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An empirical spacing distribution is always based on a finite, and usually small, number
of observed levels. Thus, even if the spacing of levels were described exactly by the random-
matrix model, the observed distribution would necessarily fluctuate about the theoretical
mean —the Gaudin-Mehta distribution. A statistic A(z) is defined to enable one to judge wheth-
er the magnitude of the observed fluctuations about the Gaudin-Mehta distribution is compati-
ble with the random~-matrix model. It is found that the correlations between the spacings im-
plied by the model tend to reduce the expected fluctuations significantly. The statistical prop-
erties of A(n) are studied by means of a Monte Carlo calculation with matrices of order 100
sampled from the Gaussian orthogonal ensemble. An illustrative analysis of the published
neutron resonances observed in U?* by Garg el al., reveals no obvious discrepancy between
theory and experiment up to neutron kinetic energies of about 2 keV.

INTRODUCTION

Although the statistical theory of energy levels
based on Wigner’s Gaussian orthogonal ensemble
of real symmetric matrices of high dimensional-
ity!™ seems to be in good qualitative agreement
with the experimental data obtained in slow-neutron
resonance spectroscopy, the attempts at truly quan-
titative tests of the statistical model have been
rather limited. We consider it important to con-
tinue the investigation of statistics aimed at the
detection of deviations from the model, a study
which was initiated by Dyson and Mehta.® Small
deviations from the standard theory could arise
for many reasons. One possibility that has recent-
ly been considered is the violation of time-reversal
invariance of nuclear interactions.®

One of the statistical properties of an energy-
level series most commonly studied experimental-
ly is the probability distribution of the spacings
between successive energy levels of the same spin
and parity in a highly excited nucleus. The “ob-
served” probability distribution, usually presented
in the form of a histogram,” is ineviiably based on
a rather limited number of observed energy levels.
Thus, even if the theoretical model were exact, the
measured distribution would necessarily deviate
from the theoretical Gaudin-Mehta® distribution.
In this work we will investigate the question of
whether or not the fluctuations of an empirical
spacing distribution about the mean distribution
have a magnitude in the range expected on the basis
of the random-matrix model. The question is an-
swered in terms of a statistic, denoted by A(n),
which represents a particular measure of the de-
viation between an observed distribution derived
from n successive experimental spacings and the
Gaudin-Mehta distribution. The following para-
graphs are preliminary to the definition of A(x)
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in Eq. (1.6).

Let s, S,, ..., S, denote the values (usually ex-
pressed in eV) of successive spacings between n +1
adjacent energy levels of the same spin and parity
(a “single” series). Let D denote the average value
of the spacings. If n is sufficiently large, the arith-
metic mean will provide a sufficiently precise esti-
mate of D.5 As is well known, the value of D de-
pends very much on the structural details of the
particular nucleus, on the excitation energy, on
the value of the spin of the series, etc. The pres-
ent discussion is concerned with the values of the
normalized spacings defined by

tl':sI/Dy

It is a basic assumption that the division by D
largely removes the dependence on energy and
on the details of the structure, provided attention
is focused on an energy interval within which the
value of D remains virtually constant. In a heavy
nucleus, such intervals may nevertheless contain
hundreds and even thousands of energy levels.
The fluctuations reflected by the dimensionless
numbers f; in Eq. (1.1) then follow statistical laws
which are believed to be the same or nearly the
same for many nuclei.

Let F*(x; ¢, t, ...,t,), sometimes abbreviated
as F*(x,n), denote the cumulative distribution in-
ferred from »# successive normalized spacings. It
is defined by the relations

i=1,2,...,n. (1.1)

X =

n
FX(x;t1,t5 e0e,ty)= 12 0x - t;), (1.1a)
=1
O(x -t)=0 if x-¢<0,
=1 if x-£>0. (1.1b)

Wigner suggested that F*(x,#n) should be regarded
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as a random variable in the Gaussian orthogonal
ensemble E; of real symmetric matrices H having
(high) dimensionality N and being defined by the
probability density

P(H) < exp|-tr(H2/47?)], (1.2a)

with respect to the volume element d[H) defined by

d[Hl= 11 dH. (1.2b)

1<i<j=N

For sufficiently large values of the dimension-
ality N, the over-all density of eigenvalues fol-
lows Wigner’s “semicircle” law.® The semicircle
law is qualitatively quite different from the roughly
exponential energy dependence of the nuclear level
density. However, this fact does not affect the ap-
plicability of the random-matrix model to energy
intervals over which the density of levels remains
constant.'® What is done is to identify a small re-
gion of the semicircle with the energy interval
that is subjected to experimental investigation.

It has been found that the flat central region of
the semicircle is particularly convenient for this
purpose.

