. 11 have differ-
ent behavior near the nuclear surface. Asymptot-
ically, the WD form factor displays the Hankel-
function decay of a state bound with an energy of
-19.833 MeV. Being more deeply bound, it is
pulled inwards with respect to the OSM curve. The
form factor generated by our wave function is
characterized by a rapid falloff punctuated by the
presence of an extra node at about 8 F. This is
due to the continuum-state admixtures in the wave
function which interfere destructively with the dis-
crete configruations at the surface region. This
is shown explicitly in Fig. 12 which displays the
partial form factors. Except for the f„,component,
all have essentially the same shape as that of the
total form factor. The interference effect here is
more pronounced than for the case of the single-
particle transfer reactions. It is also worth noting
that in all but possibly the f», partial form factor,
the well-depth procedure provides a better approx-
imation to the derived form factor than the ordi-

0

nary shell-model method. This feature is carried
over to the total form factor as is apparent in Fig.
11. The results then strongly favor the use of the
well-depth procedure for "everyday" use in exist-
ing two-particle transfer codes. This disagrees
with the conclusion of Jaffe and Gerace. "

Figure 13 shows a comparison between the ex-
perimental" and the calculated angular distribu-
tions. The optical parameters" used are listed in
Table VIII. The data points were normalized to
the calculated curve corresponding to our form
factor so as to produce the best visual fit. It is
apparent that the extra node in our form factor at
8 F has very little effect on the calculated angular
distribution. This is because it occurs in a region
where the form factor is very small. The mag-
nitudes of the cross sections are 2.5:2.2:4.4 for
the derived, well-depth, and ordinary shell-model
form factors, respectively. However, there is no
significant difference in the shape of the calculated
angular distributions. This is unfortunate because
it becomes impossible to choose among the three
wave functions on the basis of shape alone. It is
evident that the angular distribution is well re-
produced by the three curves. Indeed, the fits are
better than one could reasonably expect from a
theory that makes crude assumptions about the re-

42 40
Ga (p, I) Ga (g.s )

PARTIAL FORM
~:,FAGTOR (u {rI. r2))

7/2

42 40
lO . Ga (p, I) Ga ((I.s.)

PARTIAL FORM FACTOR (uI (ri, r2))
I/2

-2
IO

-2
IO

-3
IO

"3
IO

-4
IO

IO

42
Go (p, t) Ga (9.s.)

40

' i,PARTIAL FORM
i FAGTOR

(u~ ( r, r2))
3/2

IO

I, I, I . I, I

40
Ga (p, I) Go (Q.s.)
PARTIAL FORM FACTOR(uf Ir, , r2))

S/2

a
o
I
I

4
I
I

I
I

FIG. 12. Components of the form fac-
tor for an I = 0 transfer of two neutrons
in Ca (P, t)Ca . The sum of these par-
tial form factors gives the (net) form
factor dipicted in Fig. 11. , derived
form factor;. . . ., WD form factor;—-, OSM form factor.

-3
IO

-4
IO

a

'I

'I
I

"3
IO

IO

'I

'I

'I

4

O
1

Io
1 7 9

R]F)

\a

I

IO I . I I . I

5
R(F)



R. H. I BARRA AND B. F. BAYMAN

I I

42 40
Co (p, t}Ca

E& 39.8 MeV

Q=II.35 MeV

E 0 MeV

I0
USES DERIVE, D

FORM FACTOR

USES +D FORM
FACTOR

Il~
f

USE OSM FORM
FACTOR

EXPE RIMENTAL
POINTS

I0
I]
lg

-5
IQ

-6
(0 I I

30' 60 90' I 20' I 50 I80'

FIG. 13. Comparison between the experimental (open
circles) and the calculated angular distributions for the
Ca (p, t) Ca . The optical parameters are listed in
Table VIII.

action mechanism.
The computations described above were duplicated

for the inverse process Ca~'(t, p)Ca4' with 12-MeV
tritons, using the optical parameters tabulated in
Table IX. The results obtained are similar to

the (p, t) reaction and are, therefore, not present-
ed in detail here. Figures 14 and 15 summarize
the findings. As in the (p, t) reaction, there is not
much difference between the theoretical angular
distributions -except for the magnitudes.

The Ca" 0' state at 5.85-MeV excitation energy
is probably the one which should be associated
with our calculated excited bound state. However,
it is observed to be populated in the (t,p) reaction
with a strength of only 0.97 that of the ground
state, compared to our calculated value of 6.8.
The well-depth procedure gives a ratio of 7.7 as
compared to 5.5 for the ordinary shell-model
met. hod. Our calculated ratio would be decreased
if we had more configuration mixing, since more
(2p»2')' admixed into the ground-state would

give constructive interference which would enhance
the ground-state transition, whereas more (1f„,')'
mixed into the excited state would increase the de-
structive interference which would retard the ex-
cited-state transition. This would indicate that the
interaction we used underestimates the amount of
configuration mixing. However, increasing the
strength of the interaction overpredicts the binding
energy of the Ca4' ground state. This suggests us-
ing a more realistic type of interaction with ex-
change terms.

