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The influence of the interaction between the magnetic moment of a neutron and the Coulomb field
of a target proton is investigated. For this interaction, channel spin is not conserved. A formalism
is developed which includes the resulting singlet-triplet mixing. The scattering amplitude, or M matrix,
is presented, and its elements are related to the coefficients of the most general form of the M matrix.
Expressions for the nine most common nucleon-nucleon-scattering observables are obtained, including
the effects of the singlet-triplet mixing. Coupled radial wave equations are derived and solved to reveal
the phase-shift modifications. Calculations are performed over an energy range from 25 to 210 MeV using
nuclear phase shifts previously determined from best x? fits to the scattering data. Our calculations indicate
that all nine of the scattering observables considered are significantly influenced by the Mott-Schwinger
interaction, but only for very small (<5°) scattering angles.

I. INTRODUCTION

N a previous paper,! the effect of the interaction

between the magnetic moment of a neutron and
the Coulomb field of a target nucleus on the polariza-
tion and the differential-scattering cross section was
evaluated. The influence of this Mott-Schwinger (MS)
interaction on the aforementioned observables was suf-
ficiently large to suggest that the evaluation of the
effect of including this interaction in the neutron-
proton scattering problem would also be of interest.

The modification resulting from the inclusion of the
MS force in the nucleon-nucleon scattering problem
has received some attention. Garren? included the MS
effect in an approximate relativistic calculation of
high-energy p-p scattering by use of the Born ap-
proximation. Breit and co-workers have considered
the problem in connection with high-energy p-p scat-
tering®® as well as in a more general context.” In
the more recent works,%7 Breit pointed out that the
wave distortion produced by the nuclear interaction
invalidates the Born-approximation treatments for low
1 waves.® In addition, the #-p problem was discussed
and differences between #n-p and p-p scattering intro-
duced by the MS interaction were pointed out. It was
found that for p-p scattering at 147 MeV, the po-
larization P(#), the correlation coefficient Cxp(8), and
the triple scattering parameter A4(#) are appreciably
affected at small scattering angle although it is doubt-
ful that measurements of Cxp(f) and A(8) can be
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made with sufficient accuracy to detect this influence.
In the case of P(8), however, a noticeable improve-
ment in agreement with experimental data was achieved
in the range of 8°-20° by inclusion of the MS inter-
action. The basic approximation used in all these
treatments was the plane-wave Born approximation.

With the exception of the references just cited, the
effects of the MS interaction on the analysis of nu-
cleon-nucleon scattering data have been largely ignored.
Since its approximate inclusion has produced better
agreement with experiment and since its inclusion in
the neutron-nucleus problem gave some interesting
results, it would seem very desirable to develop more
accurate techniques for treating the MS interaction
and for systematically evaluating the domains of im-
portance of this interaction.

The remainder of this paper is divided into three
sections. Section II deals with the theory of neutron-
proton scattering, and with the development of a
formalism for including the MS interaction. In Sec.
ITI, the formalism is applied to determine the regions
of importance of the MS interaction. Section IV con-
tains the summary and conclusions. The treatment is
nonrelativistic.

II. GENERAL FORMALISM FOR NEUTRON-
PROTON INTERACTION

A. Preliminaries

The MS interaction in the nucleon-nucleon scat-
tering problem requires a somewhat different treat-
ment than in the nucleon-nucleus problem. The es-
sential difference is because of the occurrence of the
target spin operator in the nucleon-nucleon Hamilto-
nian. This occurrence has three consequences. (i) Since
17
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the total spin can exceed the spin of the neutron,
the dimensionality of the scattering matrices is in-
creased; (ii) the presence of the nuclear tensor inter-
action leads to transitions between states whose orbital
angular momenta differ by two; and (iii) the spin
operator in the MS interaction need not be the total
spin of the system. For p-p scattering, since the
magnetic moment of each particle is acted on by the
Coulomb field of the other, the MS interaction in-
volves the operator 1-s, where s is the total spin of
the system, whereas for #-p scattering the analogous
term is 1-s, which does not commute with the total
spin and will therefore lead to transitions between
states of different total spin. The first consequence
is a rather trivial complication, but the second and
third lead to systems of coupled equations unlike the
situation for nucleon-nucleus scattering.

The question of interest here is whether an ac-
curate treatment of the MS interaction might alter
the results drawn from an analysis of nucleon-nucleon
scattering data. The standard method of analyzing
such data (cross section, polarization, depolarization,
etc.) is to attempt to find that set of phase shifts
which best represents the entirety of experimental
results. The best result here is defined in terms of x2
minimization.? Restated the question then is to what
extent does inclusion of the MS force alter these
phase shifts.