Let P(t,,¢,,..., t,) denote the probability density
of n successive spacings at the center of the semi-
circle. The expectation value of F*(x,n), denoted
by F(x), is defined by the relation

o di;.

F(x)Efoo“'ij(tntz, ceer g F*icn) 7=
o o T )

It would be a natural requirement that F(x) defined
by (1.3) should be independent of 7, and this “trans-
lational invariance” fortunately holds at the center
of the semicircle. The form of F(x) and its deriv-
ative P(x) implied by E at the center of the semi-
circle was derived by Gaudin and Mehta.? A sim-
ple, but very good, approximation to the exact but
rather complicated functions is given by the Wig-

ner distribution

P(x)=Py(x)= éﬂe'(““)”z,
F(x)=Fy (x) =1 - 00, (1.4)

Wigner surmised that for heavy nuclei at high
excitation, and for a sufficiently large number =,
the empirical spacing distribution would approach
the mean, i.e., that

Fx(, b, by, v . v, )~ F(). (1.5)

We now finally define the statistic which will serve
as a measure of the inevitable deviation of F* from
F. The statistic A(¢,, ¢,,...,t,), often abbreviated
A(n), is defined by the relation'!

At e, ty) Enfoo[F*(x,n) -F(x)]%dx. (1.8)
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Evidently the number A(z) can be calculated for

a given set of spacings provided the mean spacing
D can also be estimated. From what has already
been said, it is clear that A (z) may also be re-
garded as a random variable whose distribution

is, in principle, determined by the joint probabil-
ity density P(¢,,¢,,...,t,) at the center of the semi-
circle in the Gaussian orthogonal ensemble E.

In this work we shall obtain some information
about the statistical properties of A(z) in Eg by
means of a Monte Carlo calculation with matrices
of order 100. In Sec. II we study the n dependence
of the mean and the standard deviation of A(n); it
will be seen that the correlation between spacings
has the effect of substantially reducing the values
of both.

In Sec. III, the values of A(z) computed for the
neutron-capture levels observed in U?° will be
compared with the values of A(n) expected from
the statistical model. Concluding remarks are
contained in Sec. IV.

II. STATISTICAL PROPERTIES OF A (n) IN THE
GAUSSIAN ORTHOGONAL ENSEMBLE

A. Introduction

The precise functional form of the probability
distribution of n successive spacings and conse-
quently also of the probability distribution of the
random variable A(z) in the Gaussian orthogonal
ensemble is not known. The information reported
here concerning the distribution of A(z) is based
on our Monte Carlo calculation with a set of 180
real symmetric matrices of order 100, chosen
at random from the ensemble E defined by
Egs. (1.2). All the calculations were carried out
on the CDC-3600 digital computer located at this
laboratory.

Since the machine calculations must be done
with matrices of finite —in fact, rather low -
dimensionality, it is necessary to take account of
the variation in eigenvalue density if one wishes
to utilize a substantial fraction of the eigenvalues
available from the matrix diagonalizations. As
in the past,'? Wigner’s semicircle law was used
to make this correction. Let A{’ <a{’<...<af
denote the ordered eigenvalues belonging to the ith
random matrix (i=1,2, ..., T) drawn from Eg.
The density of the “reduced” eigenvalues, given
by

pP=xP/@TNY?), j=1,2,...,N, (2.1)

follows the semicircle law approximately. The
mth central spacing, corrected by means of the
semicircle law, is defined by the expression
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S(I)(m) =[ I1- %(/J%N -m+1t Hin -m)2 ,]1/2

X [U%N-mﬂ ‘H%N—m]- (2.2)

For example, the set of n central spacings [on
the basis of which A(z) will be computed] was ob-
tained by letting m =0, +1,+2, ..., +3(n - 1), where
n is an odd number. The mean value D(n) of the
spacings was estimated by computing the arith-
metic mean for the entire set of T matrices, i.e.,

+(n -

D(n)—LTz_T; }; s (m (2.3)

Next, the set of » normalized spacings

t Dm)=sD(m)/D, m=0,=1,+2,,..,+3(n-1),

(2.4)

was calculated for each of the random matrices.
Finally, one value of A(z) was computed by nu-
merical integration of Eq. (1.6) for each of the
7=180 random matrices, and the statistical prop-
erties of A(n) were estimated on the basis of the
resulting sample of 180 values of A(n).

