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Photodisintegration of Three-Particle Nuclei*
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We show that the He' and H' photodisintegration reactions are to a large extent independent of the
detailed properties of the three-nucleon ground state, but depend crucially on the nuclear interaction
in the 6nal continuum states. The bound-state properties considered are the analytic form of the principal
S state, the asymptotic behavior, the S' state, and the two-nucleon short-range repulsion. Since the rms
radius of the bound state determines the over-all magnitude of the cross section, predictions of different
wave functions with the same radius are compared. The 6nal states are described by the Faddeev equations
in the separable approximation. If the Anal-state interactions are correctly included, then the low-energy
cross sections for the He'(y, p)d reaction are enhanced by 20—25% and the cross sections for He'(y, u) 2p
are reduced by approximately 100%. A simultaneous but rough agreement is possible for the total two-
and three-body breakup cross sections and the charge form factors of the three-particle nuclei; but, within
the theoretical framework adopted, the two-body differential cross sections at 90' and the charge-form-
factor data cannot be reconciled.

1. INTRODUCTION

N this article, the photodisintegration of a three-
. . particle nucleus is considered as a three-body
problem. The primary purpose is to examine the general
features of the reaction and to explore its usefulness as
a source of information on the structure of three-
nucleon states. '

Early calculations of He' photodisintegration using
simple bound-state wave functions and neglecting
interactions between the nucleons in the continuum
states met with moderate success in accounting for the
experimental data for the two-body break-up channel,

y+Hes= P+d.

However, similar approaches to the three-body channel,

y+Hes =P+P+n,

showed a sharp discrepancy between experiment and
theory, the calculated cross sections being as much as
three times the experimental values. ' Subsequent
investigations have not drastically changed this
situation. In general, the emphasis has been on the
elaboration of the production mechanism for the
reactions, using more sophisticated bound-state wave
functions, higher multipole transitions, and retarda-
tion corrections; and the eGects of the interaction be-
tween the nucleons in final states have usually
been neglected or occasionally included by approxi-

*Work supported in part by the U.S. Atomic Energy Com-
mission under Contract No. AT(30-1) 2098.

f Department of Natural Philosophy, Glasgow University,
Scotland.

f. Present address: The School of Mathematical and Physical
Sciences, University of Sussex, Falmer, England.

~ Preliminary results have been published. I. M. Barbour and
A. C. Phillips, Phys. Rev. Letters 19, 1388 (1967).' See, for example, V. N. Fetisov, A. N. Gorbunov, and V. T.
Varfolomeev, Nucl. Phys. 71, 305 (1965).

mations of unknown quality. ' '%e shall show that it is
more appropriate to consider Hes photodisintegration
as a reaction with a simple and to", a large extent
model-independent production mechanism together
with significant and varied rescattering eGects in final
continuum states.

The simplicity of the production mechanism is a
consequence of the dominance of electric dipole transi-
tions. In the two-body photodisintegration~'reaction,
the angular distributions' show a marked deviation
from the electric dipole sin'0 distribution, which can be
ascribed to an interference of the electric dipole and
quadrupole amplitudes. ' However, electric dipole
transitions account for at least 90% of the total two-

body break-up cross section for photon energies below
40 MeV ' "' In particular, the magnetic dipole
transitions which are theoretically intractable, con-
tribute less than 1%, mainly because the dominant
principal S state of He' is an eigenstate of the nuclear-
spin magnetic dipole operator, and magnetic dipole
transitions can only occur by virtue of magnetic-
interaction currents, retardation corrections, and sym-
metry states other than the principal 5 state. This
suppression of magnetic dipole transitions should also
occur in the three-body photodisintegration reaction.
Here the data is less accurate but, within the experi-
mental errors of 10-20%, the angular distributions are
consistent with electric dipole dominance. ~ Further
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evidence for electric dipole dominance comes from the
bremsstrahlung-weighted sum rule, which relates the
charge radii of the three-particle nuclei and the total
photon absorption cross sections. Invoking charge
symmetry for the He' and H' wave functions, one 6nds
that the electric dipole contribution to the experi-
mental integrated cross section, '

170 MeV

amounts to 2.28~0.28 mb; the error is mainly due to
the uncertainty in the neutron-charge form factor.

The dominance of electric dipole transitions has the

important consequence in that a clear cut separation
of the electromagnetic and nuclear interactions is
possible. In general, the existence of charge exchange,
momentum-dependent, or nonlocal components of the
nuclear interaction imply that the position of a nucleon
within a nucleus cannot be considered as a point of
constant charge, and electromagnetic interaction cur-
rents, which depend explicitly on the nuclear inter-
action, are necessary in order to allow for charge con-
servation. However, Siegert's theorem asserts that
the interaction current contributions to electric multi-
pole transitions, in the nonretarded approximation,
may be eliminated provided that the dynamics of the
nuclear system can be described in terms of the co-
ordinates of the nucleons alone. "

Thus, with adequate representations of the three-
nucleon bound and continuum states, electric dipole
transitions alone are expected to account for the main
features of the total cross sections for both the two-

body and three-body channels of the photodisinte-
gration of He . However, electric dipole radiation is
not a particularly good probe of the nuclear structure.
The form of the operator, E r, implies that the details
of the interior of the bound-state wave functions are
relatively unimportant, and possibly any reasonable
wave function with the correct rms radius is sufhcient.
We shall show that the analytic and asymptotic form
of the wave function, short-range correlations, and
the 5'-state admixture all have minor effects on the
total cross section, and moreover these effects often
depend on the treatment of the final-state interaction.

Although the electric dipole disintegration of He'
is not useful in investigating the structure of the
ground state, it does reveal significant properties of the
continuum states. The form of the electric dipole
operator, coupled with the large radius of He' implies
a long-range production mechanism which samples a
large volume of the final-continuum-state wave func-
tion. At first, one would expect that the short-range
two-nucleon interactions in the final state could
produce only moderate changes in the average value
of the three-nucleon wave function taken over a large

"A. J. F. Siegert, Phys. Rev. 52, 787 (193/); G. Breit and M.
L. Rustgi, ibid. 165, 1075 (1968}.

volume. "However, in any multiparticle system long-

range effects are possible: The range of processes
which correspond to the successive interactions be-
tween different pairs of particles is not necessarily the
range of the two-particle forces, but instead may be
given by the spatial extent of a virtual, correlated,
two-body system when a member of this subsystem
interacts with a third particle. For example, the in-

teraction generated by the exchange of a nucleon
between two alternative deuteron states dominates
many of the features of elastic nucleon-deuteron
scattering, and has a range which is determined by the
size of the deuteron wave function. " Clearly, similar
but less well understood long-range effects should
occur in the three-nucleon continuum states. '

The electric dipole photodisintegration of He' is
the simplest process, that is closely related to experi-
ment, in which long-range three-body scattering plays
an essential role. In fact, very pronounced scattering
effects must occur in the three-body break-up channel
if the two-nucleon interactions can support a bound
state and thereby imply the existence of the two-body
channel. " Clearly, the coupling between the two-body
and three-body channels is a long-range mechanism.