Inclusion of the MS term in the p-p scattering
problem would bring about no changes in the general
formalism. That is, the forms for the scattering am-
plitudes would not be changed, and of course, no
change in the x* minimized phase shifts would result,
except possibly for the relatively minor influence of
large ! partial waves, where the usual practice is to
include their contribution through an analytical treat-
ment of the one-pion exchange potential. Breit and
Ruppel® have included the large ! partial wave effect
of the MS force in the p-p scattering problem and
found it to be small, but not negligible. Although
the charge-independent nuclear Hamiltonian introduces
no spin mixing, inclusion of the MS force in #-p
scattering mixes the singlet and triplet spin states
(consequently, the two isotopic spin states are also
mixed) and does change the interpretation of the
phase shifts since new scattering amplitudes are in-
troduced. The usual practice is to regard this coupling
between spin states to be negligibly weak and to
neglect the MS interaction entirely.®® There are good
reasons for neglecting this effect in the phase-shift
analyses. First, in contrast with p-p scattering, there

8R. A. Arndt and M. H. MacGregor, in Methods in Computa-
tional Physics (Academic Press Inc., New York, 1966), Vol. 6,
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are insufficient #-p scattering data to allow one to
effect a reliable independent determination of the
phase shifts.® Further, essentially all the data are at
scattering angles somewhat larger than where one
expects the MS influence to be evident. Since the
nuclear spin-orbit force is of relatively short range
and therefore less important at lower energies,!! one
might expect the spin-orbit force-dependent effects to
be most influenced by the relatively weak MS force
in this lower-energy range.

The consideration that the inclusion of the MS
force introduces no changes in the p-p scattering for-
malism coupled with the considerations that the large
forward angle p-p cross section tends to obscure the
MS force influence, and that the use of Coulomb
wave functions introduces additional numerical com-
plexities, led to a decision to investigate the influence
of the MS force on only n-p scattering.

In what follows in this section, the #-p scattering
formalism is developed including the MS force, and
the appropriate phase shifts are calculated. In Sec. II1,

“the effect of the MS interaction on the scattering

observables is calculated and compared to experi-
mental results.

B. Coupled Radial Equations

Consider the scattering of a neutron and a proton
with total angular momentum projection m. Let the
quantization axis lie along the linear momentum vector
of the neutron beam. We express the wave function as

Y= ; Yi1,"(0, &) Rjis(7), (N

where Rj;;;(r) represents the radial dependence, and
Y, gives the spin and angle dependence

Yi"= z): (Iska | jm) Y (0, ¢)xs"- (2)
o

In Eq. (2), (Is\a | jm) represents a Clebsch-Gordan
coefficient,’> ¥ (8, ¢) represents the well-known spher-
ical harmonic,? and x,” represents the spin-wave func-
tion with total spin s and z-projection o. Since 1-s,
does not commute with 2, it follows that an eigen-
function of s? (e.g., Y;™) is not an eigenfunction of
1-s,. It is, therefore, clear that the 1l-s, will mix
singlet and triplet spin states and from parity con-
servation considerations, these will be states where
j=1. In order to derive the appropriate radial-wave
equations, it is necessary to evaluate the expression

( 10 R). A. Arndt and M. H. MacGregor, Phys. Rev. 141, 873
1966) .
11 M. A. Preston, Physics of the Nucleus (Addison-Wesley
Publishing Co., Reading, Mass., 1962), p. 107.

12E, U. Condon and G. H. Shortley, The Theory of Atomic
sze;tm (Cambridge University Press, Cambridge, England,
1957).
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(1-8,)Y;is™ for the four possible states. We find that
(L 8n) Y100 =3Yr1,017,
(Is0) Y11= =3+ 1) Y1117 (3)
(I 80) Y= — 3Yur™+ 31 (0H+1) T2 e,
(I 82) Yuo =3[0 (141) Y™,

which leads to the following four equations for the
radial-wave functions outside the range of the nuclear
force (r>r):

R (141
li(p‘zd uo)+ (1_ (4 )>Ruo
o’ dp dp 0

—(v/20") [1(4-1) 2 Rin=0, (4)
1d(,dRm _ 1(1+1)
;%(P dp)+<1 7 )Rzu
+(v/20*) Rin— (v/2p*) [L(I4+-1) J*Ruy=0, (5)

1d de+1,,,1> ( l(l+1)>
Rl P* Juii.cn 1— R
G (p ip + o AERE

— (7/2p3) IR11,11=0, (6)

A dR (141
1d <p2 _l:LT) + (1._ (+ ))Rl_l'u
o*dp dp 0

4+ (v/2p%) (I4+1)Ri1,11=0, (7)

where v= (e2/mc®) k| pa |.
It should be noted that within the range of the

nuclear force the tensor-force couples the two states .

l=4j=41. This coupling must be accounted for in ex-
pressing scattering amplitudes in terms of phase shifts,
The effect of this latter coupling on the matrix ele-
ments is well known, and is readily available in the
literature.!