B. Dependence of { A (n))onn;
The Effect of Correlations

Next we will discuss the value of the mean {A(n))
in the Gaussian-orthogonal ensemble. In Appendix
A we derive an expression for (A(z)) by using only
the translational invariance'® of the energy level
statistics. The result is

A@))= (A(1)>+— @ n-k)E), (2.5)
where

(A1) = f ) - F2(x)]dx, (2.6)
and

I(t)= fo i fo IX[PI_ ks, 1) -PEPO]dsar.  (2.7)

In the above, P(s) and F(x) denote, respectively,
the probability density and cumulative distribu-
tion for a single spacing, and P, ,.(t,,?,,,) de-
notes the joint probability density of the two spac-
ings ¢, and ¢, ,,. It will be recalled that the #,(z
=1,2,...,n) denote values of successive spacings.
The functional form is known for only one of these
joint probability densities, namely for P, ,(s, f),
the density for two adjacent spacings.* The inte-
grals I(k) are particularly interesting quantities
because they provide a measure of the correla-
tions between the spacings.

The expression (2.5) consists of two parts. The
first part, (A(1)), is independent of #» and of cor-

| =

relations and may be evaluated (approximately)
with Wigner’s formula (1.5), the result being

A1)~ f “F %))y = 1- 2Z=0.2929.

(2.8)

The value 0.2929 — plotted as the line (b) in Fig. 1 -
would be the value of (A(x)) if the spacings were
statistically independent, i.e., if for all k=1,

P, .4(s,5)=P(s)P(2). (2.9)

However, it is known'* that the relation of inde-
pendence (2.9) certainly does not hold for nearby
spacings, although it could conceivably become
true for sufficiently large »n, i.e., for distant
spacings.

The second part in expression (2.5), consisting
of the sum over &, arises from the correlation
between the spacings; and we will find that this
gives a significant contribution to (A(z)). The
solid circles along curve (a) of Fig. 1 represent
the mean values of {(A(n)), based on the 180 ran-
dom matrices, as a function of »; and these val-
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Fig. 1. Plots of {A(n)) versus n on the basis of three
assumptions. (a) The statistics of n successive spacings
are governed by the random-matrix model E ; the solid
circles represent values of {A(n)) estimated by means of
a Monte Carlo calculation; the solid curve is a plot of the
function (2.15). (b) The n spacings are statistically inde-
pendent and follow the Wigner distribution (1.4). (c) The
n spacings are statistically independent and follow the
exponential distribution. Of the three assumptions, (a) is
by far the most plausible for the spectrum of a heavy nu-
cleus on both theoretical and empirical grounds, as dis-
cussed in Sec. III.
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ues include, of course, the effects of the correla-
tions between the spacings. The following points
should be noted. (1) The correlations have the
effect of making (A(n)) substantially less than the
“uncorrelated” value 0.2929; for n 220, it is re-
duced to about half this value. (2) The values of
{A(n)) decrease with increasing values of 7.

(3) For n225, {A(n)) seems to approach an asymp-
totic value of about 0.16. We cannot say whether
the variation of {A(n)) for values of # between 25
and 70 is real or is only a fluctuation resulting
from the small size of the sample (180 matrices).
In this connection it should be noted that succes-
sive points are not statistically independent. For
example, the same 43 spacings are used in the
estimates of both (A(43)) and {(A(49)).

The system of linear equations (2.5) may be in-
verted so as to express the interesting integrals
I(n) as linear combinations of the mean values
(A(n)). The results are

I(1) =~{A (1)) + (A(2))

and for n=2,
In) =3 - 1){A@m - 1)) -n{A@))+ 3(n+ 1){ Al +1)).

(2.11)

Formula (2.10) is actually a special case of (2.11)
provided we adopt the interpretation that for n =1,

tn-1){Am-1))=0. (2.12)

(2.10)

Our Monte Carlo calculation yielded values of
(A(n)) as a function of #, and we are therefore in
a position to estimate the values of I(z) by means
of the relation (2.11). The accuracy of these es-
timates is very much limited by the fact that (2.11)
expresses I(n) as a (small) difference between two
large numbers, and meaningful results can be ob-
tained only for small values of ». Our estimated
values of I(n) for n=1, 2, and 3, are listed in
Table I along with the values of (A(z)) which were
used in the computation. The value of {(A(1)) is
known virtually exactly from the random-matrix
model and is given by formula (2.8). The values
of (A(3)) and (A(5)) were obtained from the Monte
Carlo data. Unfortunately, we did not compute,
at the time when it would have been convenient
to do so, the values of {A(r)) for even values of n.
However, we obtained an accurate value of (A(2))
with the help of Mehta’s* work on the joint proba-
bility density P, ,(s,?). A numerical integration
on the basis of Mehta’s tabulated function yielded
the value I(1) = -0.025 which is entered in our
Table I. The value of (A(2)) computed from for-
mula (2.10) was found to lie on a smooth curve
connecting the values of (A(1)), (A(3)), and (A(5)).
Finally, the value of (A(4)) was obtained by a
rough interpolation.

