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The high-energy elastic scattering of nucleons by nuclei is studied using the optical-potential
operator provided by Watson's multiple-scattering theory. The main motivation is to investi-
gate the possibility of detecting two-body correlations in terms of an optical potential. We
have obtained an expression for the second-order potential in coordinate space which explicit-
ly exhibits its nonlocality in terms of the two-body correlations arising from the Pauli prin-
ciple and the repulsive core of the nucleon-nucleon interaction. We have performed a self-
consistent analysis of the elastic scattering of 1-GeV protons on He using a reasonable nu-
cleon-nucleon scattering amplitude, the one-body density obtained from elastic electron scat-
tering, and a parametrization for the two-body density consistent with the one-body density
and dependent upon a parameter identifiable as a correlation length. We have also attempted
to discriminate among several sets of nucleon-nucleon phase shifts at 630 MeV. The scatter-
ing of 1-GeV protons by 2C and 60 is studied in order to investigate the relative importance
of Pauli and short-range correlations. We also critically compare our work with that of sev-
eral others.

INTRODUCTION

For approximately the last twenty years the in-
termediate-energy (-100 MeV), small-angle scat-
tering of nucleons by heavy nuclei has been suc-
cessfully fitted using potentials of the form'

v(r) =(v~~+& v~1)p(r)'

1 . 1 dp(r)+
2 (vs'+&vsl)—m. ' r dr

where p(r) is simply related to the one-body den-
sity measured in elastic electron scattering. For
light nuclei and large scattering angles the above
potential is not valid, and Kerman, McManus, and
Thalerm (KMT) attribute this discrepancy to nucle-
on-nucleon correlation effects. It then seems fea-
sible to obtain information about nuclear correla-
tions from the optical potential, provided we under-
stand how it is related to the nucleon-nucleon in-
teraction and the structure of the target nucleus.

The one-body density or momentum distribution
is essentially determined by elastic electron scat-
tering. There are several methods for directly
measuring the two-body density, but all of these
are fairly difficult. ' In our work we study the pos-
sibility of using high-energy elastic nucleon-nucle-
us scattering to investigate two-body correlations.
Because the nucleon is a strongly interacting par-
ticle and the nucleon-nucleon scattering amplitude
is a fairly rapidly decreasing function of the mo-
mentum transfer, multiple scattering dominates
at large angles. As a result of the nucleus being
strongly virtually excited, we obtain information
about nuclear correlations, such effects being

most marked at lar ge momentum transfers.
The experimental work along these lines was ini-

tiated by Palevsky et al. ' who measured the elas-
tic scattering of 1-GeV protons by He, ' C, and
"O. The most interesting results were obtained
for P -'He scattering, the corresponding differen-
tial cross section exhibiting a sharp diffraction-
like structure with a minimum at q'- 5 fm '. In
order to fit the differential cross section, they
needed a central potential with a sharp transition
region at the nuclear surface. Assuming the first-
order optical potential to be valid, this is in strong
disagreement with the one-body density derived
from electron scattering by Frosch et al. ' For
' C and 0 they obtained reasonably good fits us-
ing central Saxon-Woods potentials consistent with
the electron scattering data.

These experiments have been fairly successfully
fitted by Czyz and I esniak, ' and Bassel and Wilkin'
using the multiple-scattering theory of Glauber. '
However, several of the approximations involved,
such as the eikonal approximation and the additiv-
ity of the phase shifts, have recently been investi-
gated by Feshbach' and Schiff, "and sizable correc-
tions have been suggested. Another drawback of
the above approach is that it requires writing
down a wave function which is more than one
wants to consider at present, and furthermore the
calculation of many-body operators with any kind
of realistic wave function is quite difficult. From
his analysis of P-4He elastic scattering at 1 GeV,
Cromer" concludes that the Glauber model is not
reliable enough beyond the first diffraction mini-
mum to provide quantitative results. There is
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then some doubt on the applicability of the Glauber
multiple-scattering theory for extracting informa-
tion on nuclear correlations.

The scattering of a nucleon by a nucleus consid-
ered as a many-body system may be described us-
ing Watson's multiple-scattering theory, ' which
expresses the nucleon-nucleus scattering ampli-
tude as a power series in the nucleon-nucleon scat-
tering matrix. In this series the first term in-
volves the one-body density, the next term the
two-particle correlations, and so on. For high-
energy elastic scattering the above theory pro-
vides for the optical potential a series expansion
which converges rapidly. Up to now, only the
first-order potential has been extensively investi-
gated while the second-order potential, which aris-
es from corrections to the impulse and multiple-
scattering approximations, has only been roughly
estimated and is now being studied.

Following a series of approximations which in-
volved replacing certain integrals over correla-
tion functions by correlation lengths, Johnston and
Watson, "and Johnston" obtained an equivalent lo-
cal potential for the second-order potential in co-
ordinate space. Using this local potential, McDon-
ald and Hull" studied nucleon-nucleus scattering
in the energy range 95 to 350 MeV for targets
ranging from carbon to lead, and found the cor-
rections due to the second-order potential to be
significant. For large scattering angles and light
nuclei, these approximations need to be refined,
and we will see under which conditions one recov-
ers their result.

A somewhat different treatment of the second-
order potential has been presented by Chalmers
and Saperstein. " By working in momentum space,
they were able to treat the problem without having
to make the approximations involved in obtaining
an equivalent local potential. However, in our
work we are interested in explicitly exhibiting the
optical potential in coordinate space.

Foldy and Walecka" have recently investigated
high-energy elastic scattering by nuclei using sep-
arable potentials for the interaction. This per-
mits them to solve exactly for the many-body scat-
tering amplitude and to systematically investigate
the optical potential to any degree of accuracy.
This interesting work is mostly oriented towards
investigating the multiple-scattering problem, and
our work, although different in approach, leads to
several of their conclusions.

The second-order potential is worth investigat-
ing because it contains much information about the
structure of the target nucleus, namely the two-
body correlations. We have obtained an exact ex-
pression for the second-order potential which ex-

plicitly exhibits its dependence on two-body corre-
lations arising from either the Pauli principle or
dynamics. In coordinate space this constitutes an
energy-dependent, nonlocal potential directly re-
lated to the correlation function. We then proceed
to obtain an effective equivalent local potential,
and the problem is thereby reduced to solving a
simple differential Schrodinger equation properly
modified to take into account relativistic kinemat-
ics.

Using the approach briefly described above we
have tried to understand the high-energy elastic
scattering experiments of Palevsky et al. ' We
have performed a thorough and self-consistent
analysis of the elastic scattering of 1-GeV protons
on 4He using a reasonable nucleon-nucleon scatter-
ing amplitude, the one-body density obtained from
elastic electron scattering, and a parametrization
for the two-body density consistent with the one-
body density and dependent upon a parameter iden-
tifiable as a correlation length. The scattering of
1-GeV protons by "C and "0was studied in order
to investigate the relative importance of Pauli and
short-range correlations. Finally, we attempted
to discriminate among several sets of nucleon-nu-
cleon phase shifts at 630 MeV.

We now briefly outline the contents of the other
sections. In Sec. II we present a derivation of the
optical potential following the formulation of KMT.
In Sec. III we study the first- and second-order po-
tentials. In Sec. IV we present an expansion which
effectively replaces the central and spin-dependent
nonlocal potentials by equivalent local potentials.
In Sec. V we discuss both the elementary-particle
and nuclear-structure aspects of the problem. In
Sec. VI we explicitly exhibit the potentials and also
compare our work with the work of other authors.
In Sec. VII we compare our calculated results with
the experimental data, and finally, in Sec. VIII
we present our conclusions.

