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The distorted-wave matrix element for direct reactions leading to three-body final states
is written in terms of convergent integrals. The resulting expression can be evaluated in the
Butler approximation, which leads to a diffractive model of the competition of, and interfer-
ence between, direct breakup and sequential decay reaction mechanisms. Using Amado's
methods, I demonstrate the general presence of such interference in processes of interest.
Moreover, it should be possible to normalize unstable-state spectroscopic factors by mea-
suring this interference.

Direct nuclear reactions leading to particle-un-
stable residual nuclei are in principle no harder
to deal with than those leading to stable states.
However, the continuum wave functions character-
izing the final states of such reactions are not lo-
calized in configuration space, so that the ordi-
nary computational technology associated with ap-
proximation schemes such as the Butler theory'
or the distorted-wave Born approximation' (DWBA)
cannot be used straightforwardly. The difficulty
is connected with the presence of divergent inte-
grals which appear when the residual nucleus be-
comes particle-unstable. Consider, for example,
the zero-range DWBA matrix element for the re-
action

a+A -n+p+A,
where for simplicity A will be considered a static,
structureless, spinless nucleus':

All of the symbols have their usual meanings: t/)-"'

is a wave function for scattering either d, p, or n

with momentum k from A, and g is the (virtual)
amplitude for d n +P a-t ze. ro energy, lim g(q),
where

g(q) = fd'r (2v) ~"e'~' ' V z(r)Pd(r) . (2)

The + (—) superscripts refer to outgoing (incoming)
scattered-wave boundary conditions. We presume
that the deuteron, the neutron, and the proton in-
teract with A through appropriate, known interac-
tions. Since each wave function in (1) has the as-
ymptotic form e "'+O(r '), the integral (1) di-
verges. The most strongly divergent part is well
known to be proportional to 5(n'+p'- K), which
vanishes identically as a result of energy conser-
vation. That is, cancellations between successive-
ly larger contributions of alternating sign eventual-
ly yield the correct, finite matrix element. Any
computational scheme which relies on these can-
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cellations obviously places a great premium on
the accuracy with which the functions are evaluat-
ed at arbitrarily large distances and should be

avoided: Clearly, a decent theory should not be
sensitive to what takes place outside the interac-
tion region.

How should we evaluate matrix elements such as (1)& Recalling that the divergence difficulties arose
from the unscattered parts of the wave functions, let us write each wave function in (1) as the sum of scat-
tered and unscattered portions: In momentum space this decomposition takes the form

f"'(k")= 6(k —k")+ (k" I T(EJ, +it) Ik)(Eg, +is Eg, —) ', (3)

where T is the off-shell two-body scattering amplitude appropriate to a particular wave function. The end
result (in an obvious notation and where we have ignored the vanishing 6 function) is

M&z=g((n'+p'ITd&~(Ed) IK)[Ed+le Ed(-ln'+p'I)] '+(n'IT~'q(E, ) IK —p')[E, +is —E~(IK —p'I)] '

+(p'ITp&z(E&. ) IK —n')[Ep ~ +is -Ep(IK —n'I)] '+ fdn"(n'IT„"~{E .) In")(E, ~ +ie E„-) -'

&&1(P'ITp&~(E&i) IK —n")[Ep.+is Ep(IK-—n" I)] '+(n" +P'IT&'z(Ed) IK)[Ed+i@ —Ed(ln" +P'I)] '}
+ fdn "fdp "(p'IT&g(Ez ) Ip")(Ez +is —Ep ) '(n" +p" ITd~{Ed) IK)[Ed+is Ed(ln" -+p" I)] '

&(6(n' —n")+(n'IT"~(E„)In")(E, +is -E ) ')) . (4)

There are no divergent integrals anywhere in this expression, merely Gauchy singularities which are
straightforward to handle numerically.

A particle-unstable state of the residual nucleus shows up as a resonance in n-A scattering. In the vicin-
ity of a narrow resonance, with orbital angular momentum l, the n-A off-shell scattering matrix is given
approximately by

(n'IT„"z{E .) Ik) = Q (n'IB*;lp)(B*; ll&. Ik){E„—E,+ ,'if'~) —', (5)
p = -I

where E, and 1', are the position and width of the resonance B~, and (n' IB*;l p) is its vertex function (de-
cay amplitude). (When B* is a broad resonance, the factorable form of the residue of the pole persists,
but the Breit-%signer denominator must be replaced with a more faithful representation of the energy de-
pendence. ) Inserting the approximation (5) into the expression (4) gives the DWBA matrix element for tran-
sitions to unstable residual nuclei, including the terms arising from direct breakup as well as those from
sequential decay (SD). In view of the presence already of the double integral in (4), there is no additional
complexity involved in a finite-range approximation: The necessary modification is just to replace the con-
stant g by g (—, In" —p" I) and to bring this resulting (vertex) function under the relevant integral signs.

