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We introduce a new separable expansion for local potentials. The expansion, called the uni-
tary pole expansion, has real, energy-independent form factors, and satisfies the require-
ments of two-particle unitarity in all orders. The convergence of the expansion is investigat-
ed by comparing expanded and exact T matrices for negative energies, and by performing
three-body bound-state calculations. In the latter case, a one-term approximation gives en-
ergies accurate to within 2/p for potentials containing repulsion of the magnitude indicated by
two-nucleon data.

I. INTRODUCTION

The solution of the Faddeev equations for sys-
tems interacting by means of local two-body poten-
tials is a difficult numerical problem. To solve
for the three-body bound state, we must solve a
(in general coupled) set of two-dimensional inte-
gral equations. For the scattering states, these
equations become singular.

Some progress' has been made towards the solu-
tion of the equations for the bound-state problem.
For the scattering states no success has yet been
repor ted.

To avoid the complications of two-dimensional

integral equations, a number of authors" have
used separable expansions of the two-body interac-
tion to reduce the problem to a coupled set of one-
dimensional integral equations. These equations
have been solved both for the three-body bound
state and the three-body scattering states. In this
paper we propose another expansion of the two-
body interaction. The expansion, which we call
the unitary pole expansion (UPE), is closely relat-
ed to the Weinberg' series. However, it is consid-
erably easier to use and shows better convergence
properties. The form factors for the expansion
are real and energy-independent, and the UPE sat-
isfies the requirements of two-particle unitarity
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in all orders.
In Sec. II we develop the UPE and investigate its

convergence by comparing the expanded and exact
T matrices for central potentials containing short-
range repulsion; i.e, , the potential V of Malfliet
and Tjon' and the singlet S two-nucleon potential
of Reid. ' In Sec. III we investigate the conver-
gence of the UPE by performing three-body bound-
st;ate calculations and examining the three-body
bound-state energy as a function of the number of
terms retained. A one-term approximation gives
a three-body energy accurate to within 0.2 MeV
for potentials with the amount of repulsion indicat-
ed by two-nucleon data. Results are also com-
pared with the work of other authors. Section IV
contains a discussion of our results.

II. THE UNITARY POLE EXPANSION

In this section, we develop our separable expan-
sion of the two-body T matrix. The expansion us-
es the eigenfunctions of the homogeneous Lipp-
mann-Schwinger equation to obtain a separable ex-
pansion of the two-body potential. For practical
calculations this expansion is truncated and used
in the Lippmann-Schwinger equation to obtain a
separable T matrix which satisfies the require-
ments of two-particle unitarity, and which approx-
imates the actua1. T matrix. We derive this expan-
sion below 2nd investigate its convergence by com-
paring the resulting T matrices with the actual T
matrix for different local potentials.

For simplicity we consider expanding the 8 par-
tail wave of the two-body T matrix for two identi-
cal spinless bosons. We use abstract vector nota-
tion to simplify the derivation. Actual calculations
were performed in the momentum representation.

The two-body T matrix is the solution of the par-
tial-wave Lippmann-Schwinger equation

I x.&
= G.(-B) I 4.&,

tn= ~n-

(2.4)

(2 5)

Furthermore, the following orthonormality rela-
tion may be taken to hold:

(4. IG.(-B) I4.,&
= -6. (2 6)

l(„&($„,I
m= 1 m

(2.8)

(with N possibly infinite) is at least formally con-
sistent with (2.2) and (2.3); for using (2.8) and (2.2)
gives

To prove the orthogonality relation we take the
matrix element

(g~ IG, (-B)VG, (-B) l(~& = (I/X, )(g, IG, ( B) It-/), &,

(2.7)
=(I/x )((.IG.(-B) I4.,&,

where we have used (2.2)-(2.5). Then, barring
any degeneracy, our freedom of normalization
gives (2.6). If degeneracy exists, the functions
may be made orthonormal by a generalization of
the standard Schmidt procedure. The normaliza-
tion to minus one is chosen because for n equal to
m (2.6) takes the form

f"0.(P)'p'dp
p2

and for real P, (P) the left-hand side is intrinsical-
ly negative.

Practically identical arguments hold for spin-
dependent forces and for noncentral forces. In the
latter case, we would consider the homogeneous
form of a coupled set of integral equations.

Having proved the desired results, it is easy to
show that the separable expansion

T(s) = V+ VG, (s)T(s), (2. 1)

where V is the (S wave) two-body potential and

G, (s) is the free two-particle Green's function.
The homogeneous form of (2.1) is

(s)) =x, (s)VGO(s) I&, (s)) . (2.2)

(x. I
= i.(x. IvG. (-B)- (2.3)

It is then easy to show that the I(~& and A.~ may be
taken to be real and that the I X ), p, and I g„&,
A, n are related by

In what follows we will fix s at some negative val-
ue, -B, and drop the s dependence of lg„& and X

in (2.2).
It is also convenient to consider the equation ad-

joint to (2.2),

Using (2.6) reduces this to an identity. Truncating
(2.8) to a finite number of terms gives a finite-
rank separable potential which approximates the
actual potential.

To obtain the unitary pole expansion(UPE) T ma-
trix, we insert (2.8) (truncated at some finite N)
into the I.ippmann-Schwinger equation, (2.1). The
resulting T matrix is then given by

T», (s) = g lg, &n „(s)(iI„I

l7, l?7 = 1

(2 9)

with

—[z(s) 'j„„=x,6„„+((„IG,(s) lg & . (2. 1o)
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~x,&~ ~fl& .

If we retain only one term in (2.9), we find

(2.11)

T„(p)s= Ig,&+(s)&g, [

&(s)=-[I+&I,~G.(s) ~0,&]
'.

(2.12)

(2.13)

This is just the unitary pole approximation (UPA)
discussed by Lovelaee' and Fuda. ' This approx-
imation was investigated for the square-well poten-
tial by Levinger, Lu, and Stagat'; for the Hulthen
potential by Kok, Erens, and Van Wageningen;
and by Brady pt aE. a,nd Harms and Levinger
for a number of examples. Levinger, Lu, and
Stagat compared the exact square-well T matrix
with various separable approximations to it, and
found the UPA to be the best of the one-term ap-
proximations inve sti gated.