C. M Matrix

Since coupled wave functions such as Ry and Ry
imply a sharing of flux between the states even though
the initial flux might have existed in only one state,
the phase shifts associated with Ryg and R of Egs.
(4) and (5) are complex. These can be converted to
two real phase shifts and a mixing parameter through
the use of the well-known recipes of either Blatt and
Beidenharn or Stapp.’® The Blatt-Biedenharn type
of phase shift will be used for the derivation of the
M matrix, although Stapp phase shifts will be used
later in the calculations. The choice is arbitrary, for

1BN. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, England, 1965), 3rd ed.,
Chap. 10.
14 7. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).

15 H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (195?).

given one type of phase shift, one can always find
the other.

Taking a linear combination of states, one may
express the asymptotic form of the wave function as

Y~ 30 2 A Fiu(p), (8)
tly
where
dit1,u"=Yut1,u™,

b1 =Yun"+taneYue™,
¢u""=Yun"— coterYun™.

In this notation ¢ ranges over the indices 1, 4-, and —,
where the + and — subscripts correspond to the signs
preceding the tan or cot term on the right-hand side
of the last two expressions. The quantity ¢; represents
the above-mentioned mixing parameter and Fj;(p)
represents the radial dependence consistent with the
¢ functions and is normalized so as to differ asymp-
totically from 7i(p) only by a phase shift.

If the incident neutron direction is selected as the
quantization axis, the asymptotic form of the wave

function can be expressed alternatively as

Ym~exp(ip cost) xs"+ (e /7) Z,: Momromxs™,  (9)

where the unprimed indices refer to the incident beam
and the primed indices to the scattered beam. The
quantities Momsem represent the amplitudes for scat-
tering from the initial state to a final state with spin s’
and projection m’ and constitute the elements of the
M matrix. As there are four possible values of the
pair (s, m), the M matrix is square and of order four.

Equating Egs. (8) and (9) and making use of the
spherical Bessel function [ 7i(p)] expansion of the
plane wave and the asymptotic forms of 7i(p) and
Fiu(p), explicit forms for the Mmen can be deter-
mined. For the case of no spin-state mixing, these
forms (including the /=741 state mixing) are readily
available in the literature.!

The inclusion of the spin-state mixing MS inter-
action leads to the following for the j=/ elements
of the S matrix,

tane; exp(2i5;l+) -+ cote; exp(2i6u_)

St = ,
w cote;+tane;
t 216 t exp (216
Sud= cote; exp(24011,) +tane; exp (246, ) (10
cote;+tane;
exp(2idyy) —exp(2464
Sint=Sut= <P (2dus) <P (24u) s

cote;+tane;

where the §’s are the j=1 eigenphase shifts. The reader

16 M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Ann.
Rev. Nucl. Sci. 10, 291 (1960).
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TaBLE I. Observables in terms of Wolfenstein coefficients.

Observable Expression
do/dQ |u la P+ |m 420 b+ | c 4+ | g P4+ | 2 [7]
da/dQ P —2 Re[c*(a+m)+b*(a—m) n,
do/dQ |,(1— D) 4] gP+4|n?
do/dQ |.R [l a|?— | m|2—4 Re(cb*+gh*) ] cos30—2 Rei[ a*(c+b) —m*(c—b) ] sinid
do/dQ | R’ [l a2— | m |*—4 Re(cb*—gh*) ] sint0+2 Rei[ a* (c+b) —m*(c—b) ] cosif
do/dQ |4 [— | @ >+ | m |>4+4 Re(cb*+gh*) ] sind6—2 Rei[a*(c+b) —m* (c—b) ] cosif
do/dQ |, A’ [l @ |?— | m |>—4 Re(cb*—gh*) ] cos3—2 Rei[a*(c+b) —m*(c—b) ] sinif
d0/d2 [uCon o[l clt— | b+ | i |*— | g |*+Re am*]
do/dQ |.Cxp —4 Rei[ch*+bg*]

is referred to Eq. (3.14) of Ref. 14 for the connection
between the M- and S-matrix elements.

D. General Considerations and the M Matrix

The requirement that the scattering matrix be in-
variant under rotation, time inversion, and space re-
flection allows only six terms to be retained in the
general representation. All this is well known, and
was first developed by Wolfenstein and Ashkin.” It
happens that if one assumes charge independence of
the interaction, then only five terms are allowed.
Since the nuclear forces are believed to be charge-
independent, the usual treatment of #-p scattering do
not include the consequences of the sixth term.

One way of expressing the general six-term M ma-
trix is as follows:

M=A+Do,?+Co,®+ By P+ EopMap®

+Fog®og®.  (11)
In Eq. (12),
Kin XKout _ Kout+Kin
T kXl |’ Kot Ko |
and
. Koi—Kin
[ Kow—Kin |’

where kin and K., represent the wave-propagation
vectors before and after the scattering. The super-
scripts (1) and (2) are used to distinguish between
the spin spaces of the neutron and proton, respectively.