The dependence of the cross section for two-body
breakup on final-state scattering is less pronounced.
However, we shall show that significant rescattering
effects are to be expected. Moreover, because of the
importance of long-range nucleon-deuteron inter-
actions, these effects are, to a large extent, unrelated
to the on-the-energy-shell nucleon-deuteron scattering
parameters: The 'I' m-d scattering is highly inelastic
and the real part of the phase shift is close to zero,
whereas in the photodisintegration to a 2I' e-d state
the scattering effects are those which correspond to
an attractive m-d interaction and almost zero in-

elasticity.
In Sec. 2, we describe the general formalism for the

three-particle disintegration of a bound state. The
three-particle equations are simplified using a separable
approximation for the two-particle off-the-energy-shell
scattering amplitudes (Sec. 3). This permits an exact
treatment of the three-particle aspects of the problem
and automatically obeys the three-particle unitarity
relations connecting the two- and three-body photo-
disintegration channels. Employing separable inter-
actions is mathematically advantageous in that it
reduces the three-body problem to that of solving a set
of one variable integral equations. However, the separ-
able approximation used cannot accurately represent

"R.D. Amado and J. V. Noble, Phys. Rev. Letters 21, 1846
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~' S. B. Gerasimov, Zh. Eksperim. i Teor. Fiz. Pisma v Red-
letsiyu 5, 412 (1967) (English transl. : Soviet Phys. —JETP
Letters 5, 337 (1967)j; G. Barton, Nucl. Phys. A104, 289 (1967).
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the physical nucleon-nucleon interaction, and hence
our calculation rests on the assumption that the main
dynamical features of the three-nucleon continuum
states are insensitive to the details of the nuclear
forces. 1A'e note that similar treatments of the low-
energy e-d scattering problem have met with con-
siderable success, "' indicating that separable inter-
actions are a reasonable approximation in the photo-
disintegration problem for photon energies at least up
to 20 MeV.

It is straightforward to solve the three-nucleon
bound-state problem with simple two-nucleon po-
tentials. But the study of the dependence of the photo-
disintegration cross sections on the properties of the
underlying potential would pointlessly illustrate the
sensitivity to the bound-state rms radius, which is the
parameter that determines the over-all magnitude of
the cross sections. The fact that a particular simple
potential yields a bound state with the correct radius
is of course without physical significance, since the
radius, like the binding energy, is a sensitive function
of the details of a complex nuclear interaction. For
these reasons we have chosen to compare the pre-
dictions of different phenomenological bound-state
wave functions with the same radius. The wave func-
tions are described in Sec. 4 and their different features
are illustrated by reference to the charge form factors
of the three-particle nuclei, which constitute by far the
most reliable, but not particularly exacting, source of
experimental information on the bound states.

The expressions for the various photodisintegration
amplitudes and cross sections are given in Sec. 5. In
Sec. 6, we interpret the results.

2. TRANSITION OPERATORS FOR BREAKUP OF
A THREE-BODY BOUND STATE

T (s)Gs(s) = V G (s), (2.4)

where Gs(s) is the resolvent operator corresponding to
Hs. From (2.2) and (2.3) it follows that

G(s) =G (s) —g G (s) VpG(s)

=G (s) —Q G (s) VpG (s) .

(2.5a)

(2.5b)

If we define the operator

(2.6)

then
G(s) =G.(s)Q.(s). (2 &)

=1—g Tp(s)Gs(s)Qp(s).

Let C „~ be the asymptotic state describing the free
motion of a particle o. with momentum q with respect
to a bound state (e) of particles P and y, and +p be
the bound-state wave function of all three particles.
To first order in the electromagnetic Hamiltonian H„
the amplitude for the transition between these two
states is

Here 4 „q +& are the scattering states in the o.e channel
with energy 8 and are given by

,'+&=C' „,—G(E&ie) P Vpe ., (2.10)
p+~

Combining Eqs. (2.6) and (2.7) and using (2.4), we
obtain

Q (p) =1—Z VpGp(p)Qp(p)

Consider a system of three particles with Hamil-
tonian

Thus,
'tt. (&+is) =H.—g VpG(Erie) H„(2.11)

Pj4m

H=Hp+ Q V, (2.1)

where V is the potential between particles labelled
P and y. The bound state and scattering properties
of the system can be obtained if the resolvent of the
total Hamiltonian,

and using (2.6) and (2.8) we obtain the Faddeev
equations for the transition operator
'tt (E&ie) =Q (E+ie)H,

=H,—Q Tp(E&ie) Gp(E&ie) ttp(E~ je) .
p+~

G(s) =
t H —s11 ', (2.2) (2.12)

is known. The essence of the Faddeev formulation of
the three-particle problem is to solve completely all
the two-particle subsystems before attempting to
tackle the three-particle system. Accordingly we intro-
duce the resolvent and transition operators )G (s)
and T (s), respectively7 for the P-p subsystem:

G (s) = /He+ V —s1j ' (2.3)

"R.Aaron, R. D. Amado, and Y. Yam, Phys. Rev. 140, 8650
(1965); R. Aaron and R. D. Amado, ibid. 150, 857 (1966).

"A. C. Phillips, Phys. Rev. 142, 984 (1966).

If n is taken to be zero, then Eqs. (2.11) and (2.12)
define the operator for the transition to an asymptotic
state of three free particles.

For the moment we drop the spin-isospin variables.
Then in the center of mass the three-particle basis
states may be characterized by any pair (n= 1, 2, or 3)
of the vectors p and q, where p is the relative
momentum of particles P and y and q is the momentum
of particle n with respect to the P-p subsystem.

The coupling between the two-body and three-body
channels is illustrated by Eq. (2.12); the amplitude for
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the transition to a state of three free particles is

&y-q- I
&o(E) I

+ )= &y-q- I
II.

I
q'~)

d'Pp'&p(yp yp' E y—'/2 p) &yp'qp I
'ttp(E)

I

q' )
p=l Pp"/2pp+V p'/2mp E—

where Tp is the y-n transition operator in the two-
particle Hilbert space and pp and mp are the appropriate
reduced masses. If there is a two-particle bound state
with wave function Pp„and binding energy ep„, then

»m (p+ep-) &p(P, P', p) =ap-(P) ap-(y'),
s~~pn

where

(2.14)

gp-(Pl =(P
I

Vp I Op-) (2»)
Hence for every bound state of the two-particle sub-
systems the amplitude for the transition to three free
particles contains a pole, the residue and position of
which are given by

lim (E—qp'/2mp+ep. ) &y.q I
&o(E)

I
q'a)

Q~qp2) gamp epn

= gp. (Pp) 8'p.. I ttp(E)
I

q' ).
A property which is closely related to (2.16) is three-

particle unitarity. Taking the discontinuity across the
set of overlapping bound-state scattering and three-
particle scattering cuts, "one obtains

assumption is that the kernel of the three-particle
Faddeev equation is mainly sensitive to the structure
of the two-nucleon amplitudes in the vicinity of the
singularities associated with the deuteron (denoted by
d) and the singlet antibound state (denoted by s).
This assumption, together with the analytic properties
implied by (2.14) and the requirement of two-particle
unitarity, leads to the use of a nonlocal separable two-
nucleon interaction. " Assuming charge independence
and using units where the nucleon mass is one, the
transition operator in the three-particle Hilbert space
is written as

&y-q- I
2'-(E)

I
p-'q-') = Z (y- I an)1-(E—4V-')

'Q=s, ti

x &an
I y.')&s(q.—q.') . (3.1)

We take, in the subspace with isosopin I and spin S,

(p. I an, IS)=g„(y ) I Ip, I„,I, II,)——

xl s»=s„, s., ss, ), (3.2a)

W. (E+is) —e.(E—ie) g„(P)™„/(p'+p„'), (3.2b)

= —2~i g fW.,(E+i )le4,„,„)

Xd'q~8 (q7'/2m~ e~„—E) &4'~—„~„I
Rt~ (E—ie)

27riffW. ,—(E+ic) I y q.)
xd'q-d'P-&(v-'/ 2-+P-'/2 -—E) &P-q- I

tto(E — )

(2.17)
The operators 8' ~ are given by

W, = Q Vp —Q Q VpG(s) Vs, (2.18)

1-(E)=I l '+f( 'ya '(p)/(p' —E—ie))3-' (33)

The parameters p,„, m„, and X are adjusted to give a
scattering length of —20.34 F and an effective range of
2.7 F for the 'So state and a scattering length of 5.397 F
and deuteron binding energy of 2.225 MeV for the
'S~ state.