II. OPTICAL-POTENTIAL OPERATOR

Even though our formulation is essentially that
of KMT, we briefly review it for the sake of com-
pleteness, as well as to critically examine the
approximations involved.

The scattering of a particle by a nucleus is de-
scribed by the following Schrodinger equation:

where
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II7 being the target Hamiltonian, and Eo the kinet-
ic energy of the projectile;

the integral equation

U = U( &[1+(1/o. )QOU] . (II.9)
+, =EX (r.)@.(r„.. . , r&})),

represents the scattered wave of the projectile,
and 4 the eigenstates of IJz.

Equation (II.1) is equivalent to an integral equa-
tion for T:

T= V[1+ (1/d) T],
where

(11.2a)

T=Nv[1+ (1/a)T] = [N/(1 —Nv/o() jv, (II.2b)

where I/n = 6/d and 8 is the projection operator
for completely antisymmetrized states.

It is convenient to introduce the scattering ma-
trices

and

7= v[1+ (I/o. ) v]

t =v[ 1+ (e -K, —K +t5) 't],

(II.3a)

(II.3b)

where t is the free two-nucleon scattering opera-
tor. Making use of Eq. (II.3a), we express v in
terms of ~, and Eq. (II.2b) becomes

T = N[1 —(N —1)7/o( j (11.4)

Defining T'= [(N —1)/N]T, we obtain an integral
equation for T':

T' = U' '[1+ (I/o. )T'],
where

U' '= (N —1)r.

(11.5a)

(11.5a)

Despite its appearance Eq. (II.5) contains the
full complexity of the (N+1) many-body problem.
For elastic scattering, with the target nucleus in
the state I 0), we wish to obtain the following type
of equation for T':

(Ok' I T'10k) =- Too = U„(1+( I/u)OOT, '0) . (II.6)

We remark that Eq. (II.5) is not of the above form
because ~ is not diagonal among nuclear states.
However, it may be reduced to the form of Eq.
(II.6) by making use of the projection operators

P, = 10)(OI, Q, = Q In)(n I, P, +Q, = 1. (II.7)
n ~o

In terms of the above projection operators it is
easily seen that

U'"[1+ (I/a) T'] = U[1+ (P /r&r) T'], (II.8)

where the optical-potential operator U satisfies

d = ~+ Z6 —Eo —P~.
For fully antisymmetrized wave functions we may
set V=Nv provided we write

(k' I
V'" Ik) = (N —1)(Ok' I t lk0) . (II.11a)

The above potential includes many of the Glauber
multiple-scattering terms. ' Neglecting the Fermi
motion of the struck nucleon and terms of order
(1/N) in t allows for the factorization of the above
matrix element:

(k'I V'" ll) =(N —I)(ok'lt lko)(ole'(k "&'J'IO)

(II.11b)

where (Ole q' 'il0) is the nuclear form factor F(q)
and t now operates only on the spin and isospin
of the target nucleons.

The second-order potential includes the correc-
tions to the impulse and multiple-scattering ap-
proximations binary in t. In order to evaluate the
sum over the intermediate states we make use of
the closure approximation replacing H& by some
average target excitation 8'. To get a physical
feeling for Wwe examine Eq. (II.10). The multiple-
scattering term consists of an excitation of the
target by collision with particle i and a subsequent
rescattering by particle j which returns the target
to its ground state. We then expect the main con-
tribution to come from intermediate states result-
ing from quasielastic scattering so that W= (k
—k") /2M„where k" is the momentum of the pro-
jectile in the intermediate state. The closure may
then be approximated by considering the incident
particle as having an effective reduced mass p, .
The second-order potential in momentum space is
then given by

(}r'}}""I}r)=(N —}}fd}r(e —e(k")+il}]"

x[(0lt~(k', k")t, (k", k)e ' " "~e''" ""il0)

(0 I t (ki kii) ei(k '-k "& rg
I 0)

x (0 I tj(k", k) e '" ""i
I 0)] . (II.12)

e(k") is the energy of the scattered particle with

The perturbation solution for the optical potential
in the states 10) then reads

(II.10)
n ~o

and we study it up to second order in t.
The first-order optical potential involves two ap-

proximations: (i) the multiple-scattering approx-
imation which neglects the virtual excitation in in-
termediate states and depends strongly on two-
body and higher correlations; (ii) the impulse ap-
proximation which sets 7 = t, thereby reducing the
many-body dynamics to that of the two-body prob-
lem. The first-order potential for elastic scatter-
ing in the ground state is then given by
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mass p, and momentum k" in the intermediate
states. t&t~ is a matrix in spin and isospin-space
but is not longer a coordinate-space operator.

The potential derived in this section gives rise
to

T' = [(N —1)/N]T,

while the one derived by Watson gives rise to T.
As shown by KMT this permits one to easily take
into account the identity of the N target nucleons.
The two potentials are related by

I/&» = [(N —I)/N] I/&» y&» = [(N —I)/N]2@+&

where V~" and V~" are the first- and second-order
potentials obtained using Watson's scheme. This
difference, although easily accounted for, is not
trivial. In the Born approximation, the two re-
sults are equivalent only for the first-order poten-
tials while the second-order potentials differ by
terms of order 1/N. However, the Born approx-
imation is not expected to be valid for the cases of
interest, and at large momentum transfers this
difference may be sizable. In our work we have
limited ourselves to the potential as given above
and have concentrated on evaluating the second-
order potential.

KMT provide a slightly different expansion for
the optical-potential operator from the one given
by E&I. (II.7). In their expansion only nondiagonal
matrix elements of U"' appear in intermediate
states. Their second-order term includes all of
our higher-order terms which contain elastic scat-
tering in intermediate states. The effect of includ-
ing U'" in the propagator has been investigated by
Feshbach and Hufner" using several idealized
models. Their work indicates that at high ener-
gies the effect is small.

In the above discussion we have assumed that
the incident particle is distinguishable from the
target nucleons. In case the projectile is a nucleon
one should consider completely antisymmetrized
wave functions of the (N+ 1) nucleons. Takeda and
Watson' showed that the main effects of the Pauli
principle may be accounted for by using properly
antisymmetrized scattering amplitudes for each
nucleon-nucleon scattering. Still omitted are pro-
cesses referred to as "target exchanges. " Sawic-
ki" has computed these corrections and concludes
that at high energies they are negligible. In our
work the Pauli principle is simply taken into ac-
count following the prescription of Takeda and
Watson. "

III. FIRST- AND SECOND-ORDER POTENTIALS

A. First-Order Potential

The first-order potential is given by Eq. (II.11).