From (2.6), (2.12), and (2.13), we see that the
UPA T matrix has a pole at the two-body bound-
state energy, s = -B, corresponding to the bound-
state pole in the actual T matrix. It may also be
shown that the residues of the exact and UPA T
matrices are the same, and hence in the neighbor-
hood of the pole, the exact and UPA T matrices
agree. It is this agreement at the pole which is
one of the principle justifications' for the use of
separable potentials. (It will be understood from
now on that if there is one two-body bound state,
B will be taken as the two-body bound-state ener-
gy)

What about keeping additional terms in (2.8)?
We see from (2.6) that retaining N terms in (2.8)
does not change the bound-state energy or wave
function for the separable potential. As a result,
the N-term UPE T matrix has the same pole posi-
tion as the UPA T matrix and the same as the ac-
tual T matrix. However, since retaining addition-
al terms in (2.8) gives a better approximation to

Since the expansion (2.8) approximates the two-
body potential, the UPE T matrix is then an ap-
proximation to the actual T matrix (found by solv-
ing the Lippmann-Schwinger equation with the full
two-body potential).

We now relate our results to separable approx-
imations of other authors. We assume for the mo-
ment that there is a two-body bound state and take
B to be the two-body binding energy. The equation
for I x„& is

~X &=x.~.(-&)V~X &,

which is just the bound-state Schrodinger equation
with the potential X, V. Thus the lX, & may be in-
terpreted as bound states of energy -B of the po-
tentials X V. However, by our assumption V has
a bound state, [fl&, and hence we may choose A.,
equal to 1 a,nd

the potential, the N-term T matrix gives a better
approximation to the actual T matrix. For any
number of separable terms, (2.8) gives a separa-
ble potential which is real and symmetric. The
UPE T matrix will, therefore, always be unitary.
The UPE thus gives a systematic method of im-
proving upon the UPA, while still retaining the
proper pole behavior and satisfying unitarity.

A similar expansion method was developed by
Weinberg. 4 His method retains the energy depen-
dence of I g„(s)& and A.,(s) in (2.2) and sets s equal
to the desired argument of T(s). The potential
still has the expansion (2.8), but the T matrix is
now given by

A. (s) n(24-s+np, )
A. ,(s) 2V-s+ g

and (,(p, s) is given by

1
4g(Py ) p2y (g + )2'

(2.14)

(2. 15)

where p is the inverse range of the potential in co-
ordinate space. The UPE eigenvalues and form
factor are obtained by setting s = -B. Assuming
that B=0, we see that for small s the two series
are practically the same. The Weinberg and UPE
eigenvalue s each are approximately proportional
to n', and the form factor has a reasonable range.
For lar ge negative s, however, the Weinber g ei-
genvalues increase initially only as n. The form
factor has a very long range and is unsuited for ex-
panding the T matrix which has a range compara-
ble to that of the potential. Being independent of s,
the UPE eigenvalues and form factor do not have
this difficulty.

When there is no two-body bound state, we may
choose B to have any convenient value. If there is
an antibound state near s = 0 (as for example in the
singlet S two-nucleon system), and we choose B

This expression is simpler than (2.12), but is ob-
tained at the expense of having to solve (2.2) for
each s desired. Since in the three-body problem
T enters in the form T(s —2p2) with 0 &p2 ~ ~, use
of the Weinberg series requires the solution of
(2.2) many times, with the subsequent increased
difficulty in computation. One of the greatest ad-
vantages of the UPE is that this problem does not
occur. We solve for the form factors I( ) once,
and then the T matrix is obtained by evaluating the
integrals in 6, a much easier task.

The Weinberg series also appears to behave poor-
ly for large s. For example, consider the case of
the local Hulthdn potential. The Weinberg eigen-
values are given by Sitenko et al. '
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= 0 in (2.2), we may expect that keeping a number
of terms in (2.8) will give a good approximation to
the antibound-state pole in the T matrix. "

For partial waves without poles near the physi-
cal region, the expansion method is still applica-
ble. However, the pole dominance aspect of the
expansion is then absent, and more terms would
probably have to be retained.

We now apply the theory that has been devel. oped
to two different potentials, the potential V of Mal-
Qiet and Tjon, ' and the Reid' singlet S two-nucleon
potential. The convergence of the UPE is investi-
gated by retaining different terms in (2.8) and com-
paring the resulting separable T matrices with the
exact T matrices. " In Sec. III we examine the con-
vergence of the UPE by using it in the three-body
problem.

Both the potentials considered contain short-
range repulsive cores. As a result, the ~'s may
be both positive or negative. The positive (attrac-
tive) A's are associated with two-body "bound
states" Isee the discussion preceding (2.11)] sup-
ported by the attractive regions of the two-body po-
tential. A negative (repulsive) eigenvalue means
that the two-body "bound state" associated with
this eigenvalue is being supported by the repulsive
part of the potential which in X V is now attractive.

The Malfliet-Tjon potential is the sum of two Yu-
kawa potentials

e-Pg &

V(r) = -A.g + A.~ (2. 16)r r
with p&=1.55 F ', p~=3. 11 F ', and Az/A~=2. 522.
An over -all multiplication constant was determined
by fixing the two-body binding energy at 0.35 MeV.
All numerical calculations for this section were
done using a 32-point Gauss-Legendre quadrature
mesh mapped to the infinite interval by

(1+x)
(1-x)

with -1 &x & 1 and 0 &p «.
The first four attractive eigenvalues for the Mal-

Qiet-Tjon potential are given in Table I. The ei-

TABLE II. Repulsive eigenvalues. The first (in order
of increasing absolute value) three negative eigenvalues
of Eq. (2,2).

Eigenvalue
Malfliet- Tjon
potential V ' Reid

'So potential

—0.4342
-1.78
—3.9

—0.06286
-0.252
—0.55

~Malfliet and Tjon, Ref. 1 [see our Eq. (2.16)].
bReid, Ref. 5 [see our Eq. (2.17)].

l.2-
I I I ~ I I ~

I
I ~ 1 ~ ~ ~ ~

I

0.8 =

0.4-
M
K0
O

L o.o

genvalues increase considerably more rapidly than
is the case for purely attractive potentials [see
(2.14) or Ref. 12] leading to a comparatively rapid
convergence of (2.8). The first three repulsive ei-
genvalues are given in Table II. We see that the
first repulsive eigenvalue is less than unity in ab-
solute value, reQecting the large amount of repul-
sion present in the Malfliet-Tjon potential.

