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We have studied the contribution of the knockout-exchange mechanism to inelastic proton scattering in
the distorted-wave Born approximation (DWBA) as a function of two-body force range, orbital-angular-
momentum transfer, incident-particle energy, and bound-particle energy and con6guration. Several im-
portant features are revealed: (1) The exchange mechanism is found to be important for reasonable ranges
(=1 F) and for energies as high as 130 MeV; (2) the exchange-to-direct ratio is quite sensitive to the
orbital-angular-momentum transfer L, and the exchange amplitude can exceed the direct for large L;
(3) non-normal transfers P( —1)z/ (—1)n'g are:usually negligible but may become significant for high
L, especially if no spin Aip is involved; (4) both the magnitude and phase of the exchange amplitude
relative to the direct are sensitive to the initial and final single-particle configurations, particularly to
the radial quantum numbers; {5) in collective excitations constructive interference occurs among exchange
amplitudes to a sufficient extent that the inclusion of exchange can double the cross section for 2+ states. Ex-
pressions for direct and exchange amplitudes are obtained in the zero-range limit of the PWBA which quali-
tatively explain the behavior observed in the numerical results. A new method is presented for estimating
collective enhancement due to core polarization by using empirical 8 (E2) values. Calculation of the absolute
cross section for the 2+ excitation in '"Sn (p, p'), including exchange and core polarization, yields a two-body
effective interaction strength which agrees both with strengths derived from charge-exchange reactions
and with those obtained from a semirealistic two-nucleon interaction.

I. INTRODUCTION

N the past few years, there has been a growing. . interest in the microscopic model of inelastic nuclear
scattering. Calculated angular distributions are usually
in reasonable agreement with experimental results,
but whether absolute cross sections can be obtained
from a no-parameter model is not yet clear. Recent
work by Amos et al.' and Petrovich et al.2 on the
problem of the interaction for inelastic scattering
indicates that in some instances an eGective inter-
action obtained from the two-nucleon data can re-
produce experimental absolute cross sections if collec-
tive enhancements are included in some way. Agassi
and SchaeGer' have been able to 6t the 55-MeV data4
for the 3, T=O level in ~Ca with an interaction ob-
tained from the nuclear structure work of Gillet and
Sanderson. '

*Work supported in part by the U.S. Atomic Energy Com-
mission.

f Present address: Department of Physics, Oregon State
University, Corvallis, Ore.' K. A. Amos, V. A. Madsen, and l. E.McCarthy, Nucl. Phys.
A94, 103 (1963); K. A. Amos, ibid. A103, 657 (1967).'F. Petrovich, H. McManus, V. A. Madsen, and J. Atkinson,
Phys. Rev. Letters 22, 895 (1969).

'A. Agassi and R. Schaeffer, Phys. Letters 263, 703 (1968).
4 K. Yagi et al. , Phys. Letters 10, 186 (1964).' V. Gillet and E. Sanderson, Nucl. Phys. 91, 292 (1967). e A. M. Lane, Phys. Rev. Letters 8, 171~I(1962).
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The calculations in Refs. 1—3 did include exchange.
However, until recently most inelastic scattering cal-
culations have neglected the eGects of particle exchange
in the hope that exchange amplitudes are small because
they involve matrix elements of bound with continuum
single-particle wave functions. In addition to this
theoretical argument, which in the region of 10—50-
MeV projectiles is unconvincing, the following em-
pirical evidence for the lack of importance of the
exchange contribution can be offered: the success of
the liquid-drop model for collective excitation by
inelastic scattering, the smallness of the (p, n) cross
sections compared to (p, p'), the success of the Lane
models for (P, rt) analog transitions, and the success
of the microscopic model excluding exchange in Qtting
(p, p') angular distributions. This evidence implies
that, in many cases, particle-exchange amplitudes are
either negligibly small or su%.ciently similar to the
direct amplitudes that their eGect can be simulated
by using an altered strength of interaction in a purely
direct calculation.

The few calculations that have included exchange
provide considerable evidence that exchange amplitudes
are not negligible. We now review this evidence.

The first important calculation of inelastic scattering
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in DWBA, by Levinson and Banerjee' for "C(p, p') "C,
did include the knockout-exchange amplitude. How-
ever, although the authors state that the exchange
amplitude is always smaller than the direct, there is no
further indication of their relative importance.