The presence of the form factor node at 8 F con-
firms the argument of Zaffe and Gerace that there
is no reason why the form factor should decay like
a Hankel function beyond the nuclear surface. A
crude explanation of the occurrence of this node is
that by including the f -p continuum, we are es-
sentially including contributions from the 2f -3P
oscillator shell. Since a wave function like (2P»,
3P»,)' has eight oscillator quanta, it should lead
to a form factor that looks like a 5s wave function,
whereas the six-quanta state (2p„, 2p„,)' leads
to a 0' form factor that looks like a 4s wave func-
tion. If they start out at R = 0 with the same sign,
the 4s and 5s wave functions will have opposite
sign at large R, and the 5s component will event-
ually dominate over the 4s component, even if the
amplitude of the 5s component in the form factor
is small. Of course, the true wave function will
also have components like (3p», 3p», )' with ten
quanta, which will yield a form factor looking like
a 6s wave function. This has the same sign at

TABLE VIII. Proton and triton optical parameters. Ca {P,t)Ca (E& =39.8 MeV).

tp
{F)

ap

(F)
V

(MeV)
(&p) v

(F)
(ap) &

{F)
(&Q)s
{F)

«p)s
{F)

ws
(Mev)

1.18
1.24

0.7
0.678

43.3
146.

1.3
1.45

0.6
0.841

2.
25, 1

0.6
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FIG. 14. Comparison between the experimental (open
circles) and the calculated angular distributions for the
Ca (t,p)Ca to the ground state. The optical parame-
ters are listed in Table IX.

large R as a 4s wave function, which makes it un-
clear whether there is a range in which the oppo-
site sign of the 5s wave function can dominate.
Since we have only allowed one particle to be in
the continuum, our wave function does not have a

FIG. 15. Comparison between the experimental (open
circles) and the calculated angular distributions for the
Ca4 (t,P)Ca to the 5.85-MeV 0 excited state. The op-
tical parameters are listed in Table IX.

component like (3p,~, 3P„,)' . However, we have
estimated its effect in perturbation theory, and
our conclusion is that it does not do awa„.~ with the
extra node. Therefore we believe that the node in
the ground-state form factor at about 8 F is genuine.

TABLE IX. Proton and triton optical parameters. Ca (t,P) Ca (E,= 12 MeV).

f p

(F)
ap

(F) (Mev)
(&p) v

(F)
(ap) v

(F)
v

(Mev)
«p)s
(F)

(ap)s
(F)

s
(MeV)

1.25
1.24

0.65
0.678

53.
144. 1.45 0.841 30.

1.25 0.47 15.5
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5. DISCUSSION

In this work we have attempted to generalize the
ordinary shell-model for nuclear bound states by
including the continuum spectrum of a realistic
shell-model potential. This provided a very direct
way to treat binding-energy effects on particle-
transfer form factors. We have found that the
well-depth procedure tends to underestimate by
about 50% the cross sections for populating highly
excited single-particle states, compared to the
ground state. The Prakash-Austern procedure
provides a reasonable approximation to the shape
of our more exact form factors. We have also
found that versions of the well-depth method in
which both the depth and radius of the well are
varied provide a better account of the form factors.
However, we have not succeeded in finding a unique
prescription for the way these two parameters
should be varied. Our calculated two-particle-trans-
fer cross sections are closer to the predictions of

the well-depth method than to those of the ordinary
shell-model method. However, our form factor
exhibits an extra node at about 8 F, which shows
that it does not decay like a Hankel function beyond
the nuclear surface.

The method proposed here for the unbound con-
figurations is an obvious extension of the diagonal-
ization procedure used for discrete configurations.
Like the ordinary shell-model formulation it is
free from the difficulties associated with antisym-
metrization and boundary conditions usually en-
countered in other formulations. However, the
main drawback in the formalism is our failure to
include continuum contribution involving more than
one particle in the continuum. We have made a
preliminary study of this question using perturba-
tion techniques, and the results seem to indicate
that admixtures of the double continuum states
have very little effect on the calculated form fac-
tors. However, this is not a general statement
and requires more study.

*Work partly based on the Ph.D. thesis of R. H. Ibarra
at the University of Minnesota, Minneapolis, Minnesota.

A simple example of a bound state of one Hamiltonian
expanded in terms of continuum states of another one is
the Fourier transform of a harmonic-oscillator eigen-
function.
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