In Fig. 1 we plot the first two attractive form fac-
tors and the first two repulsive form factors as a
function of momentum. The presence of a node in
the first attractive form factor, g,"(P), is quite
different from the behavior of the standard Yama-
guchi-type" form factor, (2.15). The repulsive
form factors are greatest for relatively large mo-
menta since they are associated with the repulsion
in the two-body potential for large momenta.

In Tables III-V we give a comparison between
the exact MalQiet-Tjon T matrix and the UPE T

Eigenvalue

Mal f1iet- Tjon
potential V ~

Reid
So potentialb

TABLE I. Attractive eigenvalues. The first (in order
of increasing absolute value) four positive eigenvalues
of Eq. (2.2).

X ~ ~ ~

K
O
LL -04

~ ~ ~ ~ y ~ ~ ~ ~ ~ ~ ~ ~
~ y

~ ~

yR
I

~ A

~ A

A

~ A

1,0
7.22

19.
37.

1.0819
8.27

21.
38.

Q8-
O.I

I I I i l Ill I I s I scil
op 04 I.o 2.0 4.0 Io.o

P (F -')

Malfliet and Tjon, Hef. 1 [see our Eq. (2.16)l ~

Reid, Ref. 5 [see our Eq. (2.17)].

FIG. 1. The first two attractive, g~, and the first
two repulsive, tt)~, form factors for the Malfliet-Tjon
potential.



CONVENIENT EXPANSION FOR LOCAL POTENTIALS 16'll

TABLE III. Separable and exact T matrices for the Malfliet-Tjon potential: s =0.0. Columns 1 and 2 contain the mo-
mentum values (in F ). Columns 3-7 are UPE 1' matrices &(P,q:s). 2A+2R means, for example, that the first two
attractive and the first two repulsive terms have been retained in the expansion (2.8). Exact T-matrix values are given
in the last column. s =1 corresponds to 41.46 MeV.

1A 1A+1R 2A+ 1R 2A+2R 3A +2R Exact

0.004
0.170
0.170
0.630
0.630
0.630
1.560
1.560
1.560
1.560
3.426
3.426
3.426
3.426
3.426
7.639
7.639
7.639
7.639
7.639
7.639

0.004
0.004
0.170
0.004
0.170
0.630
0.004
0.170
0.630
1.560
0.004
0.170
0.630
1.560
3.426
0.004
0.170
0.630
1.560
3.426
7.639

7.7482
7.6102
7.4747
6.0558
5.9480
4.7332
1.4242
1.3989
1.1131
0.2618

-1.4349
-1.4094
-1.1215
—0.2638

0.2657
-0.3254
-0.3196
—0.2543
—0.0598

0.0603
0.0137

7.7482
7.6103
7.4748
6.0554
5.9479
4.7362
1,4224
1.3982
1.1259
0.3151

—1.4376
-1.4106
-1.1029
—0.1859

0.3795
-0.3271
-0.3202
-0.2428
—0.0116

0.1307
0.0573

7.7476
7.6100
7.4747
6.0591
5.9492
4.7129
1.4310
1.4012
1.0714
0.1876

-1.4414
-1.4118
—1.0791
—0.1301

0.3552
—0.3272
—0.3202
—0.2422
-0.0102

0.1301
0.0573

7.7477
7.6101
7.4747
6.0590
5.9491
4.7134
1.4307
1.4011
1.0735
0.1966

-1.4418
-1.4118
—1.0760
-0.1169

0 ~ 3745
—0.3272
-0.3202
-0.2423
-0.0105

0.1298
0.0573

7.7474
7.6100
7.4747
6.0608
5.9496
4.7021
1.4323
1.4015
1.0632
0.1872

-1.4436
-1.4123
—1.0647
—0.1067

0.3632
—0.3276
—0.3203
-0.2397
-0.0082

0.1272
0.0567

7.7468
7.6099
7.4746
6.0645
5.9500
4.6787
1.4321
1.4015
1.0647
0.1876

-1,4431
-1.4121
-1.0680
-0.1043

0.3655
-0.3274
-0.3203
-0.2405
-0.0125

0.1200
0.0583

I I I I 1 I I II I I I I I I I li

6.0

matrices, keeping different numbers of attractive
(designated by A) and repulsive (designated by R)
terms in (2.8). We examine cases for s =0.0,
-0.5, and -3.0 (s = 1 corresponds to 41.46 MeV).

In Figs. 2-5 we compare the different T matrices.
Figures 2-4 give the diagonal T matrices T(p, p:s)
as a function of the momentum p, for s =0.0, -0.5,
and -3.0. Figure 5 gives off-diagonal T matrices
T(p, k:s) as a function of p, for s = -0.5 and k
=0.630, 1.56, and 3.43 F '. The UPA results are
given as a solid line. The dotted curves are a
three-term UPE (2A+ 1R in the tables), keeping
one attractive and one repulsive correction term.
The points enclosed in circles give the exact T-
matrix values.

O
0
G.

4.0
I-

0.0

I I I I I IIII I I I I I I III

2.0

0.0
O.I 0.2 04

t ~

t' I I
" 'Ai. I I

I.O 2.0 4.0 IO.O

P(F ')

IA

o -I .0—
G.
0
I-

-2.0—

FIG. 2. Diagonal Malfliet-Tjon 7 matrices T(p, p:s)
for s=0.0. The solid line is the one-term UPE (UPA)
T matrix. The dotted line is the UPE T matrix obtained
keeping in addition one attractive and one repulsive cor-
rection term. The exact T-matrix values are given by
the points enclosed in circles. One energy unit corre-
sponds to 41.46 MeV.

O.l

I I IIII
I.O

P(F ')

I I I I I I III
IO.O

FIG. 3. Diagonal Malfliet-Tjon T matrices for s =-0.5.
Curves have the same meaning as in Fig. 2.
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TABLE IV. Separable and exact 7 matrices for the Malfliet-Tjon potential: s = -0.5.
Columns have the same meaning as in Table III.