Knockoutlike amplitudes arising from use of a
space-exchange operator in an unsymmetrized formu-
lation also were calculated by Agodi and Schiffrer. '
Their results have been cited as evidence that the
exchange cross section is small. While it is true that the
exchange cross section is a factor of about 4 smaller
than the direct for this case, the inclusion of the ex-
change amplitude could enhance the cross section by
as much as a factor of 2 over that calculated with a
Serber force but neglecting the exchange integral.

A very interesting result was obtained by Une et
a/. ' in a study of the "C(p, rt) reaction. They show that
for orbital-angular-momentum transfer L=O, which
dominates the "C(p, rt) analog excitation, the exchange
cross section is a factor of more than 10 lower than the
direct. However, for L= 2 transfers, the exchange
cross sections they calculate are actually larger than
the direct. This is the first indication of the sensitivity
of the exchange amplitude to orbital-angular-mo-
rnentum transfer.

Amos et al.' show that a local representation of the
two-body I, operator seems to give about the right
magnitude for the ssY(P, P') cross section for the
excitation of the ~+ state. This result is the first good
evidence that the strength of the interaction for in-
elastic scattering is closely related to that in the two-
nucleon problem. Aside from this important con-
clusion, Ref. 1 showed that the phases of the direct
and exchange radial integrals are surprisingly close to
each other. A further interesting result was that for
many sets of parameters considered, the exchange cross
section was larger than the direct.

The calculations discussed indicate that, for some
cases at least, the knockout contribution to inelastic
scattering and charge-exchange reactions is not neg-
ligibly small, and that inclusion of exchange will allow
calculation of absolute cross sections in reasonable
agreement with experiment. Many questions remain,
however, concerning the nature of exchange ampli-
tudes. For example, one can argue convincingly that
the knockout amplitude must go to zero for high
energies because it involves the matrix element of a
rapidly oscillating continuum function with a bound
one. One would like to k.now how high the energy
must be before exchange becomes negligible. Another
question is that of the two-body-force-range depend-
ence of the exchange amplitude. In the zero-range

' C. A. Levinson and M. K. Banerjee, Ann. Phys. (N.Y.) 3, 67
(1958).

A. Agodi and G. SchiErer, Nucl. Phys. 50, 337 (1964).
'T. Une, S. Yamazi, pand H, Yoshida, Progr. Theoret. Phys.

(Kyoto) 35, 1010 (1966).

limit the space-direct and space-exchange amplitudes
are equal for a Serber force. It would be interesting to
know how near zero range the interaction must be
before the exchange and direct amplitudes are es-
sentially the same and whether realistic nuclear force
ranges are near zero range in this sense.

The successful description of inelastic proton scatter-
ing in terms of the liquid-drop collective model, in
which no exchange can be included, may have to do
with cancellation of exchange terms in a microscopic
model. "It is well known that the large cross section
for excitation of collective states is due to constructively
coherent contributions from a large number of single-
particle transitions. The possibility that the phases of
exchange and direct amplitudes may not be the same
for forces of realistic range means that, while the
various direct single-particle amplitudes will be con-
structively coherent, the exchange amplitudes may
tend to cancel each other. However, the nearness in
phase of the direct and exchange in Ref. j. leads one to
question seriously the exchange cancellation argu-
ment. Further study of the phases is needed.

The result of Ref. 9, that relative sizes of direct and
exchange amplitudes are dependent on orbital-angular-
momentum transfer, is also of great importance be-
cause it will strongly affect the relative cross sections
for different states of the same nucleus when they
involve diferent transfers. Much more information
on the angular-momentum-transfer dependence of
exchange amplitudes is needed.