Suppressing for the time being the spin-isospin labels,
the amplitude for disintegration into a nucleon-
deuteron or a nucleon-singlet antibound state may be
defined as

and hence represent the scattering transitions from a
three-particle state, in which p and y are bound, to a
state in which P and a are bound. Equation (2.18) also
defines the operators W 0. These represent the transi-
tions from a state with P and y bound to a state of three
particles.

3. APPROXIMATION SCHEME FOR
CONTINUUM STATES

In this section, we apply the low-energy separable
approximation scheme of Lovelace' to the photo-
disintegration of three-particle nuclei. The basic

"C. Lovelace, in Strong Interactions and High-Energy I'hysies,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964)."C. Lovelace, Phys. Rev. 135, B1225 t,'1964).

= —Q-', g &an, q I G, (E)e.(E) I q, ). (3.4)

This definition takes into account the identity of the
three nucleons. The oG-the-energy-shell dependence
has been chosen so as to simplify the Faddeev integral
equation. Using (2.12), (3.4), and (3.1) we have

+ 2 fd'q'&q I Z-(E) I
q')1-(E—lq")

m=s, d

x&q' I x„(E) I
e ), (3.3)

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954l.
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where

(3.6)

3 3

The functions Z„correspond to effective nucleon-
deuteron and nucleon-singlet potentials. They are
nonlocal, energy-dependent, and correspond to the
exchange of a nucleon from one three-body configura-
tion to another. "The functions B„correspond to the

amplitudes for disintegration when the aucleon-
deuteron or nucleon-singlet relative motion is described
by a plane wave.

The amplitude for disintegration into three free
nucleons is given by (2.12), (3.1), and (3.4) . We have

&u-q- I
& (~) I+ &=&u-q-I &o(&) I+~&

+ 2 2 &use I P~&&-(&—le') &qs I &-(&)
I +~&,

P=l m=a, d

wave function can be approximately described by the
asymptotic form, A exp( —nor)/r, if the normalization
constant A includes an effective range correction. To
determine the asymptotic behavior of a three-particle
wave function one must consider all possible virtual
disintegrations of the system into two and three
separated particles. In this context the Faddeev equa-
tions are useful, since the kernels of these equations
depend on the two-particle T matrix, and hence con-
tain information regarding the two-particle bound
states. If E& is the three-particle binding energy, then

g +&(~)

Qs(~)= —Go( —gs) g ( Q~) Q +~(P)
PQ~

Using the definition of the free resolvent operator Go,
the property (2.14) of the two-particle transition
amplitudes and the Faddeev equation (4.1), it is
possible to separate the parameters which characterize
the asymptotic behavior of the three-particle bound-
state wave function:

+~(u-, q-) = (p-'/2~. +q-'/2~. +&~) '

where
(3.8)

x Z, z
' +&(v., e-)j (42)

p„qp + E11—ep„2'
&u-q. I &o%) I

+~&=v'3 2 &usque I
II.

I +s&.

The first term is the plane-wave approximation for the
photodisintegration amplitude. The second term cor-
responds to rescattering corrections, corresponding to
the production, propagation, and subsequent decay of
nucleon-deuteron and nucleon-singlet configurations.
The result of evaluating Xo when X is put equal to
J3 only corresponds to the summation of the dis-
connected graphs. This will be referred to as the first
reseat tering approximation.

Our equations for two-body (3.5) and three-body
(3.8) photodisintegration amplitudes correspond to
the exact solutions of the three-nucleon-continuum-
state wave functions for separable potentials. Hence
provided these potentials are real, the amplitudes
satisfy the unitarity relation (2.17) . Further, since the
separable approximation for the two-body T matrix
has the correct behavior in the neighborhood of the
deuteron bound state, the relation (2.16) is obeyed.

The internal structure of the wave function is de-
termined by the functions E and R.

For the three-nucleon state we construct a wave
function which has approximately the correct asymp-
totic behavior by considering the singlet antibound
state as a zero-energy bound state (e,=0). Assuming
isospin and spin to be ~, we take

+a(u. , q.) = (p.'+-'. .q'+&a) '

& Z Z t&.(u~, qs)/Le'+4(&~ —~-)3}
P=l n=d, a

Xl I, =I, Ip, I= ', I*) I S =S, Sp, S-=-, S.) (4.3)

In terms of the usual classification, this wave function
contains a principal S state given by

N(u1, q1) =(~2) 2 (f~(u-, q-) —f.(u-, q-) }, (43a)

where

4. THREE-NUCLEON BOUND-STATE
WAVE FUNCTIONS

In this section, we describe brieRy the phenomeno-
logical bound-state wave functions used in the photo-
disintegration problem. There is one particular property
of the bound-state wave function, its asymptotic
behavior in configuration space, which may be im-
portant. It is well known that in the low-energy
photodisintegration of the deuteron, the deuteron

In addition, there is an S-wave state of mixed permu-
tation symmetry, the S' state; the two components are

"'(u1, q1) = T"
f
—(8-:)(f.(u1, e)+f.(u1, q1) )},

(4.3c)

1 (u1 q1) = 2'j —(v k) (f.(u1, 91)+f (ul %1) )}, (4.3d)
where T" and T' are symmetry operators defined as
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TABLE I. Parameters of bound-state wave functions with and without short-range repulsion (srr). In calculating the charge radii,
proton and neutron mean-square radii of 0.7185 and —0.1258 F' have been assumed.

Wave
function (~ ) (F')

Asymptotic parameters: Ee (He') =0.18635, Ee (H') =0.20472,
Two-nucleon parameters: Pq =1.193, P, =1.173 or yq =2.34,

eg= 0.05364, e, =0.0
&,=2.0O (F ')

Charge
radius

I, (F)

(F-2)

z(s')
(%%uo)

no 4.0 7.0 He'
Hg

1.490
1.646

—1.983
—2.115

1.87
1.63

1.9
1.9

2.0 3.5 He
H'

0.3677
0.4094

—0.6762
—0.7265

1 ' 95
1.74

0.97
1.0

4.0 7.0 He
H'

0.6195
0.6885

—2.119
—2.272

1.92
1.72

1.0
1.0

follows:
T"= —(23)+-,'P(31)+ (12)j, (4.3e)

T' = -',43)(12)—(31)g. (4.3f)

The permutation of the coordinates of the particle n
with those of p is denoted by (np) .