1A+1R 2A+1R 2A +2R 3A +2R Exact

0.004
0.170
0.170
0.630
0.630
0.630
1,560
1.560
1.560
1.560
3.426
3.426
3.426
3.426
3.426
7.639
7.639
7.639
7.639
7.639
7.639

0.004
0.004
0.170
0.004
0.170
0.630
0.004
0.170
0.630
1.560
0.004
0.170
0.630
l.560
3.426
0.004
0.170
0.630
1.560
3.426
7.639

—2.3824
—2.3400
-2.3983
—1.8620
-1.8289
-1.4553
-0.4379
—0.4301
—0.3423
-0.0805

0.4412
0.4333
0.3448
0.0811

—0.0817
0.1001
0.0983
0.0782
0.0184

-0.0185
-0 ~ 0042

—2.3801
-2.3380
-2.2966
-1.8632
-1.8299
-1.4547
-0.4488
-0.4396
-0.3366
-0.0291

0.4245
0.4187
0.3535
0.1603
0.0403
0.0898
0.0893
0.0835
0.0668
0.0560
0.0413

—2.4052
-2.3602
-2.3163
—1.8559
—1.8235
-1.4568
—0.3964
—0.3932
-0.3519
-0.1383

0.4048
0.4012
0.3593
0.2015
0.0248
0.0906
0.0900
0.0833
0.0652
0.0566
0.0413

—2.4048
-2.3599
-2.3160
—1.8561
—1.8236
-1.4568
—0.3981
—0.3948
-0.3510
-0.1298

0.4020
0.3988
0.3606
0.2150
0.0463
0.0906
0.0900
0.0833
0.0652
0.0566
0.0413

—2.4146
-2.3683

2 + 3233
-1.8521
—1.8202
-1.4584
-0.3904
—0.3881
-0.3542
-0.1359

0.3932
0.3912
0.3642
0.2220
0.0384
0.0886
0.0883
0.0841
0.0668
0.0549
0.0409

-2.4293
-2.3802
-2.3329
-1.8430
-1.8128
-1.4642
—0.3936
-0.3906
-0.3517
-0.1361

0.3985
0.3957
0.3614
0.2255
0.0398
0.0899
0.0894
0.0835
0.0627
0.0472
0.0422

In Fig. 2 the pole contribution to the T matrix is
positive, accounting for the large positive values
of the T matrix. Since we are very near the pole,
the UPA is very close to the exact T matrix. The
corrections from additional terms occur at mo-
menta where the UPA form factor is small. It is
interesting to note the bump in the actual T matrix
which occurs around p =k = 3 F '. Its origin in (,
is clear from Fig. 1. In Fig. 3 we are on the other
side of the pole, and its contribution to the T ma-
trix is now negative. The relative difference be-
tween the UPA and the exact T matrix appears
larger than in Fig. 2. This is because the pole con-

I I I I I I II I I I I I I I I
I

0.0

tribution to the T matrix is less dominant here.
(We are about 20 MeV away from the pole. ) The
three-term UPE picks up most of the difference,
however, and forms an excellent approximation to
the T matrix. Even in Fig. 4, where we are about
125 MeV away from the pole the UPA provides a
reasonable approximation to the T matrix, and the
three-term UPE is practically indistinguishable
from the true values. The UPA and UPE fits are

I I I I I I III I I I I I I I II
- I .0—

0.0

0
I

CL -
I .0—

Qa

I-

-2.0
O. I

P (F -')

i tel
IO.O

-20—
A

0.5-
IL

I-
0.0

-0.5-
0.5

0.0

O.I

ilail

I.O

P (F "')

K 545 F-'

I I I I I I I II
IO.O

FIG. 4. Diagonal Malfliet-Tjon T matrices for s= -3.0.
Curves have the same meaning as in Fig. 2.

FIG, 5. Off-diagonal Malfliet-Tjon T matrices
T(p, k:s) for s=-0.5 and %=0.630, 1.56, and 3.43 F
Curves have the same meaning as in Fig. 2.
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TABLE V. Separable and exact T matrices for the Malfliet-Tjon potential: s= —3.0.
Columns have the same meaning as in Table III.

lA+1B 2A +1R 2A+2R Exact

0.004
0.170
0.170
0.630
0.630
0.630
1.560
1.560
1.560
1.560
3.426
3.426
3.426
3.426
3.426
7.639
7.639
7.639
7.639
7.639
7.639

0.004
0.004
0.170
0.004
0.170
0.630
0.004
0.170
0.630
1.560
0.004
0.170
0.630
1.560
3.426
0.004
0.170
0.630
1.560
3.426
7.639

-1.6799
—1.6499
—1.6206
—1.3129
—1.2896
—1.0262
-0.3088
-0.3033
—0.2413
—0.0568

0.3111
0.3056
0.2432
0.0572

—0.0576
0.0706
0.0693
0.0551
0.0130

—0.0131
-0.0030

-1.6784
—1.6487
-1.6195
-1.3143
-1.2907
—1.0249
-0.3180
-0.3110
-0.2328

0.0008
0.2972
0.2938
0.2561
0.1446
0.0749
0.0620
0.0621
0.0631
0.0665
0.0682
0.0469

-1.7285
—1,6946
-1.6615
-1.3160
—1.2923
—1.0250
-0.2473
-0.2463
-0.2305
—0.0988

0.2746
0.2731
0.2553
0.1764
0.0647
0.0648
0.0646
0.0631
0.0626
0.0694
0.0467

-1.7283
—1,6944
—1.6614
-1.3162
—1.2924
—1.0248
-0.2487
-0.2476
—0.2291
—0.0890

0.2722
0.2711
0.2574
0.1923
0.0904
0.0647
0.0645
0.0632
0.0634
0.0706
0.0468

-1.7460
—1.7103
—1.6756
-1.3146
—1.2910
-1.0249
-0.2390
-0.2394
—0.2299
—0.0937

0.2612
0.2613
0.2584
0.1979
0.0835
0.0621
0.0622
0.0635
0.0647
0.0690
0.0464

-1.7668
-1.7277
—1.6902
—1.3066
-1.2844
—1.0285
-0.2437
—0.2427
—0.2273
-0.0935

0.2689
0.2680
0.2570
0.2027
0.0858
0.0634
0.0634
0.0628
0.0606
0.0611
0.0472

V(r) = -10.463 e "/x —1650.6e 4x/x

+6484.2e ' /x MeV . (2. 17)

In this case there is no two-body bound state, and

0.0 I I I I I IIII

also good for the off-diagonal T matrices shown in
Fig. 5.

For our other example we consider the Reid soft-
core singlet S potential. In coordinate space this
potential is given by (x = pr, p =0.7 F ')

we must decide upon a value for B in (2.2). We
have chosen to use B=0.0. As mentioned, the anti-
bound state is very near to s=0.0, so this choice
should be good enough.