The limited results entered in Table I suggest,
but certainly do not prove, that I(z) may be neg-
ative for all » and decreases in absolute value
with increasing ».

Inspection of Fig. 1 suggests that (A(z)) may be
a relatively smooth function of n. If we treat » as
a continuous variable and approximate differences
by derivatives, the relation (2.11) may be written
in the form

1) =2 L A, (2.13)

From the form of (2.13) we can draw the conclusion
that if (A(#)) is proportional to »~**! then I(r) fol-
lows the power law » ™ and has the same sign as
(1-a)(2-a) for all values of n.

We tried to reproduce the variation of (A(n))
with #, indicated by the solid circles of Fig. 1(a),
by postulating that

IR)=-pr°% k=1,2,.... (2.14)

The sum over 2 which occurs in (2.5) was approx-
imately evaluated on the basis of assumption (2.14)
by retaining the first three terms in the Euler-
MacLaurin summation formula, and this led to

the expression

~ (-1 1 11 4y«
(A(n))~0.2929-28[ oo "T-atata-D

_l("'l)z'“+<1> 11 —(n_l)l-rx]'

n 2-a n)2-a 2n 2n (2.15)

The values of the parameters @ =1.74 and
£=0.0396 were determined by a least-squares
fit of (2.15) to the values of (A(n)) represented
by the solid circles in Fig. 1(a). The solid
curve is a plot of the function (2.15) evaluated
on the basis of the minimizing parameter val-
ues.

Assumption (2.14) would yield the value I(1)
=-0.0396, whereas the correct value, obtained
from Mehta’s work, is close to -0.025. The
disagreement is not surprising, since there
is no reason to expect relations (2.14) and
(2.15) to be good approximations for small
values of n.

TABLE I. Values of I(n) deduced by means of relation

(2.10).
n (An)) I(n)
1 0.2929 -0.025
2 0.2679 -0.013
3 0.2514 -0.009
4 0.238 o
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Occasionally, the simple form P(x)=e "* has
been considered. The probability distribution
of spacings approaches an exponential when a
large number of level systems having different
spins are randomly superposed.’® In this case
successive spacings are not correlated and
(A(n))=3%. For comparison, this value is also
plotted as line (c) in Fig. 1.

C. Dependence of the Standard Deviation of A (n) on n;
Effects of Correlations

In this part we will discuss the standard devia-
tion of the random variable A(z) much as its
mean value was treated in the preceding part.
The standard deviation is defined as

o[A()]=[A%m)) - (A())2] 2, (2.16)

The dependence of ¢ on # was estimated from
the random sample of 180 matrices. The solid
circles in Fig. 2(a) represent the values of ¢
obtained in this way, and they include, of
course, the correlations implied by the ma-
trix ensemble. It will be noted that the values
of o decrease rapidly with increasing values of
n, and 0 seemingly approaches an asymptotic
value of about 0.1 for 2 15. As in the case of
the mean value {(A(n)), we observe a variation
in the values of o between # =25 and » =70; and
again we cannot decide whether this variation
is real or results from fluctuations due to the
finite size of the sample. Again we must em-
phasize that the values of o were not obtained
from statistically independent samples.

In Appendix B it is shown that if the spacings
t{i=1,2,...,n) were statistically independent,
then the standard deviation o[ A(z)] would be
given by the expression

0?[A(n)]= 24+ B/n, (2.17)
where

a= [ trer(y) - Fe)Faxay, (2.18)

B;waw[F(x)F(y)-F(z)][4F(x)+2F(Z)

-6F(x)F -
(x)F(y) - 1]dxdy, 2.19)

and

z=xif x<y,
Ty, (2.20)

As before, F(x) denotes the cumulative dis-
tribution of a single spacing.

If we adopt the approximate form (1.5) for F(x)
which, aside from very small corrections, fol-
lows from Eg, the independence assumption en-
ables one to obtain

| =

A=3-v2+(4V2/7)tan"V2+2/71=0.028367, (2.21)

B=10v2-6-4/7-(16V2/7)tan"v/2=-0.011801,

(2.22)
and

olA(n)]=0.2382[1-0.1040/x]. (2.23)

The integrations leading to the above results were
carried out with the help of the formula*®

o0
f ¢ (cx)e -ax’yy = (ra) Y2tan"Yca ?),
0

6= @/ [ Ce .

0
The values of o[A(z)] from Eq. (2.23) are plotted
as a function of » as curve (b) in Fig. 2. Compari-
son of (a) and (b) of Fig. 2 lead to the conclusion
that the correlation between spacings cuts the
standard deviation o[A(z)] about in half.

