
PH YSI CA L RE VIE W C VOLUME 1, NUMBER 5 MAY 1970

Final-State Interactions in Quasifree Electron Scattering from Nuclei*
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The effect of strong final-state interactions on the process A(e, e' P) J3 is investigated.
Cross sections for this process are calculated for various bound-state proton wave functions,
and an optical-model potential is used to describe the final-state interaction.

INTRODUCTION

The quasifree process A(p, 2p)B has been wide-
ly used in nuclear structure studies, ' particularly
for investigations of the outer shells of nuclei.
However, protons are strongly interacting parti-
cles, and thus it is difficult to separate the scat-
tering mechanism from nuclear structure effects.
Electrons are preferable to protons as projectiles
because they interact electromagnetically and not
strongly, and the electromagnetic interactions are
well understood. Although quasifree electron scat-
tering experiments are difficult to perform be-
cause of the smallness of the electromagnetic
cross sections, quasifree electron scattering from
Be, C, Al, S, Ca, and As has been performed at
Frascati, ' ' and quasifree electron-proton scatter-
ing in H', H', and He' has been performed at Stan-
ford"' and Orsay. ' More and better experimental
results are needed for quasifree electron scatter-
ing. These experiments should be easier to per-
form in the near future, as electron accelerators
with high current and high duty cycle begin opera-
tion.

Since quasifree electron scattering is an electro-
magnetic, high-energy process, a good first ap-
proximation to the cross section can be calculated
using the Born approximation (BA) corresponding
to the diagram of Fig. 1. A necessary correction
to the Born approximation is the effect of final-
state interactions between the emerging proton and
the residual nucleus. Preliminary investigations
of final-state interactions were performed by
Jacob and Maris" who used a WEB approximation
to show that the essential effect of the final-state
interactions was just to reduce the size of the
cross section. Most of the theoretical calculations
which have been done for quasifree electron scat-
tering, have used the Born approximation or, fol-
lowing Jacob and Maris, some reduction factor
times the Born approximation. Wyatt has shown
that the effects of final-state interactions can be
simulated by using an effective momentum in the
expression for the cross section calculated in the
impulse approximation. "

In the calculations presented below, the final-

state interactions between the outgoing proton and
the residual nucleus are described by an optical-
model potential. " The wave function for the final
proton is expanded in partial waves, and the radial
part of the function is obtained from a numerical
integration of the radial Schrodinger equation. The
optical parameters used in the calculation were ob-
tained from experimental results of elastic proton
scattering from whatever residual nucleus one is
considering. If data on the desired nucleus were
not available, results for a similar nucleus were
used. Because of their analytic simplicity, all
previous theoretical studies of quasifree electron
scattering have used either harmonic-oscillator
or square-well potentials to describe the bound-
state, single-particle wave functions. In our cal-
culations, in addition to the harmonic-oscillator
potential, a Woods-Saxon potential is used which
is more realistic, but which requires the use of
numerical techniques.

The calculations presented below are the first
detailed study of the effects of final-state interac-
tions in quasifree electron scattering. The cross
section used takes into account correctly the mo-
mentum dependence of the electron-proton interac-
tion and the kinematics of the problem, "whereas
most other calculations make some simplifying as-
sumptions so that free electron-proton cross sec-
tions may be used.

Our results clearly show that the final-state in-
teractions do reduce the size of the cross section
except close to diffraction minima. In these areas,
they may either fill in or deepen the minimum.
Also the cross section is shown to be sensitive to
the bound-state potential. The cross sections for
the harmonic-oscillator potential are approximate-
ly one order of magnitude larger and more peaked
than those obtained with the Woods-Saxon potential.

II. DIFFERENTIAL CROSS SECTION

We are interested in the- cross-section for the
reaction A(e, e p)B shown in Fig. 1. In the initial
state, an electron with four-momentum k,- is inci-
dent on the target nucleus A. In the final state,
the scattered electron with four-momentum kf is
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detected in coincidence with the emitted proton.
Our analysis will be based on the first Born ap-
proximation, and we restrict ourselves to events
in which the nucleons interact as nonrelativistic
Pauli particles.