In view of these questions we have made a systematic
study of DWBA exchange amplitudes as a function
of various parameters of the theory. A preliminary
report of some of our results has been published. "

II. FORMALISM

The present calculations are based on the formulation
of Amos, Madsen, and McCarthy. ' This section sum-
marizes their results and gives expressions for the
coefficients of direct and exchange amplitudes in the
cross section for a number of cases of interest. As in
Ref. 1, this formulation and the numerical results
presented in this paper do not include spin-orbit dis-
tortion. For completeness we present a formulation
including spin-orbit distortion in Appendix A. The
treatment given in this section and Appendix A does
not include contributions from the heavy-particle
stripping mechanism. For a discussion of this and other
aspects of the exchange problem see the forthcoming
book by Austern. "

"N. K. Glendenning and M. Veneroni, Phys. Rev. 144, 839
(1966)."J.Atkinson and V. A. Madsen, Phys. Rev. Letters 21, 295
(&968).

"N. Austern, Direct 1Vuctear Reaction Theories D'ohn Wiley tk
Sons, Inc. , New York (to be published) g.
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The notation is nearly the same as that in Ref. 1.
Isospin projections are P for the projectile and n for
the target nucleons. The total and projection quantum
numbers for nuclear spin and isospin are J;M; and
T;I'; in the initial state. Quantum numbers which are
definite are labeled i and f for initial and final states
and those which are summed over are labeled 1 and 2.
The transfer quantum numbers are orbital angular
momentum IS, spin I'S', and isospin vp. The caret
is used with coordinates to denote unit vectors r= r/r,
and with angular momenta for the quantity J=
(2J+1)'~'. The index j stands for all bound-state
quantum numbers, j, 1, n.

The effective interaction between the projectile and
a target nucleon is assumed to be central and is given
by the expression

projection operator onto two-particle states of isospin
T and spin S.

The space-direct and space-exchange single-particle
amplitudes for definite orbital-angular-momentum
transfer are given by

+LM'"'= (—1) '~f fXf'
—

& (ri) X;&+& (ro) t(rpi)

XL4f,1,(ri)&f212(rp) ff~dprodpri, (2a)

G~~""= (—1)"fJXf' '(ri) X +'(ro) t(roi)

+L4flil (rl)4f 212(ro) $z d rpd ri. (2b)

It is clear that in the limit of zero-range effective
interaction t(rpi) these two amplitudes are identical.

When the space part of the effective nucleon-nucleon
interaction is expanded in spherical harmonics

t(0, 1) = t(roi) g Arsfsrs, t( oi) = Z 2), ( o, ri) 1'1"(ro) &a*(ri), (3)

where A&8 is a numerical coefficient and (P&z is the these amplitudes may be written

V, lit, )L Z (4~) i -"l., (if)I„o(O)i—'(I;II I;IIL,)(—1) C(L, L2L;0 fldflf)
L1L2

XfRf,& (rp) gf,f "(ro)Rf,, (rp) roodro, (4a)

Gi~f"'= (—1)" 2 (4~)'2" "c(L1L2 i o~flI) ~2 ( f) 1'ii'(0) (L2 I[ I'1
II ti)(t2 II I'1

II L1)off(L2&1L1&2) &L)
)L]L2

X fJR1.2(ro)R»(ri) &1(ro, ri) Rf.i(ri) R»(ro) ropriodrodri, (4b)
where

(r,) = JR»(ri) pf. (ro, ri) Ri, (ri) ri'«1,

and RL and E~ are continuum and bound radial wave functions.
In terms of FLM&»& and GL~&»2, the differential cross section is given by the expression

dp f 2222 kf—
I 2(2J,+1)$ ' Q (2I+1) (2I'+1)

I Q d;„;(II'L)
dQ &42-A, 2 IrfLu 2»2

where
&&[Df»2+(II') (Iff.pf""+Gr,of"")+D;„,(II') (Ff.off»2 Gf,vf»2)] I2, —(6)

d,„,(II'L) = g11"2 j2

2 ~1
~ ~S(J,JfI;j ij 2c»a2) nuclear isospin not assumed pure

pure nuclear isospin,

with

»»2+(II') = toi+ 1o

D,„., (II') =tpo+tii (9)

trs= Arsos(I )
"fr (~1~2P1P2)

g S(J,JfI; T,Tfr;j ij2)or(r)

nuclear isospin not assumed pure

pure nuclear isospin,

ps(I') = (2S+1) (2 —24 icosi)

tfr(r) = ~(22r; O' Pf O' Pf) ~(T—'Tf» &—' &f &' pf)&r(r)

YT(~1012PiPf) 2 j~aiao~pspf ( 1) ~aipf~a2p~j&

(12)

(13)
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Colliding
nucleons Di ii 2+(II') D;„, (II')

Alike

Unlike

Alike

Unlike

-',Alp

p(A&p+3Ap&)

—',Aip

-„'(A&p—A p&)

gA 11

~ (App+3A 11)

Aii

—,'(A pp
—Au)

TABLE I. Inelastic scattering coeKcients for the case in which
the nuclear isospin is not assumed to be conserved. For this case
they do not depend on the total angular momentum transfer I or
any single-particle quantum numbers besides the charge.