For nonvanishing momentum transfer we require
the t matrix off the energy shell, because the kine-
matics for nucleon-nucleon scattering differ from
those for nucleon-nucleus scattering. The off-en-
ergy-shell effects can only be calculated if a nucle-
on-nucleon potential is assumed. This effect has
been investigated by Mulligan, "and Reading and
Mackellar. " The t matrix is generally nonlocal
and independent of nuclear correlations, and the
nonlocal corrections are third order in the nucle-
on-nucleon interaction. In our work we assume
the t matrix to be the same function of the momen-
tum transfer both on and off the energy shell. We
are then interested in studying a nonlocality which
is very different from the one discussed above.
Our nonlocal potential arises from multiple-scat-
tering effects, depends on two-body correlations,
and is of second order in t,

The most general form of the nucleon-nucleon
scattering amplitude consistent with rotational in-
variance, parity, time-reversal invariance, and
charge independence may be written as"

M(Z)=A+C(o, +&r,) n+Bf, no, n
A

+-,'(G+e)&r, mo, m+-,'(G —H)(r, lo, 1

+ [A '+ C'(o, +o,) n +B'o, no, n

+2(G'+P')o, mo', m+ ~(G' —P')o, lo, l]r, r„

where o and 7 are the spin and isospin operators,
respectively. A, B, C, G, P, A', B', C', G',
and H' are functions of the momentum transfer 4
=k' —k. n, l, and m are three mutually orthonor-
mal vectors defined to be in the directions (kxk'),
(k+k'), and (k' —k), respectively.
tz, m, the two-body t matrix in the nucleon-

nucleus barycentric system, and M(=f, , ), the
corresponding scattering amplitude in the nucleon-
nucleon barycentric system, are related by'

t~~~ =gM,

where

(III.2)

L refers to the lab system, &y and k, are the ener-
gy and momentum of particle 1 which we take to
be the projectile, and N is the number of target
nucleons.

We now consider even-even nuclei with J= T= 0
and assume that the scattering amplitudes are on-
ly functions of the momentum transfer. In coor-
dinate space the first-order potential is then given
by'

1 k, r 1+ (m/2e, r)(N+ I/N)
(2w)'e, z ), , ((+ng/Ne, z)()~Nm/s, ))1

(111.3)
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(r' I
V'" Ir) = V'"(r)t)(r —r')

=n (n)-))nfn'dnF(n)&(n)). (n )

1
+4m(N —1)rt —. J) q'dq E(q)( (q)j,(qr)a, T,

(III.4)
where j, and j, are spherical Bessel functions, F
is the form factor, and

)
—ka c.rn.

k&, ~ Ik,', ~xk, , ~ I

(III.4')

Assuming that the scattering amplitudes are so
slowly varying compared to the form factor that
their momentum dependence may be neglected,
which is valid only for heavy nuclei, it is easily
seen that Eq. (111.4) reduces to the simple poten-
tial of Eq. (I.1) with p(r) being the nuclear density.

A potential of the form given by Eq. (III.4) may
violate unitarity because of the imaginary spin-
orbit potential. The reason may be that the spin-
orbit potential in coordinate space is simply not of
the form

(1/r) (dp/dr)o"T,

because to obtain the above form requires integrat-
ing beyond the physical region and the off-energy
and off-momentum shell spin-orbit scattering am-
plitudes may differ drastically from the physical
ones. However, since the spin-orbit potential is
proportional to l, if unitarity is to be violated it is
violated in the higher partial waves where there is
little scattering, so it need not be a serious prob-
lem. A possible way of insuring unitarity is to cut
off the spin-orbit potential for high l's.

As already stated, the first-order optical poten-
tial does not satisfactorily explain the large-angle
scattering off light nuclei, especially 4He. We at-
tribute this discrepancy to multiple-scattering ef-
fects and the impulse approximation, and we now
fully investigate this problem.

B. Second-Order Potential

We must first evaluate the matrix elements ap-
pearing in Eq. (II.12). For simplicity's sake we
consider only even-even nuclei with J= T= 0 and
also assume L-S coupling with L=S= 0. Using the
scattering amplitude given by Eq. (III.1), for such
nuclei we obtain'4

where

p(q) = &O~e'~ '~ IO), p, (q, q ) = &Ole"'~e'~"'I'IO),

and e and P are given by

a=A'+C'+2ACO, n,

p = [C'+B'+ '(G'-+ H') + 2BCo n]

+A'+ C'+2A'C'Po pg

+ 3[C)'+B)'+ ~ (G)'+ P)') + 2B'C)(y n]

(111.5')

(k' I Vp lk) = (N —1)')7'A(0)8(0)o' (kxk')

Fp ope rates on the spin of the incident nucleon, A'
=A(q)A(q'), and 2BC= C(q)B—(q')+ C(q')B(q). We ob-
serve that we have two types of terms; one propor-
tional to the one-body density squared and the oth-
er to the correlation function. However, the term
proportional to p2 is of order (1/N), and for heav-
ier nuclei it is consistent with the derivation we
have presented to neglect it. As we will see, if
p(q)p(q') is of the "super separable" form, it does
not lead to any essential difficulties.

For the sake of clarity and with little loss of gen-
erality we now consider the following simplified
scattering amplitude:

tN, (k', k) =qA+)7g(o, +o,) ~ (kxk'),

where )7 and (' are as defined by Eqs. (III.3) and
III.4'). For scattering of nucleons by spin-0 nu-
clei, the above amplitude gives rise to the only
two possibly nonvanishing types of terms: central
and spin-orbit. In evaluating the second-order po-
tential let us make further use of the forward-scat-
tering approximation 3' neglecting terms of 8' and
higher. From the symmetry of the integrand in
Eq. (II.12) we expect the dominant contributions to
this integral to come from k" =-,'(k+k'), and we ap-
proxim-te (kxk") by —', (kxk'). Making use of the
scattering amplitude given by Eq. (III.6) and the
forward-scattering approximation, the second-or-
der potential in momentum space as given by Eq.
(II.12) may be rewritten as

(k' I
V'" Ik) = (k' I

V'" Ik)+ (k' I
V'" Ik), (III.7a)

where

Cik' —k" k" —k(k'
I

V'" Ik) = (N —1)' 'A'(0) dk"
e — (ke") + i 5

(III.7b)

(0 le'~'~e'( 'Jt (q)t ((T') IO)

—(0 le''('&t~(q) 10)(0 I
e~" '~t, (q') 10)

dk" C(k' —k", k" —k)
e —e (k") + i6 (III.7c)

3P=(n.()(, (i') -nO()n(f))n (n -~

n(n)n(n')n' ~ -,), (~ n)-3P
C(q, q') = p, (q, q') —p(q) p(4').

C is referred to as the pair-correlation function
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and arises because the nucleons inside the nucleus
are correlated as a result of the Pauli principle
and dynamical effects which depend on the nucleon-
nucleon interaction. This is to be further dis-
cussed in Sec. V. We remark that we have as-
sumed a simplified pair-correlation function in
so far as we have neglected its possible spin and
isospin dependence.

We now wish to obtain the coordinate-space rep-
resentation of the above potential. The above inte-
gration turns out to be quite manageable if one ex-
presses the correlation function C in terms of the
Fourier transform C(X, x'). Proceeding as indi-
cated, we find that in coordinate space the second-
order central potential assumes the following at-
tractive form:

(x' I
Vc2'

I x) = (27')'(N —I)'g'A'(0) C(x, x')

mation has been discussed in the previous section.
The forward-scattering approximation overesti-
mates the second-order potential for scattering
at finite angles, the corrections being most im-
portant at large angles. " If t depends only on the
momentum transfer, it is trivial to take into ac-
count its momentum dependence; however, the
second-order potential would no longer be simply
related to the nuclear densities. Since the second-
order potential is most strongly felt at large mo-
mentum transfer (especially for the diffraction
structure which we are interested in), a simple
way of reducing this overestimate is to evaluate
t in Eqs. (III.8) and QII. 10) at one-half the momen-
tum transfer at the minimum. Thereby a slight
momentum dependence is introduced, the impor-
tance of which depends on the momentum depen-
dence of the scattering amplitude and the correla-
tion function.

ik (x '- x)
x

e —E. (k) +R ' (111.8)
IV. EQUIVALENT EFFECTIVE LOCAL

POTENTIAL

The remaining integral is simply the well-known
free Green's function for a particle of mass p and

energy e. In our work we restrict ourselves to
the nonrelativistic limit, e(k) =k /2p.