The attractive eigenvalues are given in Table I,
and the repulsive eigenvalues in Table II. The at-
tractive eigenvalues are very similar to the Mal-
fliet- Tjon results. The repulsive eigenvalues are,
however, considerably smaller in absolute value
than the Malfliet-Tjon eigenvalues, reflecting the
great amount of repulsion in the Reid potential. (In

momentum space the Reid potential is everywhere
positive. )

I I 1 I I I II l l ] I I I I I)

-4.0— O.o

0
0
Q

-6.0—
I-

-8.0—

lO

0
I

Q
Q"

-I .0—
I-

-lO.O—

O.I
I II I

IO.O
O.I

« i&l
I.O

P(F- )

I iiII
IO.O

FIG. 6. Diagonal Reid T matrices T(p, p:s) for s = 0.0.
Curves have the same meaning as in Fig. 2.

FIG. 7. Diagonal Reid T matrices for s=-0.5.
Curves have the same meaning as in Fig. 2.



16'74 ED%YARD HARMS

In Table VI we give the first two attractive and
the first repulsive form factors for the Reid poten-
tial. They are quite similar to the Malfliet-Tjon
potential form factors. [The Reid UPA form fac-
tor, g, (p), has an additional node at about 7 F '. j
In Tables VII-IX, we give the UPE and exact: T ma-
trices for various momenta with s =0.0, -0.5, and
-3.0. Figures 6 and 7 give diagonal T matrices
for s =0.0 and -0.5. Figure 8 gives off-diagonal T
matrices T(p, k:s) as a function of p, for s = -0.5

and for k =0.567, 1.41, and 3.08 F '.
Looking at the figures we see that except for a

somewhat slower convergence of the repulsive
terms, the Reid results are very similar to the
Malfliet- Tjon case. The three-term approxima-
tion provides a very good representation of the
true T matrix.

III. THREE-BODY CALCULATIONS

In this section we investigate the convergence of
the unitary pole expansion by using it in three-
body-state calculations. For simplicity we consid-
er a model problem in which three identical spin-
less bosons interact by means of the S-wave part
of a local potential. Our procedure is to retain dif-
ferent numbers of terms in the expansion (2.8),
and investigate the convergence of the three-body
bound-state energy as a function of the number of
terms retained.

Retaining N terms in (2.8), the three-body bound-
state equations become

0.0

-I 0—

0.5

cf
~ ~

„0.0
CL

I-

-0.5'4
0.5—

I I I I I IIII I I I I I I III I

O. I I.Q IO.O

FIG. 8. Off-diagonal Heid T matrices T(p, k:s) for s
= —0.5 and 4 =0.567, 1.41, and 3.08 F . Curves have
the same meaning as in Fig. 2.

I~(]) q) x 5 ~ ( (Jg)gp(g)g dg
jk j j,lr

0
(3.3)

All integrations indicated in the above equations
were done numerically. Angular integrals were
performed using the Gauss-Legendre formulas.
For the most part, momentum integrations were
performed using the Gauss-Gegenbauer formu-
las. "' These formulas take advantage of the as-
ymptotic form of the three-body kernels. %Ye

found that a ten-point Gauss-Gegenbauer mesh
was extremely accurate, giving energies reliable

TABLE VI. UPE form factors for the Reid potential.
Form factors are obtained as solution of (2.2) in the
momentum representation with s= 0.0. /~A. (P~+) is the
form factor associated with the nth attractive (repulsive)
eigenvalue. Momentum p is in F ~.

y
A

3.84 —3
2.03 —2
5.02 —2

9.42 —2
1.53 —1
2.28 —1
3.21 —1
4.33 -1
5.67 —1
7.27 1
9.16 -1
1.14 —0
1.40 —0
1.72 —0
2.09 —0
2.54 —0

3.08 —0
3.75 —0
4.56 —0
5.58 —0
6.88 —0

8.56 —0
1.08 —1
1.38 —1
1.81 —1
2.44 —1
3.44 —1
5.12 —1
8.32 —1
1.56 —2
3.86 —2
2.04 —3

9.472 -1
9.469 —1
9.455 —1
9.414 -1
9.322 -1
9.145 -1
8.847 -1
8.388 —1
7Q 733 1
6.853 -1
5.729 —1
4.356 —1
2.757 —1
1.007 —1

-7.421 —2
-2.249 -1
—3.225 -1
-3.434 -1
-2.814 —1
-1.725 —1
-6.027 —2

6.549 -3
2.039 —2
9.991 —3
2.030 -3
1.857 -4
1.784 —5
1.537 —6

-6.573 -7
—3.285 —7
-5.993 -8
-3.325 -9

3.211 —1
3.211 —1
3y2 12 1
3.212 —1
3.214 —1
3+2171
3.223 -1
3.231 —1
3.242 -1
3.257 —1
3.276 —1
3.297 —1
3.320 —1
3.340 —1
3.350 —1
3.342 —1
3.300 -1
3.207 —1
3.048 -1
2.810 —1
2.492 —1
2.106 -1
1.679 —1
1.248 —1
8.537 -2
5.288 -2
2.913 —2

1.389 -2
5.454 -3
1.583 —3
2.608 -4
9.284 —6

-7.463
-7.454
—7.408

7+271
—6.966
—6.395
—5.468
-4.121
—2.370
—3.133
1.866
3.912
5.499
6.224
5.675
3.624
3.995

-2.806
—4.202
—2.759

1.198
1.367
3.828

-2.245
-4.497
4.694

—3.193
8.781

-6.598
-1.392

4.718
3.998

—9
—10
—12

N

X.(p) = Q Jt Z;, (p, Q:Er)&ju(Fr ~V')Xu(e)e'dq,
0

(3.1)
with

t' 0;(~i+p/'2 l)4, ( ~p+ q/2 I)
Z( j(pt 0:E)=

I 2 2 d cos pqE-P —q -p ~ q
(3.2)

and
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TABLE VII. Separable and exact T matrices for the Reid potential: s = 0.0.
Columns have the same meaning as in Table III.