Recognizing that the space-exchange and space-
direct amplitudes are exactly the same in the zero-
range limit, we have made an expansion about zero
range"" keeping only the leading order terms. The
leading term beyond zero range should contain dif-
ferences between direct and exchange amplitudes and
enable us to identify some of the features to be seen in
our DWBA amplitudes.

With a spherically symmetric short-range inter-
action

l'= l/pg(l rp —ri I)

where g is normalized to have a unit integral over

and S(J;IIIj ij satns) and S(J,III; T,TIr;j ij s) are
spectroscopic amplitudes" for the nondefinite and
definite nuclear isospin, respectively.

The coefficients D;»,+(II') appearing in the ex-
pression for the cross section Eq. (6) are given in
Tables I—III for most cases of interest for both spin-
flip (I' = 1) and non-spin-flip (I = 0) transitions.

TABLE III. Inelastic scattering coefBcients for no charge trans-
fer for the case in which nuclear isospin is assumed to be dehnite.
For (p, p') and (n, n') reactions the v =0 term in the coeKcients
D;,i,+(II') are obtained by multiplying the table entry by
( 1)"&'+r' ~&[—br'/$2(2Tr+1) J")S(JJyI; TTr0;

Jim's).

For
T;= Tf =0 transitions this is the only contribution, but for other
cases one must add the v =1 contribution from Table II.

III. PLANE-WAVE AMPLITUDES

It is interesting to try to obtain simple plane-wave
amplitudes for a qualitative comparison with our
numerical DWBA results. It is possible to calculate
plane-wave exchange amplitudes exactly for a Gaussian
interaction with harmonic-oscillator bound states.
However, the results are complicated and not particu-
larly enlightening.

Even
coefFicient

(+)

3/4(A gp+A pg)

1/4 (3A io —A pi)

Odd
coefFicient

(—)

1/4 (A pp+9A u)

1/4 (A pp
—3A i,)

TABLE II. Inelastic scattering coefhcients for charge transfer
for the case in which nuclear isospin is assumed to be definite.
For the (p, e) or (n, p) reactions the coefficient D;»,+(II') are
the table entries multiplied by —C(T;Tfi P Pf P' Pf)
S(JdyI; T;Trt; j&jp). For the (P, P') and (pp, )rpepactions there
is an additional factor of 1/K2. For the latter two reactions there

are, in addition to the r=1 transfer term obtained from this
Table, v=0 transfer terms which must be added to get the
D;»~+(I I') coeKcients. These are given in Table III.

d'rp or d'ri, the integral of V with some function f(ri) is

draff( i)g(l rp ri l)'d'ri= Vpl 1+csVp'j f(r,) (15)

to second order in the range parameter in g(r). In Eq.
(15), the coefficient cs is

cs= fsr'g(r)d'r.

Even
coefficient

(+)

1/4 (3A pg
—A gp)

—1/4(Aro+Ap&)

Odd
coefFicient

(—)

1/4(App —3A11)

+1i4(App+Aii)

Of course, f(rp) must be a reasonably smooth function,
so the derivatives involved in the Taylor-series ex-
pansion all exist. This integration formula can be
applied to calculate the space-direct and space-ex-
change amplitudes Ii and G, Eqs. (2). This calculation
is made for plane-wave continuum functions in Ap-
pendix B. The resulting amplitudes in the cutoff ap-
proximation for an even interaction with a short-range

'P V. A. Madsen, Nucl. Phys. 80, 177 (1966).