The complexity of Eq. (4) relative to the usual DWBA matrix element encountered in bound-state strip-
ping encourages us to evaluate Eq. (1) in the Butler approximation. That is, we assume the absorption and
distortion of the deuteron and proton wave functions effectively eliminate the contribution from radii small-
er than R; moreover, we replace &C&-&"(r) and g', '(r) by plane waves outside R. This leads to

—(2~) 3/2g f -ds& q
& &+(P) eir &K-- P ') (6)

Let us add and subtract in (6) the integral over r &R and replace g-&,'*(r) by its equivalent expression inn'
terms of T,„, obtained by taking the Fourier transform of Eq. (3) with respect to k". Using Eq. (5) to ex-
press T,~, we obtain the "neo-Butler" amplitude (Q=K —j5' —n', q=K —p'):

Mq~
= -g[R'/(2w'Q)] j,(QR) +g[(2l + 1)/47&] P~(n' q)[E —E, +-,'iI', ] '(n' IB*,l)

X1(B*,l lq)[E, Eq] '+ (2m/5')n'-(i)'(2/7&)"'f drr'j z(qr)f dr "r"'(B+,l lx")j~(n'r, )h&"(n'r, )]. (7)

The first term of (7) is associated with the diffractive dissociation (DD) of the deuteron, and the second
term is the contribution from Butler stripping to the unstable residual nucleus, followed by its decay.
They are represented graphically in Figs. 1(a) and 1(b), respectively. In obtaining the DD term of (7), it
was unnecessary to make the zero-range approximation; so that we should replace the factor g by
g(-', In' —p' I), exactly as described in the preceding paragraph with reference to Eq. (4).

The DD and SD processes give rise to entirely different sorts of angular correlations. The first corre-
lates the outgoing neutron direction with that of the proton, whereas SD gives rise to a neutron with a defi-
nite symmetry about q, the direction of the momentum transferred to the residual nucleus B*. This latter
correlation agrees with our preconceptions derived from the behavior of the sequential (P,P'y) reactions.
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An extremely interesting question, difficult to answer in general, is whether the two types of processes
can interfere noticeably. It is a remarkable fact that at least a part of the SD term is of the same order of
magnitude as the DD term. We can see this by considering the partial-wave decomposition of the neutron
wave function in momentum space:

0„-','*(k")=g ~

f', (n'&")[&(n' a-")/n" +(n'Ir.'„(E„,+i~)la")(E„,+f~-E, „) '].(-)„2l+1 i
(8)

1=a

As Amado has shown, ' the imaginary part of the Green's function, -im5(E, —EJ, „), multiplied by the on-
shell T matrix T & gives a term which has the same magnitude as the unscattered part of the partial-wave
n-A wave function, when the phase shift in that partial wave is nearly resonant. That is,

5(n' —0")/n" —iwb(E ~ Ei, -—)(n' I T,'g(E, ) Ik")-=0(n' —k")e"&(cosh, )/n",
where 5& is the phase shift at energy E, . Moreover, a study of resonant final-state interactions by Amado
and Noble' concluded that when the production interaction (in this case DD) has a range in configuration
space comparable to the range of the interaction producing the final-state resonance (in this case B*),
there is likely to be substantial interference between the direct-production and rescattering terms (analo-
gous to SD). Thus it is possible (under suitable conditions) for the proton differential cross section, de-
fined by

(10)
d'o

2( 2m)' m'p' r, ,
dQ dE, @& fd'n '

I M&~ I '5[e~+I'(n "+p"—,'E')/—2m],
P P

to deviate substantially from a pure stripping pattern, even for quite narrow states, B . We should note,
however, that the method of data analysis commonly employed tends to minimize this deviation: The pro-
ton angular distribution is usually plotted for the integrated area under the proton peak corresponding to
the state B*, corrected for "background. " The background which is subtracted is usually estimated by in-
terpolating the events on either side of the peak. By integrating over the peak, the interference term be-
tween direct and sequential processes, whose phase varies by w over the resonance (and whose average is
consequently zero) is averaged out. By subtracting the nonresonant background, we ignore the contribution
from direct production (DD) alone. Thus, for analyzing angular distributions as usually extracted from ex-
periment, the sequential decay term of (7) is adequate. We should realize, however, that by throwing
away the entire DD contribution, we neglect a possibly valuable way to normalize the spectroscopic infor-
mation we hope to acquire, since the DD term is independent of the behavior of the B*-n+A amplitude.
It will therefore be very interesting to reexamine the data from direct reactions leading to unstable resid-
ual nuclei, keeping this in mind.

ACKNOWLEDGMENTS

a 4 e'(j) 4

FIG. 1. (a) Diagrammatic representation of diffractive
dissociation mechanism. (b) Diagrammatic representa-
tion of sequential decay following stripping.
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