For comparison we have also calculated o[A(x)]
on the basis of the assumptions (1) that P(x) =e™*
F(x)=1-¢ * and (2) that the spacings are statis-
tically independent. This yields

A=%, o[A()]=0.4082(1+0.5/n). (2.25)

(2.24)

b

=1
B 6

The rather large standard deviation is plotted as
curve (c) in Fig. 2.

Finally, in Table II we have listed the asymptotic
values (n —~ ) of the mean {A), the standard devia-
tion o[A], and the “figure of merit” ¢[A]=02[A)/
(A). Each has been calculated under three alterna-
tive assumptions: (a) a Gaussian orthogonal en-
semble, (b) statistically independent spacings fol-

L e e A B L
05~ |
(c)
04+ —
031~ -
£ (b)
<
o
0.2 —
.
.
. (a)
0.1 .oo.'on.-'.. tees LI =
ol v v b b e by |
o} 20 40 60 80

n

Fig. 2. Plots of the standard deviations o[A ()] vsn
on the basis of the three assumptions that led to curves
(a), (b), and (c) of Fig. 2.
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lowing the Wigner distribution, and (c) statistically
independent spacings following the exponential dis-
tribution.

D. Probability Distribution of A (n)

In Secs. IIB and IIC we described estimates of
the mean and the standard deviations of A(r) as a
function of # on the basis of the random sample of
180 matrices. It is of course possible to estimate
the values of still higher moments, and one may
even obtain a rough estimate of P[A(»)], the proba-
bility distribution of A(z). As an example, P[A(55)]
is represented as a histogram in Fig. 3. Inspection
of Fig. 3 suggests that P[A] may be approximated
by a x? distribution, namely

) (1/2)k-1
(B \[ra -(W/2kA/{N)
P[A] (2(1/2)"I‘(%k)(A>><<A>> ¢ .

(2.26)

The values of the two independent parameters &
and (A), which are the number of degrees of free-
dom and the mean value, respectively, were varied
until we obtained a least-squares fit of the cumula-
tive distribution determined by the 180 values of
A(55). In this way we found that the probability
distribution of A(55) is closely approximated by a
x? distribution with 2 =8.70 and (A)=0.163. That
distribution is plotted as the smooth curve in Fig.
3. Two other (derived) parameters, the most
probable value A, and the standard deviation o,
have the values

A,(55) = (A)(1 - 2/k) =0.125,
o[A(55) ] = (AN2/k) % =0.078.

The values of the mean and of the standard devi-
ation can, of course, also be estimated more di-
rectly by computing the arithmetic mean of the
first and second powers of A(55). (This direct
procedure was, in fact, used to obtain the values
discussed in the preceding Secs. IIB and IIC.)

The values of (A(55)) and o[ A(55)] obtained by the
least-squares fit are respectively 5 and 20% lower
than the values of these quantities obtained by the
direct method.

TABLE II. Expectation value, standard deviation, and
figure of merit of statistic A for n X 20 for three statis-
tical models.

(2.27)
(2.28)

P(t,tg,eeesty) @) o) P(p)
(a) Implied by E¢ ~ ~0.16  ~0.08  ~0.25
n
(b) II Pyt 0.29 0.24 0.67
i=1
n
(c) et 0.50 0.41 0.67

=1
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Although we have not made a detailed analysis
of P[A(r)] as a function of n, we believe that
P[A(n)] will roughly follow a x? distribution cor-
responding to the values of the mean and standard
deviation which are given in Figs. 1 and 2.

III. COMPARISON WITH OBSERVED SERIES OF
NEUTRON RESONANCE LEVELS IN U?%¥

This section illustrates how the statistic A(n)
might be useful in the analysis of data. We shall
analyze the series of nearly 200 resonances ob-
served by Garg et al.” in the reaction U**® 45 in
the range of neutron kinetic energies from zero
to approximately 4 keV. These data probably rep-
resent the most thoroughly investigated long series
of neutron resonances. Nevertheless, the authors
label 37 levels as “doubtful.” In addition, it is to
be expected that the probability of missing a weak
level increases with excitation energy, because of
the deterioration in the resolution of the time-of-
flight spectrometer.

Since the spin of U3, the target nucleus, is zero
and the resonances are formed predominantly by
s-wave interactions, the majority of observed
levels are assumed to have spin and parity 3*.
Such levels form a “single” series, the statis-
tics of which should be governed by the Gaussian
orthogonal ensemble. Indeed, the observed spac-
ing distribution is in good qualitative agreement
with the Gaudin-Mehta distribution, as may be
seen by inspection of Fig. 12 of Ref. 7. Our aim
is to see what quantitative statements regarding
the agreement can be made with the help of the
statistic A(n).