The expression (4.3) has the same form as the
bound-state wave function obtained by applying the
Faddeev equations and the separable approximation to
the bound-state problem. In this case, the internal
functions E„(p, rl) are known; the p dependence is
given by the two-particle form factor (e.g., the
Yamaguchi form factor (3.2b) ], and the 41 dependence
is known numerically. Taking these results as a guide
we consider two simple analytic forms for E. The first
corresponds to the Yamaguchi two-nucleon interaction
in which there is no short-range repulsion,

&-(p, 41) = 74-/(P'+i -') (8+~-') ' (4 4)

For the triplet two-nucleon state the Yarnaguchi form
factor corresponds to the Hulthen deuteron wave
function

yg(r) = A exp( —u„r) $1—exp( —Pgr) g/r (4.5)

with nq ——0.2316 F ' and i4q
——Pqt uq. A second form for

E is obtained by modifying the Yamaguchi form
factors so as to simulate short-range repulsion in the
two-nucleon subsystems, and adjusting the parameters
v and h„so that the radius of the three-nucleon bound
state and the S'-state probability density is unchanged.
In the triplet two-nucleon state we take a form factor
which corresponds to the deuteron wave function

ps(r) =2 exp( —uqr) $1—exp( —
year) j4/r, (4.6)

which, as r—+0, goes to zero as r'. The effective ranges
characterized by the wave functions (4.5) and (4.6)
are adjusted to be equal. An analogous procedure is
adopted for the case of the singlet two-nucleon form
factor, but we relate the size parameter y, to the

singlet effective range by approximating the antibound
state as a zero-energy bound state, n, =0. These con-
siderations give

&-(P, 41) = f Z L~-~/(P'+~-') jID-/(~'+ p-')'1

Here
ia-=n +(&) X(y ),

(4 7)

and

m„t ——4(p„t'—u„'),

rr4n, s= 6(pns un ) )

m„s ——4(i4„s'—n„'),

nz„4 ———(p„4s—u„') .

2' H. Collard, R. Hofstadter, E. R. Hughes, A. Johansson,
M. K. Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138,
BS02 (1964).

The "effective hard-core radius" is of the order of
0.4 F.

Thus in summary, the parameters of the constructed
He' and H' wave functions fall into three classes: the
known asymptotic parameters Eg fg and e„ the
parameters which are determined by the properties of
the 'St and 'Se two-nucleon subsystems, i.e., p„ for
the Hulthen-Yamaguchi case and y„ for the situation
with short-range repulsion, and finally the four param-
eters h„, v„which we determine by the normalization,
the S'-state probability, and the charge radius of the
bound state, the ratio 4q/4, being taken from three-
nucleon calculations with separable potentials. We list
the properties of the wave functions in Table I, and
illustrate the eGect of the short-range repulsion on the
charge form factors in Figs. 1 (A) and 1 (8). As ex-
pected, the repulsion reduces the form factors at high-
momentum transfer. The reduction is not sufFicient to
obtain agreement with expenment21 and this may in-
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dicate that the combined repulsion between all three
nucleons has not been taken into account. Note that,
for the neutron charge form factor used, " the 1% 8'
state and the parameters characterizing the asymptotic
behavior can account for the di6erence between the
He' and H' form factors.

S. PHOTODISINTEGRATION AMPLITUDES AND
CROSS SECTIONS

If x is the position operator of nucleon n, and y
and r the coordinate operators conjugate to g and

p, then

i'—(8/Bql) =
t/1

——xl —-,'(xs+ xo) =——r",
—i5(B/cjpl) = rl ——X,—Xo=—2r'/V3,

where the prime and double prime indicate the sym-
metry properties (4.3f) and (4.3e), respectively. The
dipole operator, if R is the c.m. coordinate and a the
photon polarization, has the form

o

Q -', (1+r,(n) )e {x—R}= e ', {r,'r'+r-, "r"}.
a=1

This is an isovector, and hence the amplitudes for He'
and H' disintegration are simply related by the Wigner-
Eckart theorem if charge symmetry is assumed. The
amplitudes for transitions to nucleon-deuteron or
nucleon-singlet plane-wave states of isospin I and I,=
——, are1

d'pig„(p, / s {—r"u+ (r"v"+r'v') }
Pl'+ 4ql' —&

(5.1)

(q I
g r=s/s(p) @ )

d'p, g, (p,) e {—r"u+(r"v"—r v') }

Pl + 4ql

The dependence of B„and the complete amplitudes
X„on the direction of the vector q& is of the form

(ql I &.'(&) I q'a)= s qlb. '(q; &), (5.3)

(q, I X„'(E) I ~a)=e q,x„'(q; 8). (5.4)

Substitution of (5.3) and (5.4) into the (3.5) gives an
integral equation in one continuous variable; for the
I= ~3 case there is just one channel corresponding to
s-X scattering in 'Pg(2 state, but for the I=~ case
there are two coupled channels corresponding to 'P~~2

d-S and s-E scattering. The form of these integral
equations and the method of solution are outlined in
the Appendix.

0.5

O. l

U

0.03

I.O

0.5

cr O. l

0.05

O.ol
0

1 l

3.0 6.0
q2 (F 2)

I

9.0

FxG. 1. Comparison of the charge form factors of wave func-
tions II and III of Table I with the experimental data of Ref.
21. (A) corresponds to H' and (8) to He'.

The differential cross section for photodisintegra-
tion into a nucleon-deuteron state is

dos/dQ= -,'(2v. ) 'nor sin'ego
I
xP="'(q. E= oq' —ed)

(5.5)

where we have summed over final spins and averaged
over initial spins and polarization. In Eqs. (5.5), u
is the fine structure constant, E~ the photon energy,
and q and 0 are the magnitude and direction of the
relative nucleon-deuteron momentum.

For the three-body break up, we assume that particle 1
is the unlike nucleon. Thus, I» is'equal to 1. There are
four amplitudes corresponding to I=—,'and —,', and 523=
0 and 1. The plane-wave approximation terms in
(3.8) when I,= —lsare

(p]ql I
g3 r-&1/+s»=o(g)

I
@/)

= (v/'k) e { r"u+ (r—' v"+r'v') }
—=bl/s"+br/;, (5.6)

(plql I po =o/'&s»='(g)
I @~)

= —(ds) ' {r'u+ (r'"' —r"")}=—bl/s'+bl/s. , (5.7)

(plql I j3or (s/s)s»=o(g)

= —(g-') e {—r"u+ (r"v"—r'v') }=—bo/s", (5.8)

"Nucleon-charge form factors used correspond to combination
b' in C. de Vries, R. Hofstadter, and A. Johansson, Phys. Rev.
134, 3848 (1964}.The corresponding proton and neutron mean-
square radii are 0.7185 and —0.1258 F'.

(plql I Zo =~o ~ "= (Z) I mrs)

= —(g's) e {r'u+ (r v"+r' v') }—= bs/s'. (5.9)—
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Here, the primes, double primes, u, and s denote the
symmetry in relation to the permutation group of
three variables. The scattering terms in (3.8) are given
by

(p,q, I
c»»(z) Iqg)

3

(zl., r», r, I I/»= I, I., II,)
%=1 Fg=8,8

X(SS„Spy, Si I S//, =S,S, SS.)R„r(n), (5.10)

where

Evaluation of the spin-isospin recoupling coefficients
gives

(p q I
Qr (1/2is23=0(g)

I Q )
= T I-', (8 "'(1)—Rg'/2 (1))}

+T"j '(E '/'(—1)—+Rg'/'(1) )}=ci/2s+c—,/2", (5.11)

(piqi I
cr=o/»»&=i(jv)

I +//)

= T I
i (E v'(1)+Rj/2(1) )}=—cvg', (5.12)

(piqi I
~'="'""'='(~)

I
q'~) = T"

I
—~."'(1)}

—:ca/2 ~ (5.13)

6. RESULTS

A. Dependence of Photodisintegration Cross Sections
on Structure of Three-Nucleon

Continuum States

The exact treatment of the three-particle aspects of
the final states outlined in Sec. 3 represents by far
the most complete approach to this aspect of the photo-
disintegration problem yet attempted.