"An expansion about zero range has been used recently (Refs.
2, 15) to approximate the sects of exchange in DWBA."F. Petrovich and H. McManus (unpublished).
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Yukawa form e "/(2r are case j)l2=j2I2,

pal'152 (1 q2/(22) pLM11»2 (16a) GzMi i2=gzMhi2= g2rp02 Q—2'z(~ ) (q Q)

GzM&»2 =$1+(1/212') (((2'+ ((2'—kg —ki2+ q') )
XFzM"'+GzM"2, (16b)

where
Xf jz(qr) R1,(r) U'i, ,),(r) r2«, (17)

where Fl,~&»' is the zero™range plane-wave amplitude,

q is the momentum transfer ((2=2m'/fP, and k2=

22)2E/fP, 2 being the single-particle binding energy.
The term 6~~&'»2, discussed below for the non-normal
transfers, vanishes for normal transfers L(—1)z=
(—1)™'gfor the special case of identical initial and
final single-particle states, as shown in Appendix B.
Restricting the discussion to this case, we have for
Eq. (16b)

GzMi»2= [1+(1/n')(tK' '(k'+—k-i')+ 'q'$)Fz-M'»2

(16b')

q=kj —k;,

and
Q=-'2(ki+k;),

f 3+1 &'i2(dR(
&,~(r) ——

II2l+»I I d
—-«I,

( l ))'i2 /dR2 /+1
&21+1&

X=1+1

2&(») (q @)= (42r/3)"'LI'I-(q) I'1(Q) jI.

(19)

For the validity of this expression the energy should be
low. For 0.= 1.0, we require k«1 or E«20 MeV. Two
differences in Eqs. (16a) and (16b') due to the finite-

range correction are immediately apparent. The first
is that, compared to Iiz,~'»', GI,~&»2 decreases with
increasing projectile energy E,. This property of the
DWBA amplitudes will be seen later in the numerical
results given in Sec. IV. The second feature of Eqs.
(16) is that IirM'»2 falls off more rapidly with increas-

ing angle than does Gl.~'»'. This qualitative char-
acteristic of exchange angular distributions, which is
also present in the DWBA," gives rise in the plane-
wave approximation to an L dependence of exchange-
to-direct cross-section ratios. The reason is as follows:
The zero-range amplitude is roughly proportional to
jr, (qr). The higher the I. value, the larger the value of

q (and 8) where the Bessel function has its main peak.
With the finite-range correction reducing the direct
amplitude and increasing the exchange as q is increased,
the latter amplitude becomes more important for
higher L values. Such an L dependence is seen also in
DWBA; this will be discussed further in Sec. IV.

It is also suggested by Eq. (16b') that the exchange
amplitude should be of increasing importance relative
to the direct for higher particle binding energy fP)(2/2222.

As will be discussed in Sec. IV, this dependence was

tested for DWBA and found to be (weakly) present
there also.

In the case of a non-normal transfer )for which

(—1) +'= (—1) '2 "j the direct amplitude, in par-
ticular the zero-range direct amplitude FJ.~'»', is
identically zero. The only contribution to inelastic
scattering comes from exchange, and the only non-

zero part of Eq. (16b) is GIM"", Eq. (B9). Carrying
out angular integrations we obtain, for the special

=0 otherwise.

(20)

The tensor TI,~I.~~ is zero at 0' and 180' scattering
angle, and it vanishes everywhere for 3I=0 when k;
is along the s axis. This is shown in Sec. V to be a
general property of the DWBA non-normal amplitude.
The quantity gM (Tz,(r» )', which aPPears as a factor
in the cross section, is

X4$ 2$i2 sin28/$(pi2 P.2)2+4$,2)li2 sin28$ (21)

IV. PROPERTIES OF EXCHANGE AMPLITUDES

In Ref. 11, some of the important properties of the
exchange amplitudes were noted. It was shown that the

where 0 is the scattering angle. For small-energy-trans-
fer reactions this is a fairly Rat function that peaks at
90' and goes to zero at 0=0 and 180'. The other
factor in the cross section in the cutoff PWBA is ap-
proximately proportional to jz, (qR)2, where R is the
cutoG radius. This latter factor also gives the angular
distribution for a normal transfer L in the cuto8
PWBA. Thus we should expect the angular distribution
for a non-normal L transfer to be similar to a normal
angular distribution multiplied by the right-hand side
of Eq. (21), which makes it go to zero at 8=0' and
180'. In the special case of no energy transfer, the
function Eq. (21) is simply a constant in angle. In
that case, however, jz(qr) is zero at 8=0' and Q=O
at 180'.
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L=2