The reduction of the covariant form of the inter-
action between electrons and nucleons to a two-

component form for the nucleons has been done by
McVoy and Van Hove. ' For unpolarized nucleons,
and electrons described by plane waves, the two-
component Hamiltonian operator in nucleon space
which describes the electron-nucleon interaction,
correct to second order in inverse nucleon mass,
is

.. .„F,(q„')+ 2SCF, (q„')
8M

In this expression, q„ is the four-momentum trans-
fer with q„'=uP —~j~'where j=k, —kz and & =E,
—Ez. The matrix n is the usual Dirac operator,
which operates on the free-electron spinors ~U)

and ~Uz), p and a are the momentum and Pauli
spin operators in the nucleon space, E,(q„') and

F,(q„') are the nucleon charge and magnetic form
factors, and K is the nucleon anomalous magnetic
moment in nuclear magnetons.

The interaction Hamiltonian, as given above, is
for single-nucleon scattering, and since we are
interested in scattering from many-nucleon sys-
tems we make the usual assumption that nucleons
inside a nucleus do not distort one another so that
we can use free-nucleon form factors. For the
small values of q„' of interest here, we can use
the relation"

F,(q„') = F,(q„') = F(q„').

With the above considerations, the Born-approxi-
mation matrix element is

A

Mo=((g
~

Z O'J'Apj'~ fg),

where g,. and gz are the initial and final time-inde-
pendent nuclear states, and A is the proton pro-
jection operator.

The coincidence cross section in the lab frame
1S

d 0 2g'f/)

dE dQ dQ EF.

I

where ~ is the electron mass. The density of fi-
nal states, p&, is given by

Pf () I E/E [( /2) I]
where;= (I pl'+M')'",

Zs = [ps'+ (A —I)™]"'.
In order to evaluate Mz;, we need to know the ini-

tial and final nuclear wave functions. It is conven-
ient to introduce the center-of-mass and relative
coordinates shown in Fig. 2, and defined by

R = [I/M+Ms)](MsRs+Mrp) and r =
rp —Rs.

For the final nuclear wave function, we take

(.=4s(xs)y(r)e' ' l2m~),

where C (xs) is the wave function of the residual
nucleus, and X(r) is the wave function for the rela-
tive motion of the residual nucleus and the out-
going proton. The plane wave describes the mo-
tion of the center-of-mass of the total system,
where K is the total momentum of the residual nu-
cleus and outgoing proton, and l 2m~) is the spin
wave function for the proton.

For the initial wave function, we take

~, =QC„@.(xs) U:(r) g C„'„'I; .F~™'(~)l-'.m, )„,,
CX ML, &rf.

FIG. 1. Diagram for the reaction A(e, &'P) B FIG. P. Laboratory frame for the nuclear system.
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where 4 (xs) is the wave function of the nucleons which make up the residual nucleons when still in the ini-
tial state, and the expression in brackets describes the relative motion of this nucleon cluster with the
proton which will be knocked out. The expression in brackets is a shell-model wave function for the pro-
ton moving in some central potential.

By selecting the energy of the final proton, one can determine the initial state from which the proton was
ejected. %e will assume that this proton moves in a pure central potential so that we can neglect all cou-
pling except the spin-orbit coupling contained in the expression in brackets. By making the additional as-
sumption that the wave functions denoted by 4 form an orthonormal set, we can drop the sum on n since
only the particular term in which 4 = C~ will contribute to the cross section. The sum on j in &&,- is also
no longer necessary, because we are considering only a particular proton in the initial state.

For comparison with later results, we will first derive the form of the coincidence cross section ob-
tained when the final-state interactions are neglected. In this case, the square of the matrix element is
given by

IM „I'=,("la„')'Al ~(n, f, ~s) I' ~(a„')',

2 -2 2
A= (4E~E&+ q„') 1+ ",(1+2K) — ",[(2p —q)'+2(1+K)'q']

+-,([ki (2p —q)][kI ~ (2p —q)]+ (1+K) (k,. xq) (kI xq)] — '
[k& ~ (2p —q)]

and

r(q, q. , qq)
fqr

(q'qr) qrr (r)r-'qr .