For the two-body channel, the effects due to the
distortion of the deuteron and the presence of the
three-body channel are included. Further the theo-
retical 'P&~2 phase shift and inelasticity are in reason-
able agreement with the results of the phase-shift
analyses of the differential nucleon-deuteron cross
section. "This exact treatment of the final states shows
that it is a poor approximation to neglect the nucleon-
deuteron interaction in two-body photodisintegration.

In Fig. 2(A), the two-body photodisintegration
cross sections are given in plane-wave approximation,
where the nucleon-deuteron interaction is neglected
Lcurve (b)g and in the case where the final-state
interactions are taken into account I curve (a) j. It is

2.0—

(5.14'j

Summing over the final nucleon spins and averaging
over the initial spin of the nucleus, the cross section for
breakup into three nucleons is given by

d'cr3 ——(2~)'nE g I (yiq& I

M'"(8) I%'//) I'
S23=0,1

Xd'pid'qi8(pi2+-, 'qP —E), (5.15)
where

/IIIS23(p) — (+2)XOO/2iS23(g) + (gi) Xp/2)&23(g)

The average over photon polarizations can now be
performed by using

average over polarizationsf e As B}
= (1/2k') (lr ~ A) ~ (lr ~ B), (5.16)

l.6—

0,4—

l,2—

—0.8—
E

OJ

b0,4-

(c)

d)
o)

(b)
la)

where k is the incident photon momenta.
The cross sections discussed below can then be ob-

tained by suitable numerical integration oi Eq. (5.15).
In particular, there is no interference between ampli-
tudes of different symmetry and isospin in the ex-
pression for the total cross section:

o 3
——(2m) 'nE, fd'pif d'qib(pi2+ 4/JP &)—
X}3 I bv. +cv2 I'+3 I //i/2+cv2 I'+3 I 4/2'+cv2* I'

+3 I &v~ I'+ 3 I &3/2"+cv2" I'+ 3 I
&3/2'+ca/2' I'}.

(5.17)

lo 20 30
E&(Mev)

40

23 W. T. H. van Oers and K. W. Brockman, Jr, Nucl Phys.
A92, 561 (1967).

FIG. 2. Dependence of the photodisintegration cross section
on the structure of the final states. (A) shows the two-body
cross sections corresponding to the exact solution (a), and the
plane-wave approximation (b). (B) shows the three-body cross
sections corresponding to the exact solution (a), the plane-wave
approximation (b), the exact solution with '8& interaction equal
to the ~SO interaction (c), and the first rescattering approxima-
tion (d). The bound state used is the He wave function I of
Table I.
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or(E ) (dE /E ) =i'rssuRp', (6.1)
0

where o. is the fine structure constant and R0' is the
mean-square radius of the odd nucleon in the bound
state, i.e., the neutron in He' or the proton in H'.

Clearly, the sum rule can be split into two-body
and three-body break-up contributions

J3 =Js+J3. (6.2)

Alternatively, Jp can be decomposed according to the
total isospin, I=-', or —,', of the final state

noteworthy that the magnitude of the rescattering
corrections is similar to that of the simple two-body
models of Eichmann' and Fetisov. 4 We shall see that
the photodisintegration into three nucleons with the
same isospin as the nucleon-deuteron state is very
small. Accordingly it is possible that the models used
by Kichmann and Fetisov are sufficient to account for
the 'I'j~2 rescattering in the photodisintegration prob-
lem, while at the same time being completely incon-
sistent with the observed large inelasticity in 'P&~2

nucleon-deuteron scattering on the energy shell. ""
In the three-body break-up. reaction, three frag-

ments share the available energy and the nucleon
pairs may be in relative S waves. Here, large rescatter-
ing corrections are probable. This is borne out by the
results for the total cross section in Fig. 2(B). In this
figure, curves (a), (b), and (d) represent the cross
sections corresponding to the exact solution, the plane-
wave approximation, and the first rescattering approx-
mation'4 for the final states. It is evident that neither
approximation (b) or (d) is particularly good.

In Fig. 2(B), curve (c) corresponds to the exact
solution when the 'S~ two-nucleon interaction has been
weakened so as to be identical to the 'So interaction,
i.e., the deuteron is unbound. It is significant that this
cross section and the plane-wave approximation (b)
are much larger than the cross section (a). All these
cross sections correspond exactly to 6nal-state wave
functions which are eigenstates of particular Hamil-
tonians. The essential difference is that the final states
in (a) contain information about the deuteron, and
hence the existence of the nucleon-deuteron channel,
whereas the final states in (b) and (c) do not.

Barton and Gerasimov" have shown that the im-

portance of final-state interactions in the three-body
breakup is a necessary consequence of the form of the
dipole operator, the dominant principal S state of He'
and the near equality of the experimental two-body and
three-body cross sections. This result was obtained by
considering the bremsstrahlung-weighted sum rule for
electric dipole photodisintegration.

where i=+1, 0, or —1, and forming the commutator

[D+' e, D-' e)= —g -', r'(tt) ( ~ e) ' (6.5)

Assuming that He' and H' are the components of an
isodoublet and noting the fact that D' is an isotensor,
the matrix elements of (6.5) give

2J)]2—J3/2 ——-', ~'O,Ry'. (6.6)

Here R~' is the isovector radius of the three-nucleon
ground state and is related to the mean-square radii
for the odd and like nucleons by

RV2 2RL2 (6.7)

Assuming charge symmetry and no charge exchange
effects,

(6.8)

Rp' ——r'(H') —r'(p) —2r'(I) (6.9)

where the quantities r' correspond to the He', H',
proton, and neutron mean-square-charge radii.

To within 20% Rts Rp' "and hence

2Jj]2—2Js]2—Jr. (6.10)

Since experimentally 2J2~2J&~Jz, &" Barton and
Gerasimov" conclude that the two-body contribution
must dominate the I= ~ channel and that

J3~3/3 ——(27rst3/9) (5Rp' —2Rzs) . (6.11)

But if one calculates the three-body break up using
for the final states any complete set of eigenstates of a
Hamiltonian which does not bind the deuteron, then

J3=Jl/3+ J3/3—2J3/2 —(4s n/9) (5Rp —2Rr, ) . (6.12)

That is, J3 is increased by a factor of 2 in accordance
with the results of Fig. 2 (B).

If the dipole operator A p is used instead of E r, a
substitution that would only be valid if the nuclear
forces were local, then similar relations still apply.
These relations now refer to the rms momentum in the
ground state, and to the integrated cross sections
weighted with E7' as opposed to E~ '. In this case, the
presence of two-body channel is rejected in the cross
section for three-body break up at high E„.One can
then reproduce the near equality of the low-energy
two-body and three-body cross sections without in-

This decomposition, which yields the nonrelativistic
version of the Cabibbo-Radicati sum rule, " is most
easily effected by considering the dipole operator as the
zeroth component of an isovector

3

D' e= P -',r'(n)x. r., (6.4)

JT Jl/3+ J3/3. (6.3)
'4 By the first rescattering approximation we mean that the

amplitudes for the production of the nucleon-deuteron and
nucleon-singlet isobars are given by the plane-wave approxima-
tion.

2' N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697 (1966).
The isospin decomposition of the nonrelativistic Thomas-Reiche-
Kuhn sum rule for the three-nucleon system has been given by
J. S. O' Connell and F. Prats, Phys. Rev. 184, 1007 (1969).
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FIG. 3. Isospin decomposition of the three-body break-up cross
section. (A) shows the I=-,' contribution and (B) the I=-,'.
Labels (a), (b), and (d) correspond to exact solution, plane-wave
approximation, and first rescattering approximation, respectively.
The bound state used is the He' wave function III of Table I.

eluding the final-state interactions. However for
reasonable bound-state wave functions, the mag-
nitudes of both cross sections are a factor of 2 too small.