r

/
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W$

a (inverse range) —F

FrG. i. Dependence of direct and exchange cross sections in "Zr(P, p') on the inverse range ce of the Yukawa force, Uo(e ~"/nr).
Uo is adjusted so that pocc~'. L is the orbital-angular-momentum transfer. I=8 excites the 8+ state while L= 1 and L=2 both con-
tribute to the 2+ excitation. The non-normal L= 1 transfer is pure exchange (see Sec. V).

ratio of exchange-to-direct cross sections increased
rapidly with increasing orbital-angular-momentum
transfer for a Vukawa-force range of the order of one
Fermi. Previously, it had been assumed that exchange
was important only for forces of short range, in which

limit the space-direct and space-exchange amplitudes,
Eqs. (2), approach each other. However, for high
transfers we And that the exchange amplitude actually
exceeds the direct and becomes increasingly important
at longer ranges. The increase in importance of ex-
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change is not because of any absolute increase in
the exchange amplitude with increasing range, but
rather because the direct amplitude decreases more
rapidly than the exchange as the range increases. This
relatively faster decrease is due to the fact that, for
transfer of orbital angular momentum L, only the L
multipole of the two-body interaction contributes to
the direct amplitude, whereas for exchange all multi-
poles of the interaction contribute. For a long-range
force, the magnitude of successive multipoles falls off
rapidly with multipole order, so that direct amplitudes
for high L are expected to be weak. This behavior is
illustrated in Fig. 1, where the dependence of direct
and exchange amplitudes on inverse range is shown for
I.= 2 and 8 with a constant volume interaction ( Ven '=
const). For I=8, the direct cross section falls off more
rapidly than the exchange as the range gets longer
(rr gets smaller); for I.= 2 the situation is reversed.

For a Rnite-range force, the exchange amplitudes are
expected to decrease relative to the direct with in-
creasing energy due to poor overlaps in matrix ele-
ments of the interaction taken between the slowly
varying bound and rapidly varying continuum wave
functions for projectile and target nucleon. This
expectation is borne out by our calculations. Figure 2
shows the energy dependence"" for L=2 and 8 of the
exchange-to-direct cross-section ratio. At 150 MeV, this
ratio is 0.04 for L=2. This small ratio does not mean
that exchange is negligible at 150 MeU since the cor-
responding amplitude ratio is 0.2. Assuming com-

10.0
l l

Energy dependent
optical parameters

1.0—

--- Energy independent-
optical parameters

b

O
X

b

0.1—

001 t I I I I

20 40 60 80 l 00 120 140

El I

—MeV

FIG. 2. Energy dependence of the ratio of exchange-to-direct
cross sections. The solid curves are calculated with the energy-
dependent optical parameters of Becchetti and Greenlees, ' (Ref.
16) and the dashed curve is calculated with the potentials of
Gray et al. (Ref. 17) for all energies.

"C(p, I)"N
Bllldmg
energy
(MeV)

&exch/e'dir

L=O L=2

90zr (p p~) 90zr

Binding
energy

(MeV)
d'exch/&dir

L=O L=4

10

20

30

50

0.215 0.88

0.208 1.07

0.208 1 ' 37

0.212 1.63

0.250 1.98

1.0

3.0

5.7

9.0

0.0747 0.532

0.0736 0.549

0.0735 0.570

0.0728 0.595

"F.D. Becchetti, Jr., and G. W. Greenlees, Phys. Rev. 182,
1190 (1969).' W. S. Gray, R. A. Kenefick, J. J. Kraushaar, and G. R.
Satchler, Phys. Rev. 142, 735 (1966).

TABLE IV. Dependence of the exchange-to-direct cross-section
ratio on the single-particle binding energy in a Woods-Saxon
potential. This particle is a 1PII2 neutron (proton) in the case
of reClreNl and a 1geir proton in ~Zr. I. is the orbital-angular-
momentum transfer.

pletely constructive interference the cross section with
exchange would be almost 50% greater than the direct
alone.