The coefficients 4, B, C, D, E, and F are, in gen-
eral, complex functions of the energy and scattering
angle.

171,. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).

An alternative equivalent form of Eq. (12) is fre-
quently seen in the literature,'18

M=a+b(0,0—0,2) +¢ (0,04 0,®) +m0,Ver,®
+g(0pDp@+ o Do ®) 4 (0pDap® — g Mg @) .
(12)

If one postulates charge independence, then & would
vanish and only five parameters would be necessary.
In Eq. (11), this same condition (charge independ-
ence) would require that C=D.

The Wolfenstein coefficients @, ¢, m, g, and /& are
related to the coefficients 4 through F and to the
M-matrix elements in Ref. 16.

The charge-dependent MS interaction introduces the
parameter b which is related to other quantities of
interest as

where M= Moo= M1_100= —Mop1=— M.

(13)

E. Scattering Observables

This subsection will be concerned with expressing
the quantities usually observed in scattering experi-
ments in terms of the Wolfenstein coefficients, «, b, c,
g &, and m.

The observables that have been measured in nu-
cleon-nucleon double- and triple-scattering experiments
are listed in Table I along with the appropriate ex-
pression in terms of the Wolfenstein coefficients.

The reader is referred to Ref. 16 for a description
of these observables and for a discussion of the pro-
cedure employed in obtaining these relations. If the
coefficient & is set equal to zero, corresponding to the

18 L. Wolfenstein, Phys. Rev. 96, 1654 (1954).
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case of a charge-independent interaction (no singlet-
triplet coupling), the expressions reduce to those given
in Ref. 16.

F. Phase-Shift Calculations

In order to evaluate the effect of the MS force on
the observables, it is convenient to find its effect on
the phase shifts. To accomplish this, it is necessary
to know the phase shifts due to the nuclear inter-
action alone. It will be assumed that those phase
shifts determined from the experimental data are the
nuclear phase shifts. [The nuclear phase shifts were
taken to be the isospin triplet phase shifts as deter-
mined from p-p data without taking into account the
p-p MS interaction. The MS correction to these phase
shifts might be expected to be somewhat larger than
the #n-p corrections considered in this work (a factor
of 2 larger as a first approximation). However, it
turns out that even a correction of this magnitude
is negligible.] This is a very good approximation since
the effects of the MS force turn out to be evident
only at small angles, whereas most of the experimental
data have been taken at relatively large scattering
angles. If the effect of the MS interaction on the
phase shifts had turned out to be significant, a self-
consistent solution would have required the assump-
tion of nuclear phases different from those determined
from the experimental data such that the phases due
to the total (nuclear plus MS) interaction agreed
with experiment.

Equations (4)-(7) are pertinent to a determination
of the phase shifts. In Egs. (6) and (7), the radial
wave functions do not correspond to pure / states
because of the tensor force. The phase shifts asso-
ciated with these coupled wave functions are real
provided the mixing is done properly, and the MS
term will modify them, just as in the case of nucleon-
nucleus scattering.! These mixed-state phase shifts are
not unique since one has some choice in the way the
mixing is described. The coupling scheme in general
use is that of Stapp, and the phase shifts are referred
to as Stapp, or sometimes, bar-phase shifts. This
scheme is presented in a number of places and will
not be repeated here (see, e.g., Ref. 13).

Equations (4) and (5) show that outside the nuclear
force range the radial wave functions for the two j=I
states are coupled through the MS force and hence
the modification of the phase shifts associated with
these states is more difficult. We focus our attention
on the calculation of the complex phase shifts asso-
ciated with the functions Ry and Run.

We shall solve Eqgs. (4) and (5) to first order in +.
Then by invoking unitarity, the imaginary part of
the phase shifts (these are of second order in ) will
be found. As mentioned earlier the phase shifts 8
and 6y, determined from the observables,® will be
regarded as resulting from the nuclear interaction

alone. Subsequent results will show that this assump-
tion is justified.

First, we express the solution to Egs. (4) and (5)
for p>p. in powers of v,

R,’ = Ri(o)+’YRi(1)+'Y2Ri(2) T )

where 7=0 or 1, with Ry=Ry and R;=Ru.