Figure 3 illustrates the isospin decomposition for the
cross section for three-body break up. Ke see that, for
the bound-state wave function used, the exact solution,
curves (a) and. the plane wave approximation, curves

(b), are consistent with (6.11) and (6.12) respectively.
The first rescattering approximation (d) is poor for
both the I=—,'and I= 2 cross sections, but it does
roughly reproduce the difference between these cross
sections.

The mechanism giving rise to the suppression of the
I= ~ part of the three-body cross section seems to be
rather complicated. " This cross section is given by
(5.17),

The spin dependence of the interaction in the ground
state generates a small S' admixture which in turn
gives rise to the small amplitudes b' and b . The spin
dependence in the final state gives a nonzero value for
eris', but the necessary small value of os(I= s) implies
that c~~~' is small, and that c~~~" and ci~~' interfere
destructively with b&~2" and b&~2'. Further, this inter-
ference reduces os(I=-', ) at low energies when the
dipole operator E r is used, but for the operator
A.y, a less pronounced reduction at higher energies
is produced. It would seem that the reduction in the
low-energy cross section is mainly due to a modifica-
tion of the long-range form, or equivalently the most
rapidly varying part in momentum space, of the
continuum wave function by the presence of the
deuteron producing interaction. The analytic property
of the amplitudes which is most likely to cause this
is the pole in the three-body amplitude due to the
existence of the two-body channel. This pole could
characterize a long-range effective interaction Lsee
Eq. (2.16)). This conjecture is supported by the
fact that the first rescattering approximation (d)
which includes this property accounts quite well for
the difference between os(I=-', ) and os(I=-ss).

In the three-nucleon break-up reaction, the energy
distribution of the odd nucleon shows several interest-
ing features. Figure 4 illustrates several neutron
spectra for the reaction Hes(y, n)2p with 12.5-MeV
photons. The curves, which have been, normalized
to the same total cross section, correspond to different
final-state wave functions: (a) the exact solution,
(a') the exact solution when only the final interaction
between the two protons is included, (b) the plane-
wave approximation, and (c) the exact solution when
the 'S& two-nucleon interaction is equal to the 'So
interaction.

It is clear from Fig. 4 that the peak at high
neutron energy is due to the 6nal proton-proton 'So
interaction. We note that in marked contrast to the

XsI I hys"+eris" I'+I h(s+ctis' I'+I hgs'+eris' I' 0
p4

a

The dominant component in the ground state is the
principal S state which depends on the spin-inde-
pendent part of the nuclear interactions. This state
alone with spin-independent final-state interactions
gives rise to the amplitudes bj~2", b~~2', ci~2", and c~~~",

and os(I=s) =os(I= ss) if the deuteron is unbound.

ts
E

tsJ

c: 0.2

0.2 OA
En /Emox

0.6 0.8 lo

2'The assertion by Lehman and Prats that the suppression of
0.3(I=-,'} is a result of the near equality in strength of the singlet-
even and triplet-even two-nucleon interactions is in error; D. R.
Lehman and F. Prats, Report, 1969 (unpublished).

Fzo. 4. Energy distributions of neutrons in He'(p, n)2p for
12.5-MeV photons normalized to the same total cross section.
Labels (a), (b), and (c) as in Fig. 2(B), and (a') corresponds
to the exact solution (a), retaining only the final proton-proton.
interaction.
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corresponding situation in nucleon-deuteron scatter-
ing, " the shape of this peak is not sensitive to the
final neutron-proton interactions. This difference is
probably attributable to the fact that in proton-
deuteron scattering the mechanism for producing a
(pp)+22 con6guration is a pure rearrangement process
comparable in strength to the (ep)+p production
mechanism, whereas in the photodisintegration of
He' the production of a (PP)+22 configuration is
favored by the direct disintegration of the bound state.

The peak at medium neutron energies is a reRection
of the final neutron-proton interactions. The singlet
interaction would be expected to give rise to a bump in
the energy distribution at approximately

(6.14)

l.6—

l.2—
E

b o.8—

1.2—

-0,8—
J3
E

b o.4—

(A)

independent of the incident photon energy. On the
other hand, if the neutron and proton come out pref-
erentially in the 'S& state, this should give rise to some
structure in the distribution at low neutron energy
with position and strength more strongly dependent
on the photon energy. In fact, this effect is dificult to
detect because of the more prominent 'So rescattering.
However, if the 'S~ interaction is put equal to the
'So, then the net enhancement at medium neutron
energies is noticeablv reduced. ; compare curves (a)
and (c).

(l)
l, 2 —

(~)

(3)

—0.8—
E

b o.4—

lO 20 50
E&(MeV)

40

FIG. 6. Dependence of the three-body cross section (A), and
the two-body cross section (3), on the S' admixture. The curve
(2) corresponds to the complete He' wave function I of Table I,
and curve (1) to the normalized S state of this wave function.

B. DeI)endence of Photodisintegration Cross Sections
on Structure of Three-Nucleon Bound State

The bound-state properties considered are the
analytic form of the principal S state, the asymptotic
form, the S' state, and the two-nucleon short-range
repulsion. All the results of this section correspond to
the exact treatment of the final-state wave function.

The effects of the analytic form of the principal
S state on the photodisintegration cross sections and
on the body form factor,

F(q) =j exp( —i'2 pi. q)u(ri, pi)'dr, (6.15)
(I)
(2)—0.8—
(3)

E

b o.4—

0
l.O

/

//

//
/

I I

Photon Energy (MeV)

40
I

which enters into the evaluation of the charge form
factors, are shown in Fig. 5. Curve (1) corresponds to
the principal S state, normalized to one, of the He'
wave junction I, of Table I. The curves (2) and (3)
correspond respectively to the Gunn-Irving

u(ri, yr)

o 06
O

0.4
E

0.2

0n O. l

0.06-
0

( ( (

2.0 4.0 6.0
Momentum Transfer Squared (F ~)

(2)

(()
(5)

I

8.0

FIG. 5. Dependence of the three-body cross section (A), the
two-body cross section (B), and the body form factor (C), on
the shape of the principal 8 state of He'. Curves (1), (2), and
(3) correspond respectively to the principal 5 state of wave
function I of Table I, the Gunn-Irving wave function (6.16),
and the Irving wave function (6.17).

+ exp j
1~ (r 2+r 2+r 2) 1/2

l / (r 2+ r 2+r 2) i/2

p, =0 904 F ' (6 16)
and the Irving

u(r, , y,) =x expl 2/z(rP+r2'+rs')''l, —

//, =1.31 F ' (6.17)

wave functions. Since all three wave functions have
the same mean-square radius, E.'= 2.7 I", the somewhat
small differences in the photodisintegration cross
sections in I'ig. 5 reRect the differences in the analytic
structure of the wave functions. It has been claimed
that the use of a bound-state wave function with the
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FIG. 7. Dependence of the three-. body cross section (A), and
the two-body cross section (B) on the two-nucleon short-range
repulsion. Curves (II) and (III) correspond to He3 wave functions
II arid III of Table I.

correct asymptotic form reduces the maximum value
of the three-body cross section. 4' We found this to be
true in the plane-wave approximation, but it is not
true if final-state interactions are included: The
maximum of curve (1) is greater than that of either
curves (2) or (3) in Fig. 5(A).