The statistic A(rz), defined by Eq. (1.6), was
computed by numerical integration on the basis
of the lowest n +1 resonance levels (z spacings)

L T T I T T T T l T T T T —l' T T T
6.0 -
_. 40— —
=
o L 4
2.0 —
i Amax <AY ]
ol PRI | L || T T | L
0 0.l 0.2 0.3 0.4

A

Fig. 3. Histogram representing the probability distribu-
tion P[A(n)] for n=55. The histogram is based on 180 ma-
trices of order 100 chosen at random from the Gaussian
orthogonal ensemble. The solid curve is a plot of a X2
distribution with the parameter values determined by a
least-squares fit.
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observed in the reaction. The value of » was var-
ied from 3 to the maximum value of about 200.

In order to compute the observed values of A(n)
according to (1.6), it is necessary to estimate the
mean value of the spacing D for U*°, That was
done by two methods. The first method consisted
in computing the arithmetic mean of the n spacings
under consideration. In the second method, the
value of D was determined by the condition that
A(n) shall be a minimum as a function of D. The
two methods yielded values of A(z) which usually
differed only by a few per cent. From this study
we concluded that the inevitable uncertainty in our
knowledge of the value of the mean spacing D will
not have any significant effect on the conclusions
we shall draw on the basis of the statistic A(x).

The results of calculations that are pertinent to
the comparison between experiment and theory
are summarized in Fig. 4. The open circles rep-
resent the “observed” values of A(z) as a function
of n for U?*, as inferred from the set of levels
from which the “doubtful” levels (possibly p-wave)
were deleted. The solid circles represent the
“observed” values of A(n) for the level series that

0.7 e

0.6~ . -

0.5~ " ) B

Aln)

Fig. 4. Plot of the values of A(n) vs n for the resonance
levels observed in U%3? by Garg et al. (Ref. 7). The open
circles represent the “observed”’ values of A(n) for the
set of levels from which the “doubtful” resonances were
omitted. The solid circles represent the values of A(n)
for the series of resonances that includes the doubtful
levels. The continuous curve is a plot of (A (n)) in the
Gaussian orthogonal ensemble, and the shaded region
corresponds to the values of A(n) that lie between the
limits (A (n)) =0[A (n)] according to the same random-
matrix model. The Monte Carlo calculations from which
these results were obtained are described in Sec. II.
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includes the levels labeled as “doubtful” by Garg
et al.”

For the purpose of comparing the observed val-
ues of A(n) with the results based on the Gaussian
orthogonal ensemble E;, we have plotted the solid
curve which represents the expectation value (A(n))
in the ensemble E;. The shaded area in Fig. 4 en-
compasses the values of A(z) that lie between the
limits (A(r))+ o¢[A(r)] in the plot of A(n) versus n.
The theoretical results leading to this plot were
obtained by means of the Monte Carlo calculations
described in Sec. II.

Inspection of Fig. 4 does not reveal any obvious
discrepancy between theory and experiment up to
n~100. It would seem that the series with the
doubtful levels included is in somewhat better
agreement with the theory than the series with
the doubtful levels omitted. Thus, if we make
the assumption that the theory is exact, then we
would be tempted to infer that many of the doubt-
ful levels up to n =100 belong to the s-wave series.

The observed values of A(z) up to z~100 are
good evidence that the correlations between the
spacings implied by E s are present in the ex-
perimental spectrum. According to line (b) of
Table II, if the correlations between spacings
were eliminated (without affecting the marginal
distribution of a single spacing) we would expect
to find A(z) =0.29+ 0.24. That would place virtu-
ally all of the observed values of A(n) for » <100
below the theoretical mean value 0.29, an unac-
ceptably improbable occurrence.

As the neutron kinetic energy increases, we
would expect to find considerable deviations from
the model because the missing of s-wave levels
and the erroneous inclusion of p-wave resonances
would tend to destroy the correlations and would
even modify the form of P(¢) in the direction of the
exponential distribution. The steep rise in the val-
ues represented by the solid circles (with “doubt-
ful” levels) is qualitatively understandable on this
basis. However, the good agreement between the-
ory and the observed values of A(z) represented
by the open circles (without “doubtful” levels) is
puzzling. The naive conclusion on the basis of our
study would be that the doubtful levels beyond
~100 do not, for the most part, belong to the s-
wave series, and that once the doubtful levels
have been deleted from the observed series, the
remainder gives a rather complete and accurate
representation of the spectrum of U?*® in the range
from 0 to 4 keV.