The zero-order solutions are clearly just the solu-
tions external to the nucleus (p>p,) with no MS
scattering present;

Ri(o) =4 u[COSézijz (p) — Sintsu%z (p) ]

(14)

(15)

The first-order solutions involve integrals of the zero-
order solutions;

Ro® =Cilu® (p) + Eii® (p) — 3i[ 1 (I+1) ]

X (hl(l)(p) /P]'l(pl) Rl(O)(p') dp’/p/
i) [ 106 RO dp'/p') . (16)

Rw=awwm+mwwm+%@wuyfﬁw>
X (Ra® (o) = [1(+1) TR (o) }do' /o

i) [ 6 (RO (P)

—D@Huwmwunwwﬁ.<ﬂ>

In order to evaluate some of the constants in Egs.
(16) and (17), we use the logarithmic derivative
(evaluated at p=p.;) which, to first order in 7%, is

Ri,(PC) _ Ri(ﬁ)l(ﬂc)
P Rilp) " RO(py)

R (o) RO(ps
X[l—l——y( ,(p)_ (o)
Ri(O) (Pc) -Ri(O)(Pc)

or L=L9+~yL,Y4+0(~?%), where
Li® = p[R;¥" (po) /Ri® (pc) ],

R (pe) (Ri“"(pc) R (p.)
Ri®(pe) \ Ri®(pc) R (pe)

Rewriting the last equation, we have
RO (R0 —1/p,L;OR;®) = R,O'R,®,

>+oww} (18)

Li(l) = Pe

). (19)

(20)

Since the MS potential inside the nucleus (of order
vlp %) is much less than the nuclear potential, it is
reasonable to expect that the logarithmic derivative
at p=p, could be represented to sufficient accuracy
through use of nuclear phase shifts only. To test
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this, we determined the minimum square-well depth
(with range ,=1.7 F) that gave the correct nuclear
phase shift and then computed the change in the
logarithmic derivative due to the addition of the MS
force for 7<7,. This was done for all partial waves
and all energies for which phase shifts are given in
Ref. 10, and in all cases, the effect of the MS inter-
action on the logarithmic derivative was found to be
negligible. As a consequence, in Eq. (20) one may
ignore L;®. Substituting Eqgs. (15)~(17) into Eq. (20)
and using the Wronskian relation between j; and
leads to the equations

7 COS5LO(CL—E1) +Sin510 <C1+E —%1[1(1—!— 1) ]1/2/1 n

Xf hz(l)(p')[cosalljz(p')-—Sinéunz(p/)]dp'/p'> =0
pec

(21)
and

7 COS511(DZ—F1) —i—sinBu <D1+F1+%1A Al

X / ® (p") [cosdu ji(p") —sindu ni(p") Jdp’/p’

pec

—3il(l+1) ]1/2Azo/w 7® (p")

X [cosdu j1(p") —sindi n:(p") ]dp'/p') =0. (22)

For the case where only a singlet wave is incident
(Au=F;=0), Eq. (22) gives

D;=%A m[l(l—l- 1)]1/2 exp(iéu) Sinﬁn Im,
where
Im= / hzm (p/) [COS5lojz(p,) ——sinBlo nl(p’) ]dp’/pl,
pec
and Eq. (21) yields,
E;=C; exp(—2idy).

The asymptotic forms for the wave functions are
then

pR(,Nil_H [%A 10 €Xp ( —16 lO) +’YEZ:|

X[eo—(=)! exp(2idu) ], (23)
pRi~3y Awi=OLI(1H1) ]2
X [exp(idn) sindu [i—1iUyJe®, (24)

where
Up= / 71(0") [cosdun ji(p") —sindu ni(p”) Jdp’ /.
pe

Equations (23) and (24) yield two elements of the
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S matrix as
Suo'= Seo= (—)* exp(2idy),
Swit= Sa= (—)4y[1(141) ]2 exp[i (dw+06u) ]BS,

\ (25)
where the subscripts 0 and 1 denote channel spin and
BP'=q;(p.) cosbiy cosdun—bi(p.) sin(8i+61)

+ci(ps) sindy sindu.
In the expression for B;",

bio) = [ e mle) o'/

a1(pe) and c¢;(p,) are similar integrals involving 7.2(p)
and n2(p’), respectively.

Following a similar calculation with only a triplet-
wave incident, one finds Si=Su and

Su=(—)"exp(246n) (14+iyBM) = (—) ! exp(2i6u™),

(26)
where

B'=a;(p,) cos*du—bi(ps) sin26u—+ci(p,) siny.

This result for Sy is consistent with the first-order
correction to 6s as determined using the formalism of
Ref. 1. We remark that if in Eq. (20) we had not
neglected the logarithmic derivative correction L%,
we would have found in place of Egs. (25) and (26)
the same forms but with &;; replaced by di;—vL:®T5,
where 7= po[ cosdu j1(p;) —sindini(p,) . By approxi-
mating the nuclear interaction (for each partial wave)
by a square well, adjusted to fit the “known’ nuclear
phase shift of that partial wave, we found that the
phase-shift correction yL;VT; was always less than
0.001° (we examined all the energies for which data
is given in Ref. 10). A more realistic nuclear inter-
action might give a slightly larger correction but would
not alter the conclusion that the effect of the internal
region of the MS interaction is negligible, as expected.