The effects of the S' state can be seen by comparing
curves (1) and (2) in Figs. 6(A) and 6(B). Curve (2)
corresponds to the complete He' wave function I
(Table I), which has a 1.9% 5'-state probability
density. Curve (1) corresponds to taking just the
principal S state of the same wave function and
renormalizing to one. If the phase of the S' amplitude
is such that, like the experimental values, " the charge
radii of He' is greater than H', then the bremsstrahlung-
weighted sum rule (6.1) predicts that Jg decreases
with the introduction of the S' state; the odd nucleon
becomes more tightly bound and Eo decreases. Further-
more, the results of the isospin decomposition, (6.3),
(6.6), and (6.7), show that it is the isospin- —, contribu-
tion, and hence the three-body integrated cross section,
which is reduced by the inclusion of the S' state.
However, there is a tendency for the two-body cross
section, particularly at low photon energies, to in-
crease with the introduction of an S' state. This is
because the S'-state admixture of the three-nucleon
bound state results from the fact that the effective
'S~ nuclear force is stronger than the 'So force, and thus
increases the nucleon-deuteron component of the wave
function at the expense of the nucleon-singlet com-
ponent. Hence the isospin--', part of the three-body
cross section decreases, and accordingly the total
decrease in the three-body cross section is greater than
it would be if the two-body channel were absent.

For the bound-state wave functions of Table I,
the He' and H' parameters differ by virtue of the dif-
ference in the asymptotic forms. We found, however,
that the difference in the calculated'cross sections for
He' and H' break up is less than 5%, aside from a
shift in the energy scale corresponding to the change
in the threshold energy.

Finally, we examine in Figs. 7(A) and 7(B) the
effect of using a three-nucleon bound-state wave func-
tion which includes short-range repulsion between
nucleon pairs. Curves (II) and (III) correspond to
the no repulsion II and short-range repulsion III wave
functions of Table I. The difference in the charge form
factors given by these wave functions is illustrated in
Figs. 1(A) and 1(B).Note that aside from the two-
nucleon correlations, these wave functions have
similar properties; in particular, the charge radii and
the asymptotic forms are the same.

Thus, in summary, the changes in the photodisin-
tegration cross sections induced by modifications of the
principal S state, the S' state, the asymptotic form, and
the two-nucleon short-range repulsion properties of
the three-nucleon bound state are all of the order of
10% or less and cannot be considered significant in
the light of the present theoretical and experimental
uncertainties of the photodisintegration process.

C. Comparison with Experiment

Previous studies of the two-body photodisintegra-
tion reaction have, in the main, concluded that there
are no outstanding discrepancies between theory and
experiment. In fact, the situation if far more complex.
An important, and as yet unresolved, problem is to
reconcile the experimental measurements on the total
cross section' and the differential cross sections at an
angle of 90 .~ ~ These measurements are related by

(rg= x(8gr/3) (d(rg/dQ) g=gp.

with
$~1.2

for photons with energies ranging from 6 to 40 MeV.
This value for x is considerably larger than the value
1.05~0.014, given by measurement of the angular
distributions for an equivalent photon energy of
15.3 MeV" and is also larger than the values given by
other less precise angular-distribution measurements. '
Since the angular distributions are not very sensitive to
x, the large value of 1.2 cannot be ruled out completely
on this evidence alone. However, theoretical estimates
of the electric quadrupole and magnetic dipole effects
also give much smaller values for x, ranging from 1.03

~~ J. R. Stewart, R. C. Morrison, and J. S. O' Connell, Phys.
Rev. 138, 8372 l1965l.

's B. L. Serman, L. J. Koester, and J. H. Smith, Phys. Rev.
133, B117 (1964).

~9 B. D. Selt, C. R. Bingham, M. L. Halbert, and A. van der
Woude, Ref. 14.
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at 13 MeV to 1.09 at 40 MeV." It seems most prob-
able, therefore, that there is a systematic error in
either the total cross-section data or the 90 data.

It is known that bound-state wave functions which
are consistent with the experimental charge form
factors give, in the absence of rescattering corrections,
photodisintegration cross sections which are in agree-

I.2

I.O—

C- 0.6—
b

ment with the 90' data. ' ' This agreement seems to be
illusory in view of the enhancement of the low-energy
two-body cross section due to final-state interaction
eRects LFig. 2(A) j. This enhancement is typically
of the order of 20% for all the ground-state wave
functions used in this a er and its existence is made

0.4—

0.2—

I

IO l5
l I I

30 35 40
l I
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Eg (MeV)

We investigated the effect of modifying the deuteron
wave function. But since the correspondence between
the deuteron wave function and the final-state inter-
actions was not retained, the results are not definitive.
Nevertheless, in the absence of rescattering, the use of
the asymptotic form exp( rrzr) jr d—ecreases the cross-
section peak, and the use of the deuteron wave function
with short-range repulsion PEq. (4.6)$ increases the
cross-section peak. Clearly, the overlap between the
deuteron and He' wave functions is important, but the
most realistic deuteron wave function seems to give
the greatest discrepancy with the 90' data.

It is possible, but unlikely, that the discrepancy is
due to the neglect of noncentral forces, and the associ-

. ated He' and deuteron D states. Since the He' D state
is known to reduce the radius of the odd nucleon in the
bound state, it must also, according to the dipole sum
rule (6.1), reduce Jz,' but a 9% D state gives only a 3%
reduction. " Furthermore, the results of the isospin
decomposition (6.3), (6.6), and (6.7), which hold
separately for the spin-~ and spin--,'photodisintegration

.I20—
Stewart et al.

Berrnan et al.
IOO—

80—
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FIG. 8. Comparison of the differential cross sections for 90'
for He'(y, p)d reaction. The continuous curve corresponds to
the He3 wave function III. The experimental points have been
taken from Refs. 27 and 28.

p p 0 5

plausible by the reduction of the I= ~ part of the three-
body cross section by the final-state interactions. It is FIG. 9. Comparison of the experimental total cross sections
not surprising therefore, that in Fig. 8 the theoretical for the reaction He (y, pld of Ref. 2 with the theoretical results

values for do/dQ at a proton angle of 90' are sig-
nificantly larger than the experimental results. "

In Fig. 8, the theoretical results correspond to the
He' wave function III of Table I, and it is clear from
Figs. 5—7 that the discrepancy between theory and
experiment could be reduced by modifying the bound-
state wave function. " But within the present theo-
retical framework, it seems unlikely that any of the
usual representations of the bound state could simul-
taneously agree with the 90' photodisintegration data
and the charge form factors.

E

b

1.5

1.0—

"The investigations, Refs. 3, 5, 6, and 10, of the role of the
various multipole transitions in He' disintegration are far from
complete. However, these values for x are of the same order of
magnitude as those obtained in very extensive studies of deuteron
photodisintegration, see F. Partovi, Ann. Phys. (N.Y.) 27, 79
(1964).

@ Experimental cross sections of Refs. 27 and 28 correspond
to a laboratory angle of 90, and accordingly should be smaller
by about 1/q than the cross sections at a 90' c.m. angle.

32 Note that if He' wave functions used in Fig. 5 are modified
to give smaller and more reasonable charge form factors, then
the photodisintegration cross section increases.
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"C. Lucas, Nucl. Phys. A123, 173 (1969).