IV. CONCLUDING REMARKS

We have estimated both the mean and the stand-
ard deviation of the statistic A(z) as a function of
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n in the Gaussian orthogonal ensemble, and have
found that some of the best data (namely the first
100 neutron-capture levels observed in U?%®) fol-
low an empirical spacing distribution which fluc-
tuates about the Gaudin-Mehta distribution by an
amount [ measured by A(z)] which is acceptable,

The correlation between the spacings reduces
both the mean and the standard deviation of A(n)
to about half of what these values would be if the
spacings were statistically independent but fol-
lowed the Gaudin-Mehta distribution. The data
clearly disagree with a model in which the corre-
lations are neglected. No one has proposed such
a model, and this point is made merely as an in-
dication of the sensitivity of the statistic A(n) for
the purpose of testing the theory based on the
Gaussian orthogonal ensemble.

There exists a large body of experimental data'’
consisting of short series of successive energy
levels (2<10). Our Monte Carlo calculation yielded
an estimate of the values of both the mean and
standard deviation of A(z) in this range, and short
experimental level series may therefore by ana-
lyzed in terms of the results presented explicitly
in this work.

It should be noted that for large values of n (say,
n>50) our statistic A(z) does not provide as sen-
sitive a test of the random-matrix model as does
the best statistic, A,, of Dyson and Mehta.® For
very small values of » we are not able to compare
A(n) with A,, since the precise values of the er-
rors in the estimates of Dyson and Mehta are not
known.

APPENDIX A. DERIVATION OF EQ. (2.5)

Our aim is to derive Egs. (2.5) and (2.6) of the
text. The joint probability distribution of n suc-
cessive spacings, and therefore all the various
marginal distributions derived from it, are as-
sumed to have the property of translational in-
variance,'? i.e.,

Pij, .. fistjtes..)
=Pias, jrohrs,... Citptrses)s
(A-1)

where 6 represents an arbitrary integer. Particu-
lar cases of (A-1) which are relevant to our dis-
cussion are

Pl(S)=Pj(S), i:]_, 2,...,", (A-Z)

and
Py f(s;8)=P; 15,5 +6(S5 1), (A-3)

The subscript may be safely omitted in the case of
Py(s) but not in the case of P; i(s,t). Next, we note
the trivial relations

1<i<jsn.

0l - 1) = P(x - 1), (A-4)
fwe(x —t)P(t)dt=fo(t)thF(x), (A-5)
fwfme(x -8)86c -1)P, (s, 1)
0 0 Y ox
=ff P, (s, t)dsdt. (A-6)
0 Y0
With the introduction of the abbreviation
u(x,s)=0(x - s) -F (x), (A-7)

the expectation value of A(z), defined by Eq. (2.5),
may be expressed as

nAn))= Z”) J:I)cop(s)uz(x,s)dsdx

=1

0 00pm 0O
+2 2 ff P, (s, thulx,s)
1=/<j=nvo Jo Jo

Xu(x, t)dsdtdx. (A-8)
On the basis of translational invariance and Eqs.
(A-4)-(A-6), it is readily seen that

[P, 5)ds = Fe) - F(x) (A-9)
0

and

Il TOP* S5, Dule, hule, st
4] 0

=f7m[Pw‘-f+1(s’t) -P(s)P(t)]dsdt.  (A-10)

If expressions (A-9) and (A-10) are substituted

into (A-8), and (A-3) is applied to the terms in

the double summation, then the desired expres-
sion (2.5) is obtained.

APPENDIX B. DERIVATION
OF EQS. (2.17) - (2.20)

Our aim is to derive Egs. (2.17)-(2.20) of the
text. We will assume that the joint probability
density of #» successive spacings is given by the
simple product

n
P(t, tyyooo,ty)= T P(2)), (B-1)
i=1
and in what follows F(x) will again denote the cu-
mulative distribution

Flx) = f " p(yat.

With the assumption (B-1) it is relatively easy
to obtain connections between the moments of
A(n) and the moments of A(z+1). It will be con-
venient to introduce the symbol S(x, ) defined by
the expression

(B-2)
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n

S(x,n)= 25 ulx, t,).

=1

(B-3)

The quantity u(x, t) was defined in Appendix A.
The first moment of A(r) is given by the expres-
sion

ae=/m [ ® (2(x, n))dx.

In the above, the angular parentheses () denote
expectation value with respect to the probability
distribution (B-1). With the help of (B-4) and the
fact that

(B-4)

Sk, nulx, t,, =0, (B-5)

the recursion relation
0+ DA+ 1) =n800) = A1) = [ [F@) - FP(0)]ax
(B-6)

is easily established. Equation (B-6) can easily
be solved to yield

e = aw)= [ “[F &) - F2)] dx.

The expression (B-7) for (A(n)) agrees with the
expression (2.5) of the text if the terms contrib-
uted to (2.5) by the correlations between spacings
are neglected.