2

[k ~ (2p —q)] 1+8, (1+2K)

To include the effects of final-state interactions between the proton and residual nucleus, we write the
final relative-motion wave function as

Z(r) = 4&Z i'U, (k~) F'„' (k) F",(~),

where U„(kr) satisfies the radial Schrodinger equation for elastic proton scattering from the residual nu-
cleus. The Born-approximation calculation must now be repeated, using y(r) in the form given above in-
stead of a plane wave. The square of the matrix element now becomes

2 2

IMr;I'=4 . . I+(e„')I'&,4m' q„'
where

T= (4v)'i()Q IQ Q (-1)~ i' F~(k) F *
(q) C~~ C '~ „I (n, I., X, l, q, k) P,

21+ 1

MZ, Xp lm

q(q, q. , X, (, q, q) fqrz(qrj)&((rim)qr)Ui(r)r='dr

Since T is a convergent series, the cross section can be calculated numerically as described in the next
section.

III. CALCULATIONS

Evaluation of the cross section for the case with
final-state interactions must be performed numeri-
cally. One can check the main elements of this
numerical calculation by using the same programs
to evaluate the cross section in the Born approxi-
mation. To do this, one simply replaces Uz(kr)
by j),(kr) in I(n, I., A, l, q, k). The results of this
procedure can then be compared with the much

simpler analytic expression which one can obtain
in the Born approximation. Given below are the
various forms used in our calculations for the sin-
gle-particle wave functions, the final-state inter-
action potentials, etc. The q„' dependence of the
form factors which was used is given by"

1
1+q '/7 5

'
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where q„ is expressed in inverse Fermis.
The evaluation of the radial integral, E(n, L, Ps),

can be done analytically for a harmonic-oscillator
shel™odelpotential; however, for a Woods-Sax-
on potential, numerical techniques must be used.
The general form of the Woods-Saxon potential
which was used is

V~(x)=Vf(r, c, a)+w(c I) —— ' ' +Vc,
- X'1df(r, c, a)

where Vc is the Coulomb potential of a uniformily
charged solid sphere of radius rz(A I)"-' and total
charge (Z-1)e for a nucleus of A nucleons and Z
protons. The expression

is generally referred to as the Fermi density func-
tion.

The radial wave function U(kr) used in the final-
state wave function is taken to be the final-state
wave function of a proton elastically scattered
from whatever residual nucleus one has. The in-
teraction is given by a Woods-Saxon optical-model
potential of the form

V„(r) = —V,f(r, c„a,)+i V, f(r, c„a,)
df(r, c„a,)+ 4za3V,

(
.

)(
~)~'1df(~ c„a)

2r dr
The general description given above for Vz(x) also

applies to V, (r) .

IV. RESULTS AND CONCLUSIONS

As an application of the theory presented above,
the reaction C"(e, e'p) B"was studied. The bind-

ing energies of the protons in C" were taken as 36
and 16 MeV for the 1s„,and 1P3/2 states, respec-
tively. The final electron energy was fixed at 475
MeV, and the incident electron energy was taken
to be 635 MeV for the s state and 605 MeV for the

p state. The laboratory angle of the scattered
electron 8, was taken to be 51'. The values were
chosen to correspond with the experimental work
of Amaldi et al. ,

"so that our results could be
compared to experimental data. No attempts were
made to vary these quantities, since these effects
have already been studied by Devanathan. "

The optical-model parameters were taken from
the results of Glassgold and Kellogg" who elasti-
cally-scattered 95-MeV protons from C". These
parameters were held fixed throughout the calcu-
lations, while the parameters in the bound-state
potential were varied to obtain best fits with the
experimental data.