The form of the plane-wave exchange amplitude
t Eq. (16b') $ suggests that the importance of exchange
amplitudes relative to direct increases with binding
energy. This is verified to some extent in D%BA, as
shown in Table IV, where the exchange-to-direct
cross-section ratio for a number of cases is given as a
function of the single-particle binding energy. The
L=2 and L=4 ratios reproduce the expected behavior
quite well. The L=O ratios are much less sensitive to
the binding energy and are not in agreement with
Eq. (16b'). It should be noted that the effect con-
sidered here is small since one must go to highly un-
realistic binding energies to produce a signi6cant
Change tn O exch/O-d;r.

The irregular behavior of the L=O ratios can be
understood by recognizing that lower-orbital-angular-
momentum transfers take place generally at smaller
radii. Since the plane-wave expressions fEqs. (16a)
and (16b')] were derived in the cutoff approximation,
they do not give an accurate account of processes that
receive important contributions from inside the cutoff
radius. Also the principal effect of the binding energy
is to determine the form of the bound-state wave
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TABLE V. Dependence of exchange-to-direct cross-section ratios
on single-particle quantum numbers.

0 exch/0 dir

Direct
Exchange

I I
)

I I
)

I I
)

IAg/ I I

500 500

400 400

0.097

0.097

0.107

0.141

300

200

100

300

300

0.158

0. 135

0.425

0.430

0.272

200

100

200

500

0.474

0.337

0.500

function in the asymptotic region. This region con-
tributes more importantly to high-1. than to low-I,
processes and hence one expects the exchange-to-direct
ratios for higher I. to be more sensitive to the binding
energy, as indicated in Table IV.

The above argument suggests that a similar effect
should be produced by the use of harmonic-oscillator
wave functions, whose rapid asymptotic falloff is
simulated by a tightly bound Woods-Saxon wave func-
tion. Une eI, al. used harmonic-oscillator wave func-
tions for "C(p, e). For 1.=2, these wave functions
yield a ratio 0;,h/Od;, 2, whereas a calculation with
Saxon well and a realistic binding energy of 5 MeV
gives a value 0.88 for this ratio. Thus it appears that
the relative importance of exchange may be seriously
overestimated when calculated with harmonic-oscillator
wave functions.

The properties of exchange amplitudes that we have
discussed thus far have been calculated for transitions
in which the bound nucleon is in the same single-
particle state initially and 6nally. It is important to
know also how the exchange amplitudes vary with
single-particle quantum numbers. In Table V, exchange-
to-direct cross-section ratios are given for various
single-particle transitions involved in the nsSn(P, P')
reaction discussed in Secs. VI and VII C. These results
show that exchange is relatively more important for
higher radial quantum numbers and that exchange is
particularly important when e&&v2. The dependence
on orbital angular momentum is not as strong, but
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FIG. 3. Comparison of the direct and exchange phase angles
of the complex scattering amplitude as a function of scattering
angle for several important single-particle transitions in
'"Sn(p, 'p') "'Sn(2+) . M is the s projection of the orbital-angular-
momentum transfer L. (L=2 for this excitation. )
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exchange is favored by low I-values and by the con-
dition /&= l2. Exchange could be particularly important
for 0+—&0+ transitions where a small calculated direct
cross section often results from near-perfect cancellation
of several direct single-particle amplitudes with dif-
ferent single-particle quantum numbers. The cancella-
tion would be less complete for the single-particle
exchange amplitudes. Such a transition occurs in
'eZr(p, p') and is discussed in Sec. VII B.

Another important property demonstrated in Ref. 11
was the remarkable similarity of the phases of direct
and exchange amplitudes as a function of scattering
angle even for long-range forces. Figure 3 shows these
phases for several strong transitions in '"Sn(p, p')
involving a variety of single-particle configurations.
The amount of correlation between direct and exchange
phases is dependent primarily on the radial quantum
numbers of the initial and final states. Generally,
transitions with e~=e2 exhibit stronger phase cor-
relation than those with e&/n2, the greatest similarity
occurring for transitions between states having node-
less wave functions. For the proper interpretation of
the phase plots in Fig. 3, it is important to note that the
vertical scale has been extended beyond 360' to avoid
the appearance of discontinuities. Thus in the case of
the 3s~2d transition the two curves lie about 360'
apart and the direct and exchange amplitudes are
actually in phase over most of the angular range.
Keeping this in mind, we see that there is reasonably
good agreement between direct and exchange phases in
the majority of cases and that, except for the ig—+

2d(M=0) transition, the disparities that do occur
extend over only a small fraction of the total angular
range. The importance of these phase diGerences in
collective transitions will be considered further in Sec.
VI.