1A+1R 2A+1R 2A +2R 3A+2R Exact

0.004
0.153
0.153
0.567
0.567
0.567
1.405
1.405
1.405
1.405
3.084
3.084
3.084
3.084
3.084
6.878
6.878
6.878
6.878
6.878
6.878

0.004
0.004
0.153
0.004
0.153
0.567
0.004
0.153
0.567
1.405
0.004
0.153
0.567
1.405
3.084
0.004
0.153
0.567
1.405
3,084
6.878

—10.9533
—10.7799
-10.6092
-8.9424
-8.8008
—7.3006
-3.1890
—3.1385
—2.6036
-0.9285

3.7302
3.6712
3.0454
1.0861

—1,2704
0.6971
0.6860
0.5691
0.2029

-0.2374
—0.0444

—10.8563
-10.6827
-10.5119
-8.8444
-8.7027
-7.2017
-3.0887
—3.0381
-2.5023
-0.8248

3.8300
3.7710
3.1461
1.1891

—1.1679
0.7724
0.7614
0.6451
0.2808

-0.1600
0.0141

-10.9329
-10.7542
-10.5787
-8.8687
-8.7254
-7.2094
-3.0322
-2.9854
—2.4843
-0.8664

3.8341
3.7748
3.1474
1.1861

—1.1681
0.7736
0.7626
0.6455
0.2799

-0.1601
0.0141

—10.9085
-10.7297
-10.5541
-8.8433
—8.6999
-7.1830
-3.0043
—2.9574
-2.4553
-0.8344

3.8619
3.8027
3.1763
1.2179

—1.1364
0.7785
0.7675
0.6507
0 ~ 2855

-0.1545
0.0151

—10.9348
—10.7531
-10.5748
-8.8425
—8.6992
-7.1830
-2.9890
—2.9438
-2.4557
-0.8434

3.8443
3.7872
3.1769
1.2282

-1.1482
0.7843
0.7726
0.6505
0.2822

-0.1506
0.0138

-10.9529
—10.7642
-10,5812
—8.8170
—8.6774
-7.1808
—2.9760
-2.9299
—2.4363
-0.8258

3.8626
3.8050
3.1927
1.2548

-1.1224
0.7706
0.7593
0.6398
0.2664

-0.1750
0.0294

to within 0.01 MeV for four coupled equations.
For our first examples, we present the results

of a number of calculations using the local Hulthen
potential. The form factors for this potential may
be obtained in analytic form. A number of other
authors have done three-body calculations using
this potential. Sitenko, Karchenko, and Petrov, '

and Lu and Levinger' have used the steinberg ser-
ies to calculate the energy of the model three-body
problem. In Table X we compare the convergence
of the UPE with that of the steinberg series, as re-
ported by these authors. (The Sitenko, Karchenko,
and Petrov potential has B= 2.225 MeV and P
= 1.3797 F '. Lu and Levinger's potential has B

TABLE VIII. Separable and exact T matrices for the Reid potential: s = —0.5.
Columns have the same meaning as in Table III.

1A 1A+1R 2A+1R 2A +2R 3A +2R Exact

0.004
0.153
0.153
0.567
0.567
0.567
1.405
1.405
1.405
1.405
3.084
3.084
3.084
3.084
3.084
6.878
6.878
6.878
6.878
6.878
6.878

0.004
0.004
0.153
0.004
0.153
0.567
0.004
0.153
0.567
1.405
0.004
0.153
0.567
1.405
3.084
0.004
0.153
0.567
1.405
3.084
6.878

-1.5391
-1.5147
-1.4908
-1.2566
-1.2367
-1.0259
-0.4481
-0.4410
-0.3658
-0.1305

0.5242
0.5159
0.4279
0.1526

-0.1785
0.0979
0.0964
0.0800
0.0285

-0.0334
-0.0062

-1.5388
-1.5143
-1.4902
-1.2551
-1.2348
-1.0199
-0.4435
-0.4352
-0.3471
-0.0716

0.5324
0.5262
0.4612
0.2571
0.0068
0.1030
0.1028
0.1006
0.0933
0.0815
0.0650

-1.5580
-1.5313
—1.5052
—1.2518
-1.2319
—1.0205
—0.4098
-0.4054
-0.3529
—0.1306

0.5285
0.5228
0.4619
0.2639
0.0060
0.1027
0.1026
0.1006
0.0938
0.0815
0.0650

-1.5579
-1.5312
—1.5051
-l.2515
-1.2314
—1.0187
-0.4088
-0.4040
-0.3470
-0,1108

0.5302
0.5252
0.4720
0.2980
0.0645
0.1031
0.1030
0.1027
0.1006
0.0931
0.0673

-1.5700
-1.5414
—1.5137
—1.2464
-1.2272
—1.0208
—0.3971
-0.3941
-0.3519
—0.1222

0.5165
0.5137
0.4776
0.3112
0.0491
0.1066
0.1060
0.1012
0.0971
0.0972
0.0663

-1.5908.
-1.5561
-1.5244
-1.2311
-1.2161
-1.0324
—0.3985
-0.3945
—0.3457
-0.1112

0.5179
0.5152
0.4825
0.3400
0.0921
0.1038
0.1035
0.0998
0.0854
0.0699
0.0794
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TABLE IX. Separable and exact T matrices for the acid potential: s=-3.0.
Columns have the same meaning as in Table III.

lA + lR 2A+ lg 2A +2& 3A+2R Exact

0.004
0.153
0.153
0.567
0.567
0.567
1.405
1.405
l.405
1.405
3.084
3.084
3.084
3.084
3.084
6.878
6.878
6.878
6.878
6.878
6.878

0.004
0.004
0.153
0.004
0.153
0.567
0.004
0.153
0.567
1.405
0.004
0.153
0.567
1.405
3.084
0.004
0.153
0.567
1.405
3.084
6.878

—1.1588
-1.1404
-1.1224
-0.9460
-0.9311
-0.7724
-0.3374
-0.3320
-0.2754
-0.0982

0.3946
0.3884
0.3222
0.3.149

—0.1344
0.0737
0.0726
0.0602
0.0215

—0.0251
-0.0047

-1.1559
-1.1373
-1.1190
-0.9401
-O.9246
—0.7602
-0.3229
-0.3162
-0.2457
-0.0252

0.4188
0.4148
0.3718
0.2368
0.0690
0.0890
0.0892
0.0915
0.0984
0.1032
0.0763

—1.1885
—1.1669
—1.1458
-0.9422
-0.9265
—0.7604
-0.2811
-0.2783
—0.2431
-0.0787

0.4183
0.4143
0.3718
0.2374
0.0690
0.0902
O. 0903
'3. 0916
0.0968
0.1032
0.0762

-1.1877
-1.1660
-1.1448
-0.9404
-0.9245
-0.7564
—0.2764
-0.2731
—0.2327
-0.0517

0.4261
0.4229
0.3891
0.2825
0.1443
0.0922
0.0925
0.0959
0.1081
0.1220
0.0809

—1.2079
-1.1837
—1.1603
-0.9378
—0.9223
-0.7567
-0.2629
—0.2613
—0.2344
—0.0607

0.4101
0.4089
0.3911
0.2932
0.1315
0.0970
0.0967
0.0953
0.1049
0.1258
0.0797

-1.2341
—1.2031
-1.1752
-0.9224
-0.9105
—0.7643
-0.2626
-0.2597
—0.2243
—0.0433

0.4166
0.4154
0.4008
0.3318
0.1903
0.0921
0.0921
0.0921
0.0926
O. 0988
0.0902

=0.43 MeV and P=1.149 F '. ) The entry for an in-
finite number of terms was obtained by assuming
that the three-body energy Ez depends upon the
number of terms n retained according to the ex-
pression