In a similar fashion, a recursion formula for
the second moment of A(z) may be derived. The
second moment of A(z) is given by the expression

<A2(n)>=(1/ﬂ2)f j (S%(x,n)S2(y, n))dxdy.
o )
With the help of the relations such as

(B-7)

(B-8)
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@?(x - s)) = F(x) - F?(x), (B-9)
S(x,n)S(y,n))=nF(z), z=min(x,y), (B-10)
S(x,n)) =0, (B-11)

a relatively straightforward derivation leads to
the recursion formula

(n+1)2[{A%(n+1)) - (A + 1))2] - n2[(A2(n)) - (A(n))?]
=4nA +[(A%(1)) - (A(1))?]. (B-12)

In the above, A is an abbreviation for a double in-
tegral, i.e.,

00~ 00
a=[ [ 1r@-FwIF(y)Faxay.
o] ]
The recursion formula (B-12) has the solution

Wen) - (¥ =224 L aen)y- aayp,

(B-13)

(B-14)
The most tedious part of the entire analysis con-
sists in the evaluation of the variance of A(1). We
find the expression

a2 - (= [ I‘”F(z){l C4F () + 4F (0)F (y)]

xddy + [ I”nx)m)

X[4F(y) - 4F (x)F(y) - 1] dxdy.
(B-15)

When the expression (B-15) is substituted into
(B-14), the Eqgs. (2.17)—(2.20) are obtained.

*Work performed under the auspices ofthe U. S. Atomic
Energy Commission.
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The intermediate-coupling version of the unified model has been used to calculate the prop-
erties of the low-lying levels of Bi?%3,205,200,211 ' 1y egch case, the quadrupole oscillations of
the doubly even core have been coupled to the kg, and f,5 single-particle states. Energy
levels, transition rates, and magnetic dipole and electric quadrupole moments have been
calculated for these four nuclei. Agreement between calculated nuclear properties and avail-
able experimental data is good for Bi2%%,207,211 pyut Bi203 does not appear to fit within the
framework of the intermediate-coupling model.

I. INTRODUCTION

In the intermediate-coupling approach to the uni-
fied nuclear model developed by Choudhury,® the
nucleus is treated as an oscillating core coupled
to the single-particle states of an extra odd nucle-
on. Intermediate-coupling calculations depend
upon three parameters. The phonon energy of the
core 7w is a fixed parameter which is determined
from the first excited state of the neighboring dou-
bly even nucleus. The two adjustable parameters
are £, the coupling strength between the quadrupole
vibration of the core and the single-particle mo-
tion, and €, the effective energy spacing between
the single-particle states. In the present calcula-
tions, core excitations up to three phonons are
coupled to two single-particle states. To obtain
the wave function and energies of the states, the
total Hamiltonian for the system is diagonalized.

A detailed description of these calculations has
been presented in several earlier papers.?™

The intermediate-coupling model has been suc-
cessful in predicting level structures, transition
rates, and nuclear moments for heavy nuclei with
several nucleons outside closed shells. Bismuth
isotopes are of particular interest because they
lie near the doubly-closed-shell nucleus Pb2°®, Re-
cent experimental investigations of Bi*®, Bi%*’5 and
Bi**” reported by Hopke, Nauman, and Spejewski
(HNS)® indicate that the experimentally observed
properties of these isotopes could be accounted for
by the intermediate-coupling theory. Recent stud-

ies of the decay of Bi*'! by Gorodetzky et al.,®
Davies and Hamilton” as well as shell-model cal-
culations by Gabrakov® present evidence for mix-
ing of single-particle states in the excited levels
of Bi?!!, Because experimental data have previous-
ly been unavailable, there has been a lack of theo-
retical calculations for these isotopes. The pur-
pose of the present investigation is to extend the
application of the intermediate-coupling model to
odd-mass bismuth isotopes and to compare the
results with the experimentally observed proper-
ties.

Each bismuth isotope is described as a coupled
system consisting of the neighboring doubly even
Pb core plus an odd proton. The level structures
of all the doubly even Pb isotopes exhibit quadru-
pole vibrations except Pb?°®. Since our model as-
sumes the existence of cores capable of quadru-
pole vibrations, we shall not consider Bi**°. From
shell-model considerations, the last odd proton is
assumed to have available both the %,,, and the
f 2,0 states.

II. ENERGY LEVELS

The total Hamiltonian was diagonalized for diff-
erent values of the effective energy spacing €
while the coupling strength was varied from 0 to
4. The dimension of the matrices to be diagonal-
ized ranged from 10x10 for 7 =% to 17x17 for I
=%. For the calculation, our basis vectors are
the normalized states [I7;NR), where [ is the