The S-matrix elements of Egs. (25) and (26) have
been determined to first order in v, and we see that
unitarity is satisfied to this same order, e.g., | So |2+
| St |2=140(+*). By invoking unitarity to second
order in v, we can determine the imaginary parts of the
phase shifts. Writing Sop= (—)? exp[2:(810+18») ] and
Su=(—)" exp[2:(6u+1iBun) ] and requiring unitarity
to second order gives Byw=Bu=p;, where

exp(—481) =1—44(1+1) (B2

Byl (H1) (B™)?

explicitly demonstrating the second-order dependence
on 7.

The connection between the complex phase shifts
determined here, and the real phase shifts and mixing

(27)
or
(28)
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parameters which were previously introduced (i.e., the
quantities 8z, 81—, cote; used to characterize the spin
mixing scattering problem), are readily given through
comparison of the scattering matrix elements expressed
in the two forms [cf. Eq. (10)].

exp[2:(8+161) ]
_ tane; exp(246.,) + cote; exp(246y_)

,» (29)
v tane;+cote;
CXp [21'(511“1-’-2'61} :|

cote; exp(246114.) +tane; exp(246y_)
= . (30)
tane;+cote;

These two complex equations lead to four expres-
sions, of which only three are independent, the remain-
ing equation being given by the first three and the
unitarity condition. These three independent equations
are sufficient to determine 8;,y, 8, and ¢ in terms of
0w, 0u™, and B,.

By carrying out the appropriate algebra in Egs.
(29) and (30), one obtains the desired relations.

Defining

ar=exp(—28:) (cos26y~+cos26u™),

as=-exp(—20;) (sin26;+sin26u™), (31)
we find that
a
bur=3 <COS"1 m +cos71[3 (i Han?) 1/2]> ,
(32)
— XL — 9
5ll—=‘% (COS ! (a+ap?) 12 —cos™ E%(ar-{-—ag?) UZ]) ;
(33)

tan—! [(exp( —2:) cos261— C0525u_>1/2] (34)
=tan .
“ 082811, — exp(— 2B1) 08261

Thus, this calculation together with the experimen-
tally-determined singlet and triplet phase shifts pro-
vide the means for estimating the influence of the
MS force on #-p scattering. Phase shifts determined
in this manner include the effects of wave distortion,
even for small /, in contrast to those determined by
the plane-wave Born approximation as discussed by
Breit and Ruppel.® Interestingly, however, we found
that the use of the Born approximation for the cal-
culation of the MS effect gave no significant difference
(when compared with the first-order treatment) in
the calculated observables. The Born-approximation
calculation for the matrix element M, agrees well
with the first-order treatment at small angles, where
the MS influence is strong, and although at large
angles M, is not well represented by the Born-approxi-
mation result, it is of no consequence since the MS
influence on the observables is negligible at large
angles. Thus, for n-p scattering, just as we found for
neutron-nucleus scattering (Ref. 1), the Born approxi-

mation gives sufficiently accurate results in assessing
the influence of the MS interaction, assuming the
wave distortion effects to be negligible for large .
This assumption is discussed briefly in Ref. 6.

III. RESULTS OF CALCULATIONS

A. Scattering Calculations

For convenience and completeness, a brief summary
of the procedure followed in performing the #-p scat-
tering calculations is given here.

First, phase shifts obtained by fitting experimental
data were taken from Ref. 10 and assumed to be
the result of the nuclear interaction only. For the phase
shifts corresponding to /=741 partial waves, the MS
effect on the phase shifts was estimated through use
of Eq. (36) of Ref. 1. For the /=7 partial waves, the
imaginary part of the phase shift 8; was determined
from Eq. (27) of the present work, and the real part
was taken equal to the nuclear phase shift, in the
case of the singlet wave, and equal to the nuclear
phase shift as modified by Eq. (36) of Ref. 1 [equiva-
lent to using Eq. (26) 7], in the case of the triplet wave.

The matrix-element expressions Mymssm Were evalu-
ated with ¢=0 (y axis along n). For those cases
where the Born approximation to the MS term gives
a nonzero scattering amplitude, the high I-wave con-
tributions to the matrix elements were included in
the same manner as in the neutron-nucleus problem
of Ref. 1. That is, the series was truncated at an
appropriate /, and a correction AM was added to
those matrix elements where it applied. The correc-
tion is given by

e Y (cotrg — 3> BT L )
AM—:':Z\/?<COt20 gl(l—l—l) Pi(cost) ), (35)

where the positive sign goes with those elements below
the principal diagonal, the negative sign with those
above. It happens that only those matrix elements
which contain the P (cos#) factors in the sums have
nonzero Born amplitudes. Hence, it can be seen that
the only Wolfenstein coefficients that are altered by
the MS term as calculated by the Born approximation
are b and ¢. More explicitly, the corrected matrix
elements can be written as M, —AM, Myu+AM and
Mio—AM, where it is understood that the sums in-
volved are truncated at =1/, (chosen equal to 5 here).