We now proceed to obtain the second-order spin-
dependent potential in coordinate space:

(i7' I Vz'~ IX) Qta fdkd=k'dk" (kxl7')

e —~(k") + i5

where

The Schrodinger equation for a nonlocal poten-
tial is essentially an integrodifferential equation.
Because of the large number of partial waves
scattered at the energies considered, solving the
above equation is at present somewhat impracti-
cable. Furthermore, we are interested in seeing
whether the data can be understood in terms of a
local potential. We then proceed to obtain an ef-
fective equivalent local potential using a method
presented by Mulligan.

For a nonlocal potential V(r, F'), the Schrodinger
equation assumes the form

[(I/2g)V'+ c]g(F) = tV(r, F')P(F')dr'

= V(r (V/i)g(F), (IV. 1)

We eliminate k and k' in favor of V~ and V~. and
are then left with an integral similar to the one
studied for the second-order central potential.
The second-order spin-dependent potential then
reduces to

(III.10a)

where

V(» (g/ ') —J/V(»»+ «) ix ~ (vli)d»

In our work we consider only correlation functions
which give rise to nonlocal potentials of the "super
separable form"":

where
V(r, F') = v(-,'(r+r'))u(F —F') . (IV.2)

V, (x, x') = (N —1)'(2')'q~A(0) 6 (0)C(X, x')

(III. 10b)

Short-range correlations and even Pauli correla-
tions in heavy nuclei are such that R„ the range
of nonlocality u, is much smaller than R, the
range of the nucleus as measured by v: R, «R.
Under the above conditions we may then write

The second-order potential as given by Eqs.
(III.8) and (III.10) involves the closure and forward-
scattering approximations. The c1osure approxi-

V(r, r') = ,[v(r)u(r ——r')+v(r')u(r —r')]. (IV.3)

The momentum-dependent potential equivalent to
the nonlocal potential of Eci. (IV.3) is given by
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V(r IV/i) =-,'[v(r)u(V/i)+u(V/i)v(r)],

where u is the Fourier transform of u as given by
Eq. (IV.1). For the purpose of the following pres-
entation we consider the unsymmetrized potential
v(r)u(V/i) which differs from the one given by Eq.
(IV.3') simply by z[u(V/i)v(r)], where the gradient
operates only on v.

The Born approximation suggests that we make
a Taylor series expansion of u(V/i) about k„
where for convenience we take k, to be the inci-
dent momentum:

v(r)u(V/i)g(r) = v(r)u(k, )g(r) + [v(r)V ju(k)]k

x (V/i —k,)p(r)+ ~ ~ ~ . (IV.4)

The above series converges quite rapidly for the
cases of interest, and in most of our work we re-
tain only the first two terms. The problem is
thereby reduced to that of scattering from two po-
tentials Vy and V„where:

V,g(r) = v(r)u(k, )g(r),

V,g(r) =[v(r)Vju(k)]~ (V/i —k,)g(r),

with V, » V, .
The problem is then best studied in terms of the

"two-potential formula. "" We approximate (, the
solution to scattering from the two potentials tj

y

and V„by P which is obtained as if only V, were
present. Once (t is obtained, we may study the
expansion for the nonlocal potential given by Eq.
(IV.4) and thereby obtain an effective equivalent
local potential. In spirit, the above approach is
essentially the distorted-wave Born approximation,
and we thereby improve on the Born approximation.

We now apply the above technique to a Schrodin-
ger equation with a spin-independent nonlocal po-
tential:

the initial spinor. Proceeding as indicated, we
find that Eq. (IV.5) is thereby reduced to a simple
Schrodinger equation with an equivalent effective
local potential given by

V, ff (r) = V,'&&'(r) + V,'(f'(r)o 1, (IV.7a)

where
~ k d'"ky(c&( )

—g (j)( )-(j)(k ) 1
~)l' (1)( )

due (~o)
2EJ= 1

du' "k '
2E'

(IV.7b)

(IV.7c)

The above potential gives rise to the following
term in the Schrodinger equation

-o' [V vz(x)]xV [uq(V/i)P(x)],

where the first gradient operates on vz only. We

treat the spin-dependent nonlocal potential in a
"Born-like approximation, " retaining only the
first term in the expansion given by Eq. IV.4).
If vz depends only on the magnitude of x, to low-
est order the spin-dependent nonlocal potential
may be approximated by a spin-dependent local
potential:

o [V x V,v~(x)u~(1 x —x'
I )]

We remark that the validity of the above approx-
imations depends only on the weakness of the non-
locality.

We now apply the same technique to obtain a
local potential effectively equivalent to the spin-
dependent nonlocal potential:

(x' I
Vz(2)

I x) = 0 [V x V„vz(x)uz( I x —x'
I )] . (IV.8)

[-V'/2u, +vz(r)o ~ 1+ Q v ((rj))u ~~ ((V)/i) —e]g(r) = 0.

Nv. s)

We expand u(cj)(V/i) about ko and keep only the first
two terms in the series given by Eq. NV. 4). We
then replace g(r) by P(r) which, because we are
considering high-energy and small-angle scatter-
ing, may be calculated using the eikonal approxi-
mation'.

Z

P(r) =expfik, r -~ [vc(b+k,z')
26'

+v~(b+k~')(F'1]dz'] Xj,

(IV.6)
wher e

vc (r) = Q v(cj (r)uOc)(k, ),
j= l

b lies in the plane perpendicular to k„and X& is

1 & & 11+—V'g+ —Vg = (e' —m')g,
2m M, m 2m

(Iv. 10)

where m and M, are the masses of the projectile

(I.v.g)

It is difficult to determine how consistent it is to
use the potential so obtained in calculations which

exactly integrate the Schrodinger equation. How-

ever, the approximations involve only the nonlocal-

ity of the second-order potential, which is usually
of much less importance than the first-order po-
tential and the zeroth moment of the second-order
potential which are treated exactly. The converg-
ence of the expansion given in Eq. QV.4) can be

sy stematically investigated.
The potential so obtained is then used in a

Schrodinger equation in which the kinematics of
the projectile are treated relativistically ':
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and target, respectively; ~ is the total energy of
the projectile; and V is the potential.

V. GENERAL PROPERTIES

OF THE NUCLEON-NUCLEON INTERACTION

AND NUCLEAR STRUCTURE

A. Nucleon-Nucleon Interaction

1. 630 MeV

To determine the scattering amplitude given by
E21. (III.1) in terms of a phase-shift analysis is
very complicated at this energy because it re-
quires a large number of partial waves, and also
because we are above the threshold for pion pro-
duction. In our work we make use of three solu-
tions presented by MacGregor, Amdt, and
Wright. " Following their notation we refer to
them as A2, B3, and C5. They differ essentially
in the treatment of the inelastic parameters. For
specific details we refer the reader to the above
papers,

The scattering amplitudes corresponding to the
above sets of phase shifts were calculated using
what is commonly referred to as a modified phase-
shift analysis. In our work we attempt to discrim-
inate among the above sets of nucleon-nucleon
phase shifts by means of high-energy elastic nu-
cleon-nucleus scattering.