Figures 3 and 4 are semilog plots of the differ-
ential cross section versus the proton scattering
angle for quasifree electron scattering from C",
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FIG. 3. Cross sections for quasifree electron scatter-
ing from C with protons in the 1sii2 state knocked out.12

FIG. 4. Cross sections for quasifree electron scatter-
ing from C with protons in the 1p3/2 state knocked out.
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with protons knocked out of the s and p states, re-
spectively. In each case, the top two curves are
for the harmonic-oscillator bound-state potentials
and the bottom two are for Woods-Saxon potentials.
In all graphs, the solid lines are for Born-approxi-
mation calculations and the dashed lines include
the effects of final-state interactions. The cross
sections using the Woods-Saxon bound-state poten-
tial are generally smaller than the corresponding
cross sections using the harmonic-oscillator po-
tential. Also the harmonic-oscillator case is
more peaked, as one would expect, because of the
rapid fall-off of the harmonic-oscillator wave func-
tions. The final-state interactions generally re-
duce the size of the cross section, and around the
diffraction minimum this reduction is greatest.

In Figs. 5 through 8, only angular distribution
results are shown, so the cross sections are given
in arbitrary units. Following Amaldi et al. , "the
cross sections are plotted as a function of the re-
coil momentum of the residual nucleus, and in all
eight figures the experimental points are included
for purposes of comparison. The fitting procedure
in all cases was simply to normalize the curve to
approximately the same maximum as the experi-
mental data.

Figure 5 shows the best fit to the experiment, al
data for the Woods-Saxon bound-state potential

with protons in the p state knocked out. The half-
radius parameter ~, necessary to get this fit was
quite large, having the value x, = 2.5 F or c = 2.5A"'
= 5.73 F. The cross section is insensitive to varia-
tions in the diffuseness a, or the spin-orbit param-
eter se; however, it is very sensitive to variations
in ro.

Figure 6 shows similar results for the harmonic-
oscillator bound-state potential. The os cillator
constant necessary to give the best fit corresponds
to a nuclear radius parameter of x, =1.4 F.

Final-state interactions do not contribute signifi-
cantly to the angular distributions of the cross sec-
tions for protons knocked out of the s state of C",
as can be seen in Figs. 7 and 8. From these two
curves we see that the Woods-Saxon bound-state
potential fits the experimental data very nicely for
the s-state protons, whereas, for the harmonic-
oscillator potential, the shape of the curves is not
in agreement with the experimental data.

To illustrate further the methods presented in
Secs. II and III, a calculation was made for the re-
action Ca"(e, e' p)K" for protons knocked out of
the 1p3/2 state. This result is shown in Fig. 9.
The optical-model parameters were taken from
the results of Barrett, Hill, and Hodgson. ' The
binding energy was taken as 32 Me7. ' In this case,
the final-state interactions still greatly reduce the
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FIG. 11. Variations between the Born-approximation
cross sections and the distorted-wave Born-approxima-
tion cross sections at the diffraction minimum.
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creased. A study of this effect was made by vary-
ing the value of E~ from 580 to 660 MeV and plotting
the values of e at the diffraction minima against E~,
where
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FIG. 10. The elastic form factor of the C~ nucleus
computed using Woods-Saxon bound-state wave functions
which give the best fit for quasifree scattering.

and for purposes of discussion we assume Mc is
slowly varying. The minimum in M~ is zero for
one particular value of q, and, if we assume M~
is nonzero at this point, it is clear that the diffrac-
tion minimum must be filled in for this value of q.
As q is varied away from this point in one direc-
tion, the magnitude of the matrix element will be
increased, and in the other direction it will be de-

This graph is shown in Fig. 11.
The calculations presented in Sec. II, although

computationally long, are generally applicable to
any quasifree electron scattering reaction. Until
more experimental results become available, one
cannot know if a reduction factor will successfully
account for the effects of final-state interactions
in all these reactions, or if a more general calcu-
lation like the one described will be necessary.
The question of filling or deepening the diffraction
minimum is only of theoretical interest, since ex-
perimental results will always fill the minimum be-
cause of the angular resolution of the detectors.
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