As in the case of scattering by nuclei (Ref. 1), the
purpose of this study was not to obtain the best fit
to experimental data, but to find the general effects
of the MS force. Customarily, in determining phase
shifts through analysis of experimental data, the large
l-wave contributions have been included by assuming
the nuclear potential acting on these partial waves is
the one-pion-exchange potential (OPEP)."® The effects
of the OPEP on the amplitude matrix elements are

18 P. Czifira, M. H. MacGregor, M. J. Moravcsik, and H. P.
Strapp, Phys. Rev. 114, 880 (1957).
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normally included in the Born approximation in much
the same spirit as large /-wave contributions to the
MS scattering have been included here. This one-
pion-exchange contribution (OPEC) has not been
included in these calculations. Since it has a rather
small effect on the observables,? and would not con-
tribute anything to the evaluation of the MS effects,
it seemed to be an unnecessary complication. (To be
more precise, it is possible that coherent contributions
from the OPEP could alter the details of the small-
angle results of the MS calculation. However, it is
improbable that the conclusions derived from this
work would be altered.) Including the OPEC for

large I waves produces small changes in the calculated
observables. These changes, however, would not de-
pend on whether the MS force were included or not.

Nuclear phase shifts from Ref. 10 at energies of 25,
50, 95, 142, and 210 MeV were used to evaluate the
effect of the MS force on the nine scattering observ-
ables of Table I. The calculations were performed on
the Battelle CDC-6400 digital computer. Typical re-
sults are shown in Figs. 1-8, together with the ex-
perimental data used for the nuclear phase-shift
determinations reported in Ref. 10 and taken from
Refs. 9 and 20. In all cases, significant MS effects
are confined to small angles and hence do not exert
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2 H, P. Noyes, D. S. Baily, R. A. Arndt, and M. H. MacGregor, Phys. Rev. 139, B380 (1965).



EFFECT ON #n-p SCATTERING

25

1.00

/_\\

0.90

8=0,

1e

E Experimental 128 MeV Reference 9

0.80

0.70

=

ith MS

0.60

0.50

D&

0.40
Fic. 3. Neutron depolarization

in n-p scattering at 142 MeV. 030

0.20

0.10

(o]

/

-0.10

4

N | [ 17/

-0.20

N | 147

Nl

-0.30

O 10 20 30 40

any influence on the phase-shift determinations. The
relatively good agreement of the calculated results
with the experimental data would seem to justify
omission of the OPEC in this application. Results at
other energies and for other scattering observables
follow the pattern of those shown. It should be noted
that the cut-off radius for the proton (7,) was taken
at 1.7 F and that a 309, variation around this value
was found to have an insignificant influence on the
results.
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A measure of the smallness of the MS effect on
phase shifts is illustrated in Table II, where the eigen
phase shifts, mixing parameters, and the imaginary
part of the complex phase shifts are listed for the
142-MeV case.

Our results show that, in general, the MS influence
on the scattering observables is confined to small
scattering angles. In fact, for all observables except
the polarization and the correlation coefficient Cxp(8)
any significant influence is restricted to angles less
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than 5°. For P(6) and Ckp(f) the MS influence is
present at larger angles. At 25 MeV the MS influence
on Cgp(#) extends out to about 30° and on the po-
larization out to about 15° (Fig. 8). However, Cxp(f),
at 25 MeV is small, being of the order of 1073 at 30°,
and it has not yet been measured at any energy in
the n-p case. At higher energies, where Cxp(6#) becomes
larger, the influence is restricted to smaller angles as

120 130 140 150 160 170 180

can be seen by examining the polarization curves at
various energies. We found that the MS effect on
polarization also becomes confined to smaller angles
at the higher energies. A comparison of our 7-p results
with the p-p results of Breit and Ruppel® reveals
that the MS influence on polarization extends to
slightly larger angles in the case of p-p scattering;
this result is not unexpected since the MS interaction
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Tasie II. Eigenphase shifts and mixing parameters for 142 MeV (all angles in radians).

MS force

included l Suy 811— € B
no 0 0.28693 0 /2 0
yes 0 0.28693 0 w/2 0
no 1 —0.29653 —0.27192 0 0
yes 1 —0.29639 —0.27192 0.00825 0.407X107
no 2 0.41521 0.08552 0 0
yes 2 0.41534 0.08552 0.00119 0.148X 1076
no 3 —0.03770 —0.01606 0 0
yes 3 —0.03762 —0.01605 0.01172 0.638X1077
no 4 0.07295 0.01099 0 0
yes 4 0.07301 0.01099 0.00406 0.632X1077
no 5 —0.01099 0 0 0
yes 5 —0.01096 2.7X107¢ 0.01558 0.292X 1077

for p-p scattering involves the magnetic moments of
both nucleons, whereas for #-p scattering only the
neutron’s magnetic moment enters.