2. 1 GeV

At 1 GeV the scattering matrices are as yet es-
sentially undetermined in terms of phase shifts.
However, high-energy scattering at small momen-
tum transfer has been fairly successfully described
by Regge-pole theory. Assuming only Regge poles,
the scattering amplitude is simply given by Eq.
(III.6). The amplitudes were parametrized in the
following convenient form

&NN(r2) =[(2+ e2„)DAkeNN/422]e

CNN (6) 2(6 /4222 ) CNN(A)

where
2 2

CNN(k) [(2 Dc )DckoNN/422) e

k is the center-of-mass momentum, and b, is the
momentum transfer. The parameters were ob-
tained by adjusting the Regge parametrization of
Rarita et al."so as to make them consistent with
the experimental data of Dutton et al.o:

n&z = 0.1+0.16, e~~& = —0.5+ 0.15,

D„=1, b2g =4 GeV 2,

~c~=~c = 1 1 Dc=2 8~ &c =5 GeV

The above scattering amplitudes describe the

F eh =» (Fch+F eh), (V. 1)

where I",h and E, h are the normalized proton and
neutron form factors for which we used the exper-
imental measurements of Janssens et al. '

The charge form factor of 4He has been mea-
sured up to large momentum transfer (q'-20 fm ')
by Frosch et al. ' using elastic electron scattering.
They found a sharp minimum at q2- 10 fm ':

F, t, (q') = [1—(a'q')'] e ~ q,
with n = 6, a = 0.316+ 0.001 fm, b = 0.681 + 0.002 fm.
This diffraction structure occurs at a larger mo-
mentum transfer than the one measured by Palev-
sky et al.4 using elastic scattering of 1-GeV pro-
tons. The p-4He data cannot be fitted using the
first-order potential determined by the above den-
sity including the experimental uncertainties in a
and b.

The charge form factors of "C and "0 are for
small momentum transfer consistent with the
shell model using harmonic-oscillator wave func-
tions":

F,„(q') =[1—n(qa, „)'/(4+6a)]e '2 '~h",

where n = (Z -2)/3, and

a, h=1.71 fm for "C,
= 1.82 fm for 0.

The above form factors provide good fits up to the
first minimum, and beyond it they have a tendency
to be too small.

Once more we would like to emphasize that a
given one-body density can always be obtained
from a simple Slater determinant, and there is
no need to introduce short-range nucleon-nucleon
correlations. However, a knowledge of the two-
body density would provide a way of discriminat-
ing among the many wave functions giving rise to
the same one-body density and would also permit
us to determine the pair-correlation function. The
one-body density reflects only indirectly on the

elastic scattering of two free nucleons. As dis-
cussed in Sec. III, we need the scattering ampli-
tudes off the energy shell since the kinematics
are those of the nucleon-nucleus system. In our
work we assume that the scattering amplitudes
are functions only of the momentum transfer, and
we simply relate the t matrix in the N-c.m. and
2-c.m. systems according to Eq. (III.2).

B. Nuclear Structure

1. One-Body Density

For even-even nuclei with Z=lV/2 and T= 0, the
charge and body form factors are simply related
by
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two-body density in so far as one assumes a ref-
erence frame for uncorrelated wave functions. In
elastic scattering a one-body operator measures
only the one-body density which is essentially de-
termined by elastic electron scattering, and to
detect correlations one needs a two-body operator
such as the second-order optical-potential opera-
tor. Combining elastic electron and high-energy
nucleon scattering, we then have a consistent cri-
terion for detecting correlations.

2. Theo -Body Density

We present a parametrization for the two-body
density which is automatically consistent with the
one-body density. This is to be contrasted with
the usual way of introducing correlations by modi-
fying the radial functions of the relative motion.

The two-body correlation function in momentum
and coordinate space is respectively given by

data. From our work we have determined A~ to be
approximately 0.3 fm', which is of the order of
the characteristic length associated with the re-
pulsive core.

(ii) "C and "O

In order to obtain information concerning the
correlations due to dynamics we must estimate
the relative importance of the correlations due to
the Pauli principle. To calculate the Pauli corre-
lations we assume the shell model, according to
which "C and "0 are closed-j-shell nuclei. For
small momentum transfer the dominant term is
the one proportional to q q', and in coordinate
space it gives rise to a "superseparable nonlocal-
ity":

C~ (x, x') = -D(d/m3)[(x+ x')' —(x —x')']

xexp(-(v/2)[(x+X')'+(x —x')']}, (V.5)

c(q, i') = p, (i, q') —p(i)p(i'),

C(x, x') = p2(X, x') —p(x)p(x') .

(V.2a)

(V.2b)

where v is the harmonic-oscillator parameter,
and

D=2/99 for "C,
= 1/60 for "O.

The two are related by a Fourier transformation.
It may be easily shown that a necessary and suf-
ficient condition for the two-body to give rise to
the correct one-body density is

C(q, 0) = C (0, $') = 0 . (V 2)

Cz(x, x') = p exp—
16k.~

3/2 («y «s)2

1+&'/2b' 2 (b'+ X'/2)

(x —x')'
exp—

where

p = p2(0)[2»2(1 + Z2/2&2)-3~2 —1]-~

(v.4)

The correlation length X is determined as a result
of trying to fit the 1-GeV p -4He elastic-scattering

The above requirement can be trivially satisfied;
however, in order to obtain a reasonable form for
the two-body density one must make sure that it
describes hard-core or Pauli correlations. This
is no longer trivial.

We now apply the above ideas to 'He, "C, and
16O

(i) 'He

In 'He there are no correlations due to the Pauli
principle, and we need consider only short-range
correlations. A convenient parametrization for
the two-body correlation function satisfying the
requirements stated above and dependent upon one
parameter A., identifiable as a correlation range,
is provided for by

To study the effects of the hard core we intro-
duce dynamic correlations in the Jastrow manner. "
We calculate the two-body correlation function cor-
responding to the Jastrow wave function by making
a cluster expansion, and we neglect contributions
involving more than one correlated pair. This is
a reasonable approximation for large nuclei only.
In any case, this calculation suggests that we take
the correlation function to be the sum of Pauli and
short-range correlations:

C(x, x') = C~(x, X')+C~(x, x') . (V. 6)

p, (x, y) =JI dr„. . . , droop~(x, y, r„.. . , r&),
(V.7b)

The above pair-correlation function is such that
the two-body density is consistent with the one-
body density and contains both short-range and
Pauli correlations.

With this approach there is no need to worry
about the center-of-mass motion since we do not
make explicit use of a wave function, but instead
we work directly with the one- and two-body densi-
ties. The expectation value of operators in the
ground state involves only the internal wave func-
tion for which only (N —1) of the coordinates are
independent:

N

p ~(r„.. ., r z) =
I go (r, , . . ., r N) I

'6"'( P r N) .

(V.7a)
For one- and two-body operators only the one-
and two-body densities are required:
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p(x) =Jtp. (x, y)dy (V.7c)

All of our previous results therefore remain un-
changed. We remark that even simple product
wave functions are then correlated due to the cen-
ter-of-mass restriction, but as pointed out by
Foldy and Walecka'~ this is simply an N-particle
correlation condition. This is being further in-
vestigated by Gal and Hufner. ~

VI. DESCRIPTION OF THE POTENTIAL

&/ cl'(x) = VP'(x), u c ( I x —x'
I )

= 6 (x —x'),
~&8(~) —c e-x /2h

2/2{~2+ ) 2/2)

u'"(k) =1,

(2)I X -r /16K itI2P&) & /

u &3)(r) —e-r /BX /&2&/c) r2 2 ~ 1/2
c & -e

where the const;ants c, and c, are easily identifi-
able in terms of the previous equations. Similar
expressions are obtained for the spin-dependent
potential. Since all the Fourier transforms in-
volved are essentially alike, we only give a typi-
cal one, namely uP'(k):

up'(k) = . fe ~ t""" ' ~ erfc[-f2'(v'2uf +k)]
sk

+e '~ '&'&'" ~j erfc[ —i2X(v'2ue —k)]j.
(VI. 1)

erfc(z) = -erf(z)+ 1, where erf is the error func-
tion. " The above expressions are then evaluated
numerically.