(3.4)

The parameter p is determined by fitting for finite
5 0

In Table X the UPE energy for a finite number
of terms is always more negative than the Wein-
berg value and hence closer to the actual (infinite
number of terms) value. This is especially notice-
able when comparing the first few terms. In both
cases the one-term UPE is almost as good as the
two-term Weinberg series. Using an appropriate
extrapolation, it would appear that both methods
are capable of giving the three-body energy to
within at least 0.1 MeV.

Kok, Erens, and Van Wageningen' have used the
equivalent two-body method to calculate the bind-
ing energy of three identical spinless bosons inter-
acting by means of a local Hulthen potential. In
Table XI we compare their results with UPE cal-
culations for the same potentials. The results,
shown in the last two rows, are in very good
agreement .¹teadded in proof: I . P. Kok [Ph.D. thesis,
State University of Groningen, 1969 (unpublished)j
has also performed three-body bound-state calcu-
lations using the UPE, obtaining results in accord
with those given here. We would like to thank
Dr. Kok for sending us his results.

We now move on to the consideration of more re-
alistic local potentials containing some type of re-
pulsion at small interparticle distances. Our first
example is the potential V of Malfliet and Tjon
(see Sec. II). Using this potential in the Faddeev

TABLE X. Comparison of three-body energies obtained with the UPE and Weinberg series for the Hulthen potential.
The steinberg series results are taken from Sitenko, Karchenko, and Petrov and Lu and Levinger. The UPE results
were obtained as part of this work. All energies are in MeV.

Number
of

terms
Potential of Sitenko et ag.

steinberg series UPE

Three-body energies
Potential of Lu

Weinberg series UPE

—18.37
-25.74
-27.13
-27.41
-27.61

-24.35
-26.36.
-27.24
—27.43
—27.61

-6.66
-9.88

-10.46
-10.64
-10.77

-9.36
-10.20
-10.62
-10.74
-10.83
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TABLE XI. Comparison of UPE results with the cal-
culations of Kok, Erens, and Van Wageningen. The first
five rows contain the calculated three-body bound-state
energies retaining different numbers of terms in the
UPE and an estimate of the local-potential result. The
results of Kok et aL. , Ref. 9, are given in the last row.
HultMn potential parameters are given in Kok et al .

Number
of

terms

Potential 2

(MeV)

Potential 3

E~
(MeV)

1
2

3
4

Kok et al .

-12.48
—13~ 62
-14.22
-14.41
-14.55
—14.59 + 0.1

—25.41
-27.52
-28.46
—28.70
—28, 87
-28 ~ 91+ 0,1

equations, these authors found a three -body bound
state at —7.3 MeV and estimated their answer to
be accurate to within 0.1 MeV (1—,'!o).

In Table XII we present the results of our UPE
calculations with the Malfliet-Tjon potential. The
first group of three columns gives the three-body
energy when we retain one attractive and zero,
one, two, or three repulsive terms in (2.8). The
column AE T gives the change in E T brought about
by adding the last term. The second three col-
umns give the results keeping up to four attractive
terms, while the last three columns show the ef-
fect of adding repulsive terms when two attractive
terms are retained.

It is clear that the repulsive terms converge
very rapidly. The 1A + ooR entry is obtained from
(3.4) using P =2. The attractive terms seem to
converge somewhat more slowly. The extrapolat-
ed ~A entry is an average of the results obtained
using p=1 and 2 in (3.4).

Comparing the last column with column three,
we see that the changes in energy brought about by
the addition of repulsive terms is the same wheth-
er one or two attractive terms are retained. This
means we can assess the effect of the attractive

and repulsive correction terms independently.
The correction to the one -term energy due to oth-
er attractive terms is then found by subtracting
the one -term results from the extrapolated infinite-
attractiv'e -terms result giving -0.204 MeV. Sim-
ilarly, the correction for repulsive terms is
+0.092 MeV. The actual three -body energy for the
local 8-wave Malfliet- Tjon potential should then be
the sum of the one -term result and these correc-
tions, or —7.55 MeV (entered as Ezz at the bottom
of Table XII). This result is in reasonable agree-
ment with the Malfliet- Tjon value of -7.3 + 0.1
MeV, but is outside their quoted errors.

One source of error in our calculations is the un-
certainty involved in the extrapolation procedure.
It would appear, however, that this is much less
than 0.1 MeV, because of the smallness of the com-
puted corrections and the consistency of the extrap-
olated results.

A second source of error arises from the numer-
ical solution of (3.1). The presence of a large num-
ber of nodes in the two-body form factors could
produce significant numerical errors. To test this,
calculations were performed using a 16-point
mesh. The largest discrepancy between the 10-
and 16-point results was less than 0.005 MeV.

Another source of error arises in solving (2.2)
for the two -body form factors. It would appear
that the UPA form factor is obtained quite accur-
ately with the numerical methods used, as is the
first repulsive form factor. The determination of
other form factors becomes difficult. However,
since their effect is small, a rough determination
should be sufficient.

Because of the cancellation between attractive
and repulsive corrections, the -7.44-MeV result
of the one-term UPE (the UPA) gives an excellent
approximation' to the three -body energy differing
by only 0.11 MeV or about 1—,'Vo of E Up'. A three-
term approximation containing one attractive and
one repulsive correction (2A+ IR in Table XII) is
even better, giving an energy of —7.49 MeV. The

TABLE XII. Unitary pole expansion calculations with the Malfliet- Tjon potential. E ~ is the three-body bound-state
energy obtained retaining different numbers of attractive (A) and repulsive (R) terms in the UPE for the Malfliet-Tjon
potential. &E T is the change in E T' brought about by the addition of a correction term. E Upq is an estimate of the actu-
al three-body energy using the full potential.