FIG. 10. Comparison of the total cross section for He'(y, n) 2p
given by wave function III with the experimental results of Ref.
34, histogram (a), and the results of Ref. (2), histogram (b).
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energies. If, in the treatment of the ground state, a
larger 5' admixture or an Irving wave function is used
(see Figs. 5 and 6), then this discrepancy could be
reduced, but the agreement in Fig. 9 with the two-
body cross section would then deteriorate. However,
because of the large rescattering effects in the three-
body channel, it is equally, or more, likely that the
origin of this discrepancy lies in the treatment of the
final continuum state.

There is limited experimental information on the
differential cross sections for the three-body breakup.
But the data on the neutron spectra in He'(y, ts) 2P
shows several interesting features. In Fig. 11, we com-
pare the experimental and theoretical spectra at a
number of different photon energies. In the light of
the experimental errors the agreement is satisfactory
with the exception of the absence of the peak at high
neutron energy in the 8—:12-MeVexperimental data.
However, it should be emphasized that accurate
neutron spectra and differential cross sections, in
general, would be expected to be sensitive to the inter-
ference of electric dipole amplitudes with other multi-
pole amplitudes, and hence are beyond the scope of
this paper.

7'. CONCLUSIONS

(B)
Fro. 11. The neutron energy distribution in He'(y, el2p at

various photon energies given by wave function III. The experi-
mental histograms are taken from Ref. 2.

channels, show that it is the spin-~3 and isospin--,'
contribution and hence the three-body integrated cross
section which is reduced by the inclusion of a D state in
He'.

There is no difhculty in obtaining agreement between
theory and experiment if, instead of the 90' data, the
experimental two-body cross sections of Gorbunov and
Varfolomeev' are taken. In this case, Fig. 9, the
theoretical cross sections are slightly smaller than the
experimental values at low photon energies and
smaller still at higher energies, which is reasonable in
view of the estimates of the eQects due to transitions
other than electric dipole.

Clearly, it is desirable to clarify the experimental
situation regarding two-body break up. Conlrmation
of the results of Gorbunov' would imply that the
present theoretical ideas on the reaction are sub-
stantially correct. If the 90' results of Herman'8 and
Stewart'7 are correct, some way of reconciling this
data with the charge-form-factor data is needed.

Turning to the three-body cross sections, we see in
Fig. 10 that the theoretical cross sections are some-
what larger than the experimental values''4 at low

In the calculation of the low-energy photodisinte-
gration of He', final-state interactions induce changes
of the order of 20—25% in the two-body cross section
and of the order of 100% in the three-body cross
section. This implies that three-body scattering can
produce significant modifications of the average value
of the final-state wave functions taken over a large
volume. This is particularly so in the three-body con-
tinuum state if the nuclear interactions bind the
deuteron.

The bound-state properties, such as the shape of the
principal 5 state, the asymptotic form, the S'-state
probability, and the two-nucleon short-range repulsion
are not directly essential to the understanding of the
gross properties of the photodisintegration process.

In regard to the comparison of theory and experi-
ment, inclusion of the final-state interactions has two
effects. First, it permits a simultaneous, but rough,
agreement with the experimental data on the total
two-body and three-body photodisintegration cross
sections' and the charge form factors of the three-
particle nuclei. "Second, it suggests that, at least within
the framework of simple two- and three-nucleon wave
functions, central nuclear forces, and Siegert's theorem,
the two-body differential cross sections at 90' ' and
the charge-form-factors data are inconsistent.
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APPENDIX: METHOD OF SOLUTION OF
INTEGRAL EQUATIONS FOR PHOTO-

DISINTEGRATION AMPLITUDES

Substitution of Eqs. (5.3) and (5.4) into Eq. (3.5)
gives an integral equation in one continuous variable:

x„'(q; E) =b '(q; E)~(1/q') g fd'q'q q'
n

x (q I
~-'

I
q')1-(E—lq") *-'(q'; E) (A1)

with

$

q' plane

= Req'

(q &~4E

Im q'

q' plane

= Req'

(q I

~ r
I
q)= 2(II I»=I I&

I

I»=I I»II*)
X (55., 5»——5, Sr

I
5» ——5„,Ss, 55,)

gm(sq+q )gn(q+sq )
(A2)

q'+q q'+q's —E—se

We have to solve Eq. (A1) in two physical regions.
For the three-nucleon Anal state

0&q'&&E (A3)

and for the nucleon-deuteron final state,

q'= ', (E+ed) .— (A4)

A method for solving the singular integral equation
(A1) for the g' region given by (A3) has been outlined
in Refs. (35) and (36). The integrations over the
angular variables are performed analytically, and the
variables q and q' then simultaneously rotated into the
fourth quadrant of their complex plane

q=se '~ q'=te '~ s, 1 real and &0. (A5)

This continuation of the function x„(q; E) is analytic
as long as the contribution from the arc at infinity is
zero and the integration contour (0&1&ao) does not
cross a singularity of the integrand. In order to find
x r (q; E) for q real, we now rotate the complex variable

q back to the real axis, again making sure no singu-
larities of the integrand are crossed.

For completeness we note here the 6nal form of the
integral equations following from this procedure. %ith

q= nue '&/(1 p), q'=—nve '&/(1 v), —
W„r(u, E; n, yl = qx '(q; E),

W.'(u, E; n, ~) =qb-'(q; E)
We have I c.f. Eq. (A1)$

W.'(u, E;,y) =W.'(u, E;,e)
o.e '&

dv Z'„J (u, v; n, @)W.'(v, E; n, 4),
1 'vn O

E„„r(u, v; n, p) =2v.

&&q"(q I
~-'

I
q')1-(E—-'q") (A7)

"J.H. Hetherington and L. M. Schick, Phys. Rev. 150, 1647
(1967)."I.M. Barbour and R. L. Schult, Phys. Rev. 155, 1712 (1967).

Fzc. 12. Integration contours used for the solution of Eq. (A1) .

The coupled integral equations as given by Eq. (A6)
are valid analytic continuations of Eq. (A1) into the
complex g and q' planes for 0(p(st and are non-
singular in this region. Rotation of the complex vari-
able q back to the real axis involves distorting the
integration contour as shown in Fig. 12 in order to
avoid the singularity of the kernel at q'= ~q-
(E——,'q'+is)"', which passes just below q'=0 when
q= jZ. This rotation gives

x-'(q; E) = b-'(q; E)
ne '&

+ P q
—' dv E„.'(q, v;n, y)W„.'(v&, E; n, @)Rill

+ Z (2~'s/q') a-(E—sq') "'

X2(II., I»=I~) Ii I
I»=I, I~, II.)

&& (55„5»——S„,Sg
I
5» ——5„,5» SS,)

~—(V~)a —e(~—3~ t4)2 1/2

d(q") g-L(E 4q")"'j—
&(] (E—-', g")x„r(q'; E)8(q' —E) . (AS)

This rotation is valid for 0& tang& Min(u„y~l /(sE) ' '
with q' in the region 0&g'&~E. For the parameters
used, a suitable choice for P was found to be

e = tan 'L~./V'(~E) "'j (A9)

The solution of Eq. (A1) in the physical region for
the nucleon-deuteron final state (A4) was obtained by
solving the integral equation:

x (g; E) =b„(q; E)

+(1/q') Z fd'q'P(4E q")+e(q" 4E)J— —
n

xq'q'(ql ~ 'I q')1 (E 4q")x r(qs. E)—
where the first term in the square-brackets was taken
to contribute to the inhomogeneous term of the integral
equation and evaluated by using the solution obtained
for x„r(q; E) in the region (A3). The integration over
dq' was approximated using the procedure described in
Ref. (16). This procedure takes care of the singularity
arising from the deuteron pole in t~.