In addition to the energy dependence of the scat-
tering amplitudes, the equivalent local potential
has an energy dependence which arises from the
nonlocality. In the next section we show that the
above Fourier transforms are closely related to

A. Evaluation of the Optical Potential

We first give a brief recapitulation of the pre-
vious 'sections and list the main results. In Sec.
III we showed that the first-order potential is
closely related to the one-body density [Eq. (III.4)],
and that the second-order potential is nonlocal
and directly related to the two-body correlations
[Eqs. (111.8) and (III.10)]. In Sec. IV we presented
a technique for obtaining a local potential which
is effectively equivalent to a spin-dependent non-
local potential [Eqs. (IV.7) and (IV.9)]. The pair-
correlation functions are given by Eqs. (V.4),
(V.5), and (V.6).

We now illustrate how to apply the above method
to the case of 4He for which we need only consider
the short-range correlations. To directly make
use of Eqs. (IV.7) and (IV.9) we need the following
identifications:

the correlation length introduced by Johnston and
Watson. "

For "C and "0one needs, in addition, to con-
sider Pauli correlations, and except for some
minor modifications the work proceeds in the
same manner.

B. Comparison with Other Works

Of the works discussed in the introduction, that
of Johnston and Watson' is of most interest to us
since in it the second-order potential is approxi-
mated by a local potential, and we now compare
it with our work. Our work differs from theirs in
three basic respects: (i) The derivation of the op-
tical-potential operator; (ii) the parametrization
of the correlation function; and (iii) the evaluation
of the second-order potential and its reduction to
a local potential.

The first difference has been discussed in Sec.
II. As far as the potential is concerned it involves
constant factors of [(N —1)/N], and it does not af-
fect the shape of the first- and second-order poten-
tials.

Unlike our correlation functions, the correlation
functions they used are not consistent with the one-
body density. For short-range correlations they
assume a two-body distribution of the Brueckner-
Gammel type:

C(x, x') = p(x)f~(IX- x' I),
where

fa(r)=-8 ' " (1 —~'/&'),

(VI.2a)

(VI.2b)

with y= —', and b=1.42 fm. For the Pauli correla-
tions they used the expressions obtained from the
Fermi-gas model.

Johnston and Watson" and Johnston" give essen-
tially the following result for the second-order po-
tential:

I/&a} (r) Nz N c.m. ~2~2(0)
(2« 'e R

&kN c.m. N
(V1.3a)

( )
~(2«)' /v, , (0) ( )R 1dp(r)

gvs
N c.m. N

(VI.3b)
is the energy of the incident nucleon with

effective reduced mass jtL in the nucleon-nucleus
barycentric system, e/v c m

= (k2N, m + p')"'; q is
given in Eq. (III.3); A(0) and & (0) are defined in
Eq. OII. 6); 'U/v is the nuclear volume; and R& is
an estimate of an integral involving the correla-
tion function and is known as the correlation length:

Rs = fs(r)dr .
We now show that in terms of our work the sec-

ond potential given in Eq. (VI.3) corresponds to
making the following three approximations: (i) As-
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(x' I VP'Ix) =v(x)u(lx —x' I),
where

v(&) = -(2&)'(&—I)'eN c.m.n ~ (O)& (~) i

f+NC m JX —X

u(x —x') =fgy(lx —x' I) Ix —x'
I

(VI.4a)

(VI.4b)

(VI.4c)

Assuming the validity of the Born approximation
for the nonlocality, we determine the equivalent
local potential by keeping just the first term in
the expansion given by Eq. (IV.4):

u(k) = e'"'fs(r)(e'"/r)dr

(2w/ik) -fs (r)dr = (2v/ik)R~- . -(VI. 5)
0

With the approximation indicated above one readily
obtains

[VC'(~)]B = (& —I)' '
n ~'(o)RBQ'(~) .(2v 'e

2 N c..m.

(VI.8)

suming the validity of the Born approximation for
the nonlocality; (ii) using ultrarelativistic kinemat-
ics in the Green's function, e(k) =k; and (iii) as-
suming the range of the correlation to be much
smaller than the radius so that the correlation
function given by Eq. (VI.2) is valid. We only ex-
amine the second-order central potential since
for the spin-dependent contribution one would pro-
ceed in exactly the same fashion.

The nonlocal second-order central potential in
coordinate space is given by Eq. (III.8). Using the
ultrarelativistic Green's function [e(k) =k] and the
correlation function given by Eq. (VI.2) we obtain
for Eq. (111.8)

and the energies considered in this work, we ex-
pect our potential to be more appropriate. This
is substantiated by the fits to the experimental
data.

VII. COMPARISON OF CALCULATED

AND EXPERIMENTAL RESULTS

Using the optical potential obtained as described
in the preceding sections we now analyze the elas-
tic scattering of nucleons by 4He at 1 GeV and 630
MeV, and "C and "0 at 1 GeV. The scattering of
1-GeV protons off 4He is used to determine the
parameter A,

' which enters in the parametrization
of the short-range correlations. With the nuclear
structure so determined we calculate the scatter-
ing of nucleons by 4He at 630 MeV in an attempt to
discriminate among several sets of phase shifts.
Finally, the scattering of nucleons by "C and "O
is investigated in order to study the relative im-
portance of Pauli and short-range correlations.

A. Optical Potential

The approximations in order of increasing com-
plexity are: (i) First-order potential with forward-
scattering approximation; (ii) first-order potential
including the momentum-transfer dependence of
the nucleon-nucleon scattering amplitude; (iii) in-
clusion of the second-order potential, but use of
the Born approximation in obtaining the equivalent
local potential; (iv) inclusion of the second-order
potential, retaining the first two terms in the ex-
pansion given by Eq. (IV.4).

We have checked numerically the validity of trun-
cating the expansion given by Eq. IV.4) by compar-
ing the differential cross sections under stages

This is essentially the result of Johnston and
Watson as given by Eq. (VI.3), except that the
above authors have further approximated p' by
(p/'U~). The above equation shows that the radial
dependence of the second-order potential is sharp-
er than that of the first-order potential since it is
roughly proportional to p'.

The result of Eq. (VI. 5) may also be obtained
using the correlation function of Eq. (V.4) and ap-
proximating u(k), which is given by Eq. (VI. l).
Assuming the high-energy limit A~ » 1 and making
use of the properties of the error function we ob-
tain

50
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4

u (k) = 4n'"A/ik . -. (VI.7)

Once more we see that u is closely related to the
correlation length R&.

We thus conclude that the result of Johnston and
Watson should be valid for heavy nuclei, short-
range correlations, and high energies. For 4He

FIG. 1. Central potentials for P- He scattering at 1
GeV for various approximations. ———first-order po-
tential only, including its q dependence; — — —poten-
tial including second-order potential with A, = 0.1 fm;

potential including second-order potential with A2

=0.3 fm
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(iii) and (iv). The two results are such that we are
confident about truncating this series after the
first two terms. Throughout our work we retain
the first two terms, thereby improving on the Born
approximation.

1. Central Potential

In Fig. 1 we show the central potentiaIs for nu-
cleon-4He scattering at 1 GeV; comparing the first-
order poten". ial including its q dependence and the
potentials including the second-order corrections
using the parametrization given by Eq. (V. 5) with
A,
'= 0.1 and 0.3 fm', respectively. We notice that

the depths of both the real and imaginary centraI
potentials are deepened near the center resulting
in a sharper transition region at the surface than
expected for the first-order potential.