Terms (MeV)
QE &
(MeV) Terms

ET
(MeV) ( MeV) Terms

ET
(MeV) (MeV)

1A
1A +1R
1A +2R
1A +3R
1A +R

—7.437
-7.361
-7 ~ 349
—7.347
—7.345

0.076
0.012
0 ~ 002

1A
2A
3A
4A.
~A

-7.437
-7 ~ 562
-7.594
-7.609
-7 ~ 64

-0.125
-0.032
-0.015

2A
2A. + 1R
2A+2R

—7.562
-7.486
—7.474

0.076
0.012

E Upp= —7.55 MeV
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difference here of 0.06 MeV is less than 1/o of
E'I

UpE ~ This agreement is not too surprising in view
of the excellent agreement obtained between the ex-
panded and exact T matrices in Sec. II.

Our next series of calculations uses the Reid
singlet S potential, (2.17). Here the two-body sys-
tem does not support a bound state, and 8 =0.0 is
used in (2.2). The results of these calculations
are given in Table XIII. The repulsive terms are
extrapolated nicely with P = 1 in (3.4). The attrac-
tive terms appear to converge slightly more slow-
ly than with P = 1. The P = 1 value is given in Ta-
ble XIII. The correction for repulsive terms is
0.149 MeV, that for attractive terms is -0.074
MeV, "-nd the resulting energy, —1.02 MeV, is giv-
en at the bottom of the table. The UPA result,
-1.094 MeV, differs by 0.07 MeV or 7'%%uo of the fi-
nal value. However, the three-term result of
-1.026 MeV is in excellent agreement with EUpE.

We have also done a calculation with a two-term
separable potential of Mongan. " We use his case
II fit to the singlet S nucleon-nucleon phase shifts.
The resulting three-body energy is -2.064 MeV.
This result differs considerably from that of the
Reid potential and indicates a strong dependence
of the three-body energy upon the off-shell extrap-
olation of the two-body T matrix.

IV. D.'-SCUS SION

The results presented here are interesting for a
number of reasons. First of all, the accuracy of
a pole approximation for central potentials contain-
ing repulsion is apparent. Not only is the three-
body energy reproduced well, but the two-body T
matrix is approximated fairly accurately also.
This would seem to indicate that separable-poten-
tial calculations are more closely related to local-
potential chlculations than might otherwise have
been thought. It should be noted, however, that
the UPA form factors found here differ from the
standard Yamaguchi-type form factor and most
other form factors used in the literature. "

In this paper we have concerned ourselves pri-
marily with central potentials. The accuracy of a
pole approximation for a potential containing non-
central components still needs investigation. We
also need information on the accuracy of the ap-
proximation for scattering states.

The unitary pole approximation appears to be a
good starting point for three-body calculations.
The UPE gives a method of improving upon this ap-

TABLE XIII. Unitary-pole-expansion calculations with
the Reid potential. E ~ is the three-body bound-state en-
ergy obtained retaining different numbers of attractive
(A) and repulsive (R) terms in the UPE for the Reid sin-
glet S potential. EUpE is an estimate of the actual three-
body energy using the full potential.

Terms (MeV) Terms (Mev)

1A
1A +1R
1A +2R
1A+3R
1A+~R

-1.094
—0.998
—0.972
-0.963
—0.945

1A
2A
3A
4A
~A

-1.094
—1.122
—1.136
—1.144
-1.168
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EU~~= —1.02 MeV

proximation. The excellent agreement seen in Sec.
II between the three-term UPE T matrices and the
exact T matrices is quite encouraging. Qne other
point that should be stressed is the comparative
simplicity of the UPE approach to the three-body
problem. Using a separable expansion we need on-
ly deal with coupled one-dimensional integral equa-
tions. Furthermore, once we have determined the
UPE form factors, the T matrix is obtained by per-
forming the inte grals in 4. Since the two -body T
matrix appears in the Faddeev equations in the
form T(E —4P') where 0 &p' &~, this saves consid-
erable effort as compared to the direct inversion
of the Lippmann-Schwinger equations. It is also
possible to obtain good analytic approximations to
the UPE form factors so that deformation of con-
tour m thods may be used in the solution of three-
body scattering problems.

Intimately related to the question of how to at-
tack the three-body problem is the problem of rel-
ativistic corrections and multiparticle forces. Es-
timates place their contribution to the bound-state
energy at as much as 1 MeV or more. With such
uncertainties it may be unnecessary, if not fruit-
less, to try to solve the three-body problem for
a specified nonrelativistic two-body potential to an
accuracy much better than a few percent. Such ac-
curacies should be obtainable from an approach
based upon separable potentials.
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An attempt is made to improve the predictions of the A dependence of giant dipole ener-
gies of the two-fluid hydrodynamical models by the introduction of a more realistic surface
behavior of the ground-state densities. The Euler-Lagrange equations of motion for the
dipole oscillation are obtained by the expansion of the energy functional e [p, (&p), 0.(r) ],
where minimization yields acceptable neutron and proton densities, in quadratic powers of
the densities and their derivatives. The equations are solved under certain limiting condi-
tions, but within these limitations a much better A dependence is obtained.

I. INTRODUCTION

In recent years the statistical model of the nu-
cleus has had some success' in relating the bind-
ing energies, proton and neutron densities, and
surface properties of finite nuclei to infinite nu-
clear-matter calculations. An energy functional
e[p, o.j is obtained in the latter calculations for
variable nuclear density p, and neutron excess
o. =(N —Z)/A. Because of the finite range of nu-
clear forces a density variation correction pro-
portional to (fp)' must be added when finite nuclei
are considered. The quantities p(r) and o.'(r) are,
in principle, obtainable from the Euler-Lagrange
equations arising from requiring

5 fd'r e[(vp)', n] = D . (1)

In many cases one can estimate the nuclear bind-
ing energy and charge and matter distribution
from using trial functions p(r) and o.'(r) in the vari-
ational principle expressed in Eq. (1).

In principle, one can obtain a Lagrangian for
collective oscillations of the nucleus by expanding
the energy functional through quadratic terms in
the density fluctuation and adding a kinetic-energy
term. The early work of Steinwedel and Jensen'
on a hydrodynamical model of the giant dipole os-
cillation represented an attempt in this direction.
They took the ground state of the nucleus to be a
spherical matter distribution that is spatially a
constant inside a rigid surface. Using the sym-
metry energy term in the semiempirical mass
formula as the origin of the restoring force, they