The fact that P(0) and Cgp(8) are the most strongly
influenced quantities can be explained by the fact
that they depend most strongly on the Wolfenstein
coefficients & and ¢, and that these are the only Wol-
fenstein coefficients that are influenced by the large
l-wave correction term AM. These considerations sug-
gest that two of the four correlation coefficients per-
tinent to scattering of polarized beams!®?! would be
rather strongly modified by the MS force. These co-
efficients are defined in a manner similar to C,, and
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Fic. 7. Small angle scattering parameters in #-p scattering at
142 MeV.
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21 1.. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).

Ckp but have never been measured and so they were
not included in the calculations. As in the case of
the Table I entries, these coefficients are described in
Ref. 16. The following equations exhibit their depend-
ence on the Wolfenstein parameters:

(dos/dQ) uCrpn=—2 Tmi[ (c—b) (a*+m*)], (36)
(dos/dQ)uCuxp=—2 Im[ (a—m) g*+ (a-+m)*], (37)
(doa/dD) uCusxs kn=—2 Re[a(c*—b¥)

+m(c*+b*) ] cos3d—2 Im[ma*+2bc* ] sindd, (38)
(dos/dR) uCrse np=2 Im[ g*(a+m)

+1*(a—m) ] cosyb—4 Re[cg*+bh*] sindd. (39)
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Fic. 8. Small angle polarization in #-p scattering at 25 MeV.
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These forms indicate a relative strong MS influence
on Cpnn and Cuxzx». and a weak influence on the
remaining two coefficients.

IV. SUMMARY AND CONCLUSIONS

To summarize, a formalism was developed to in-
clude the MS interaction in the neutron-proton scat-
tering problem. This procedure is of general interest

ecause the MS force causes channel-spin nonconser-
vation. The scattering amplitude matrix was derived,
including this singlet-triplet mixing, and its elements
were related to the Wolfenstein coefficients. The nine
most common scattering observables were also related
to these coefficients. The effect of the MS interaction
on phase shifts was evaluated through the use of a
perturbation calculation for low / waves, and a Born-
approximation calculation for high / waves. Calcula-
tions for energies from 25-210 MeV were performed
to find the influence of the MS force on the scattering
observables where it was assumed that the phase
shifts determined by the lowest x? fits to the scat-
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tering data for the nucleon-nucleon problem were due
to the nuclear interaction only.

From this study it can be concluded that all nine
scattering observables are markedly influenced by the
MS interaction, but for all but the lowest energies
this influence is confined to small scattering angles
(<5°. At low energy, the influence on polarization
and the correlation coefficient Cgp, and possibly the
correlation coefficients Cpnn and Coxk gn, €xtends to
beyond 10°. Thus, phase shifts as determined from
scattering data and reported in the literature will not
be altered by inclusion of the MS force in the for-
malism unless small angle measurements are included
in the data.
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Calculations of the binding energies of p-shell hypernuclei have been carried out treating all the nucleons
and the A self-consistently. The Tabakin potential is used for the NNV interaction and a simple central force
which fits AN scattering is used for the A-N system. The binding energies obtained exceed those observed.
The dynamical aspects of the hypernuclear system are also discussed, as well as various correction terms.
Finally, a comparison is made with other hypernuclear calculations.

I. INTRODUCTION

INDING energies of A hypernuclei in the p shell

may provide valuable information about certain
properties of the A-IV interaction, which have not been
or cannot be measured in free A-NV scattering. Indeed
A-N scattering data is quite sparse and is subject to a
wide variety of interpretations. If it is assumed that the
A-N potential is central then the binding energies of
s-shell hypernuclei exceed the experimental values,
independent of the particular model employed.! This
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S. Ali, M. E. Grypeos, and L. P. Kok, Phys. Letters 24B, 543
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has led to the suggestion that the A-N interaction is
severely suppressed in a hypernucleus relative to the
free A-N force. Alternatively, this difficulty might be
overcome by including a tensor component or an ex-
change part in a phenomenological A-N interaction.
Such attempts have so far been unsuccessful. The
binding energy of the A in ,He’, for example, was
found? to be insensitive to an additional short-range
tensor force and an exchange interaction would have
little, if any, effect on a calculation for this system. It
is likely that such additional components of the inter-
action will have a more pronounced effect in p-shell
hypernuclear calculations but so far the problem of
overbinding remains for jHe® and also, probably, for
the A =4 hypernuclei.

2J. Law, M. R. Gunye, and R. K. Bhaduri, in Proceedings of

the International Conference on Hypernuclear Physics, Argonne
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