In Fig. 2 we present the first-order potential in-
cluding its q dependence and the potential including
the second-order corrections with ~'=0.3 fm' for
P -4He scattering at 630 MeV using the scattering
amplitudes corresponding to the phase shifts of
solution A2. We also remark that the potentials
arising from the different scattering amplitudes
(A2, 83, and C5) differ substantially from one an-
other; this emphasizes the importance of includ-
ing the angular dependence of the scattering ampli-

tudes if they are rapidly varying, especially for
light nuclei.

As can be seen from these curves, the first-
and second-order potentials have quite different
radial dependences, the second-order potential
being sharper at the surface. The potentials cor-
responding to the different approximations then
differ mainly at small distances while their tails
coincide. The interior of the potential affects
most strongly large-momentum-transfer scatter-
ing so that the effects of the second-order poten-
tial shouId be most marked there. We thus con-
clude that for light nuclei the central potential is
in no simple manner reIated to the one-body den-
sity because of the importance of taking into ac-
count the momentum dependence of the scattering
amplitudes and the second-order potential, which
depends on nuclear correlations.

The effects of including the q dependence of the
scattering amplitudes and the second-order poten-
tial are not as marked for '2C and x60, and we do
not present the corresponding potentials. This is
in agreement with the prediction that these correc-
tions decrease in importance as the radius of the
nucleus increases and also explains the results of
Palevsky et al. 4

2. Spin -Orbit Po tential

4

-2

p — He, 630 MeV

Centrol Ppten t pl

l

2.2

In our scheme the total spin-orbit potential dif-
fers from the first-order spin-orbit potential
mainly for two reasons: (i) The first-order spin-
orbit potential gets modified by the central nonlo-
cal potential as shown in Eq. (IV.7c); (ii) there is
also a spin-orbit contribution arising from the

Repl Pprt
N- He, 1 GeV

Spin-Orbit Potential

-l00

-80

l

zo
W

-60

-20

r (fm)
2.2 3,3

FIG. 2. Central potentials for P-4He scattering at 630
MeV using the phase shifts of solution A2. ———first-
order potential only, including its q dependence; po-
tential including second-order potential with &2= 0.3 fm2.

FIG. 3. Spin-orbit potentials for P- He scattering at 1
GeV for various approximations. ———first-order spin-
orbit potential, including its q dependence; —.—~ —first-
order potential modified by central nonlocal potential
Q. = 0.3 fm ); — total spin-orbit potential including
second-order spin-dependent contributions.
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spin dependence of the second-order potential as
given by Eti. (IV.9).

In Fig. 3 we illustrate the importance of each
contribution for N-4He scattering at 1 GeV by
showing: (a) the first-order spin-orbit potential
including the q dependence of the scattering ampli-
tude, (b) the first-order spin-orbit potential, mod-
ified as indicated in approximation (i), (c) the to-
tal spin-orbit potential including second-order
contributions as indicated by (i) plus (ii). The
1-GeV spin-dependent scattering amplitude was
obtained as discussed in Sec. V so that its magni-
tude is somewhat uncertain.

In Fig. 4 we illustrate the spin-orbit potentials
with and without the total second-order contribu-
tion as given by (i) plus (ii) for p-'He scattering
at 630 MeV, using the scattering amplitudes cor-
responding to the phase shifts of set A2.

The effects of the multiple-scattering correc-
tions for the spin-orbit potential are not as
marked as for the central potential, and there
does not seem to be any general trend to the cor-
rections.
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FIG. 4. Spin-orbit potentials for P-4He scattering at
630 MeV using the phase shifts of solution A2. ———
first-order spin-orbit potential, including q dependence;

total spin-orbit potential including second-order
spin-dependent contributions (A2 = 0.3 fm2).

9. Differential Cross Section and Polarization

1. P- He Scattering at 1 GeV

There are two ways of interpreting the results
of Palevsky et al.4 in terms of an optical potential:
(i) The spin-dependence of the nucleon-nucleon

FIG. 5. Differential cross sections for P-4He scatter-
ing at 1 GeV for different correlation lengths.
= 0.1 fm2 A,

2 = 0.3 fm2.

scattering amplitude is non-negligible; (ii) correla-
tion effects are important making it necessary to
consider the corrections to the impulse and mul-
tiple-scattering approximations. In our work both
effects were taken into account, and both turned
out to be quite significant. As already discussed,
when one uses the form factor measured by Frosch
et al. ' and our scattering amplitudes as given in
Sec. V, the data cannot be fitted using only the
first-order potential.

To show the sensitivity of the results to the two-
body correlations, in Fig. 5 we present the differ-
ential cross sections corresponding to A.

' = 0.1 and
0.3 fm', respectively. The effects of the correla-
tions appear particularly marked for 4He, being
most significant around the diffraction pattern.
We see that the second-order potential is very im-
portant in obtaining the diffraction-like structure,
and we may then have a possible way of obtaining
information about the two-body density.

In Fig. 6 we show the differential cross sections
corresponding to: (i) the experimental data of
Palevsky et al. '; (ii) the central potential only with
A.'=0.3 fm'; (iii) the central plus spin-orbit poten-
tials with ~'= 0.3 fm'. It is worth noting that we
have not tried to get the best possible fit, and that
we have made use of only one adjustable param-
eter, the range of which is quite limited. Concern-
ing the 1-GeV P-4He analysis we come to the follow-
ing conclusions: (i) Using only the first-order cen-



1664 E. KU JAWSKI

p-4He, E~ab =1GeV I.O—

4p- He, El.b=l GeV

I02— 7

E .6
a. .5
I

4

.2

IO 20 30 40 50

IOo—

IO" I

lo 2

0
I

10

I

20 30
8 (deg )

I

40

FIG. 6. Differential cross sections for P- He scatter-
ing at 1-GeV lab kinetic energy for various approxima-
tions. l' experimental points taken from Ref. 4; ———
only central potential with ~ = 0.3 fm; central plus
total spin-orbit potentials with & =0.3 fm .

tral potential gives poor agreement and the diffrac-
tionlike structure is not reproduced. This was
first noted by Palevsky et al. ' (ii) Adding the spin-
orbit term in the first-order potential gives rise
to a diffractionlike structure, but the minimum
and maximum are too low and the shoulder is too
narrow. Spin effects are important. (iii) Putting
in the complete second-order potential with A.

'
=0.3 fm', which corresponds to a reasonable cor-
relation length, improves the fit substantially.
However, the rise of the shoulder is still not
steep enough. Except for the angular range from
24 to 34 we have good agreement with the data.

Figure 7 shows the polarization corresponding
to the first-order potential and the first- plus
second-order potentials for A. =0.3 fm' with the
spin-orbit potential given by (i) and (i) plus (ii),
as previously discussed. The second-order poten-
tial affects the polarization so that it may consti-
tute an additional test for two-body correlations.
However, there are no experimental data avail-
able and the spin-dependent scattering amplitude
is poorly known.

2. P-4He at 630 MeV

Gotow et al. ' have measured the elastic -scatter-
ing differential cross section for p-4He at 587.5

FIG. 7. Polarization for P- He scattering at 1 GeV.
first-order potential only; — — —first-order spin-

orbit potential as modified by nonlocal central potential
with ~ =0.3 fm; ———complete second-order potential
with A,

2 = 0.3 fm2

MeV and the corresponding polarization at 540
MeV; The differential cross sections correspond-
ing to the phase shifts of solutions A2, B3, C5,
and the experimental data are presented in Fig. 8.
We remark that we have no free parameter since
the nuclear structure is as determined at 1 GeV.
Assuming that the data at 587.5 and 630 MeV do
not differ substantially, we conclude that sets A2
and C5 are favored over 83. Neglecting the dif-
ference in energy, the fit, especially at the dif-
fraction pattern is not as good as at 1 GeV. This
may be due to several reasons. The second-order
potential increases in importance with decreasing
energy, and it is also more involved than at 1 GeV
because of the complications arising from the nu-
cleon-nucleon scattering amplitude. Furthermore,
the diffraction minimum now occurs at a. larger
angle and the scattering amplitudes are rapidly
varying with momentum transfer so that our mod-
el may require some refinements, especially as
far as the angular approximation for the second-
order potential is concerned.

The polarizations corresponding to phase shifts
A2, B3, and C5 are presented in Fig. 9. Because
our calculations correspond to an energy of 630
MeV while the experimental data are at 540 MeV,
it is somewhat meaningless to compare the two.
It can however be pointed out that the three re-
sults differ significantly from one another so that
the polarization data may be of use in selecting
among different phase shifts.

"C am[ '6O at 1 QeV

The elastic scattering of 1-QeV protons by ' C
and "0 has been measured by Palevsky et al. ' We
investigate it to study the relative importance of
Pauli and short-range correlations. For the cor-
relation functions we used the expressions given
by Eqs. (V.4), (V. 5), and (V.6).
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FIG. 8. Calculated differential cross sections for
p- He elastic scattering at 630 MeV for various sets of
nucleon-nucleon phase shifts using the complete poten-
tial. f experimental points at E )~b =587.5 MeV taken
from Ref. 36; ———phase shifts A2; phase shifts
B3 — —~ —phase shifts C5.
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In Fig. 10 we show the differential cross sec-
tions for 1-GeV elastic P-"C scattering using cen-
tral potentials obtained under the following condi-
tions: (i) first order only, taking into account the
q dependence of the scattering amplitude; (ii) first
order plus second order for Pauli correlations on-
ly; (iii) first order plus second order for short-

ipse

I I I I I I I I I I

4 5 6 7 B 9 10 I I 12 I 3 I4 15
+c.m.

FIG. 10. Differential cross sections for P- C elastic
scattering at 1 GeV using only the total central potential
for various two-body correlations. g experimental
points taken from Ref. 4 —~ —~ —no correlations. ———
short-range correlations with & =0.3 fm only2 2

Pauli correlations only; Pauli plus short-range cor-
relations.

range correlations only; (iv) first order plus sec-
ond order for both Pauli and short-range correla-
tions. In Fig. 11 we show the corresponding dif-
ferential cross sections for "O.

We remark that the fit for p-"C is "too good"
because when the spin-orbit potential is included
the predicted cross section becomes too big while
the fit for P-"0 improves. Bassel and Wilkin'
have run into a similar problem. They point out
that "C is a deformed nucleus so that in order to
fit the data a "generalized optical potential" may
be required.

As far as the correlations are concerned we see
once more that they are most significant at large
momentum transfers around the diffractionlike
structure. The effects of the correlations are
quite sizable but not as marked as for 4He. As
shown by Glauber' and also by this work, the cor-
rections to the first-order potential decrease in
importance with heavier nuclei. We remark that
there seems to be some interference between the
Pauli and the short-range correlations, and this
would make it difficult to extract information about
dynamical correlations. Our work does not favor
either the Pauli or short-range correlations but
rather points out the need to include both simulta-
neously.

FIG. 9, Calculated polarizations for P-48e at 630 MeV
for various sets of nucleon-nucleon phase shifts using
the complete potential. f experimental points at E ~~b
= 540 Me V taken from Ref. 36; ———phase shifts A2;

phase shifts B3; — — —phase shifts C5.

VIII. CONCLUSION

We have studied a slightly modified version of
Watson's multiple-scattering optical-potential
operator in coordinate space including all terms
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FIG. 11. Differential cross sections for p-' 0 elastic
scattering at 1 GeV using only the total central potential
for various two-body correlations. The labeling is as
in Fig. 10~

binary in the nucleon-nucleon interaction. We
showed that the second-order potential is energy
dependent, nonlocal, and directly related to the
two-body correlation function. The two -body den-
sity was parametrized in a form consistent with
the one-body density and dependent upon one pa-
rameter identifiable as a correlation length. We
have also presented a way of simultaneously includ-
ing the Pauli and short-range correlations. The
nonlocal potential was reduced to an equivalent
local potential by using an expansion whose con-
vergence may systematically be investigated.

The correlation effects are especially marked
for 'He, and our work helps explain the sharpness
of the phenomenological optical potential needed
by Palevsky et al.4 to fit the data. Thus high-en-

ergy elastic scattering off 4He seems to provide
evidence for short -range nucleon -nucleon cor re-
lations.

High-energy elastic nucleon-nucleus scattering
may also provide information about nucleon-nucle-
on scattering. We believe that we were partially
successful in discriminating among the several
sets of phase shifts at 630 MeV calculated by Mac-
Gregor et al. '

Our work on the scattering of 1-GeV protons by
"C and "O points out the importance of including
simultaneously the Pauli and short-range correla-
tions.

The fits we have obtained are not high-quality
fits but were never intended to be. It is worth
pointing out again that they were obtained using
only one adjustable parameter which is related to
the correlation length and was fixed by fitting the
1-GeV elastic P -4He scattering data. Better agree-
ment would involve correcting the approximations
previously discussed: (i) treating the first-order
potential in a less cavalier manner; (ii) taking into
account off-energy-shell effects for the nucleon-
nucleon scattering amplitude; (iii) using spin- and

isospin-dependent correlation functions; (iv) im-
proving the closure approximation; (v) including
the nonlocality exactly. These corrections deserve
further study.

To conclude, we think that high-energy elastic
nucleon-nucleus scattering may provide a useful
tool for investigating nuclear structure and possi-
bly the nucleon -nucleon interaction.
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We introduce a new separable expansion for local potentials. The expansion, called the uni-
tary pole expansion, has real, energy-independent form factors, and satisfies the require-
ments of two-particle unitarity in all orders. The convergence of the expansion is investigat-
ed by comparing expanded and exact T matrices for negative energies, and by performing
three-body bound-state calculations. In the latter case, a one-term approximation gives en-
ergies accurate to within 2/p for potentials containing repulsion of the magnitude indicated by
two-nucleon data.

I. INTRODUCTION

The solution of the Faddeev equations for sys-
tems interacting by means of local two-body poten-
tials is a difficult numerical problem. To solve
for the three-body bound state, we must solve a
(in general coupled) set of two-dimensional inte-
gral equations. For the scattering states, these
equations become singular.

Some progress' has been made towards the solu-
tion of the equations for the bound-state problem.
For the scattering states no success has yet been
repor ted.

To avoid the complications of two-dimensional

integral equations, a number of authors" have
used separable expansions of the two-body interac-
tion to reduce the problem to a coupled set of one-
dimensional integral equations. These equations
have been solved both for the three-body bound
state and the three-body scattering states. In this
paper we propose another expansion of the two-
body interaction. The expansion, which we call
the unitary pole expansion (UPE), is closely relat-
ed to the Weinberg' series. However, it is consid-
erably easier to use and shows better convergence
properties. The form factors for the expansion
are real and energy-independent, and the UPE sat-
isfies the requirements of two-particle unitarity