V. NON-NORMAL TRANSFERS

From Eq. (4a), we see that for the direct amplitude
the orbital-angular-momentum transfer is restricted
to even or odd values depending on the parity on the
transition. The reduced matrix element (l2 ~~

&z,
~~ lt)

is nonvanishing only when (—1)~= (—)" ", and the
latter phase factor has the sign of the change in parity
of the transition. On the other hand, there is no such
restriction on L in the exchange amplitude, Eq. (4b).
Let us label orbital transfers for which (—1)~W (—)" "
as non-normal transfers. These can occur, and do so
only through the space-exchange amplitude.

Consider the exchange amplitude $Eq. (4b)$ at 0'
or 180', for which I r, , (kr) = P'r, ,'(0) 6~p. With
3f=0, the Clebsch-Gordan coefficient vanishes for

(—1)~N( —1)~'+~'=(—1)'&+" that is, the exchange
amplitude goes to zero at 0' and 180' for non-normal
transfers, as in the simple plane-wave result, Eq. (21).
We know that, in the limit of short-range forces, the
non normal amplitudes must vanish at all angles,

because they approach the direct, which are zero. It
is important to determine the contribution of non-
normal transfers to the cross section for typical inter-
action ranges and the dependence of this contribution
on range.

Figure 4 shows a comparison of differential cross
section for the various possible transfers in the "C(p, n)
reaction assuming a pure pt~2

—+pt~2 transition and a
1.1-F Yukawa force with a Serber mixture. (This
Yukawa range is equivalent to the 1.8-F Gaussian
range used by Une et al. and was chosen to facilitate
the comparison made in Sec. IV with their results. )
In this case, the L=O transfer dominates, the L=2
cross section is lower by a factor of about 2, and the
non-normal L=1 contribution is down by a factor of
about 100 compared to the L=O.

With a Serber force of range 1.4 F (the OPEP
range) for the '4C(P, e)r4N ground-state transition,
which has an inhibited L=0 contribution related to the
P decay, we flnd the non-normal L= 1 cross section to be
a factor of about 100 smaller than the dominant L= 2.

The range dependence of a typical non-normal
transfer was shown in Fig. 1 for a constant volume
interaction (Veer '= const). In contrast to the behavior
shown for normal transfers, the non-normal cross section
reaches a maximum at some point and then falls oG
rapidly as the range becomes small.

It is interesting to note for the case of "Zr(p, p')
"Zr(2+), that, although the non-normal (L= 1) ampli-
tude is only 0.034 as large as the total normal (L=2),
it is relatively much larger with respect to the L=2
exchange component alone. Thus if the direct com-
ponent is not large, one would expect that the non-
normal contribution might be significant. Consider
the 8+ excitation in "Zr for which the exchange cross
section is six times the direct. The normal (L=8),
non-normal (L=7), and total differential cross sec-
tions for this case are shown in Fig. 5. The non-normal
part is quite significant here, contributing one-fourth
of the total cross section. Also apparent is the char-
acteristic shape of the non-normal angular distribution
mentioned at the beginning of this section and seen
earlier in analytical form $Eq. (21)$ in the plane-wave
limit.

It should be pointed out that, while the non-normal
L= 7 transfer contributes significantly to the excitation
of the 8+ state on the basis of the (1gg~q)2 wave func-
tion assumed in the calculation, it may actually be
much less important. The L=8 normal amplitude is
fairly strongly enhanced by collective effects (see
Sec. VII B), but the non-normal L=7, being a spin-
Rip amplitude, is probably not. This suggests the
interesting possibility that in the opposite case, where
the normal transfer is coupled to I'= 1 (spin flip) and
the non-normal has I'=0, the non-normal cross section
might be considerably enhanced relative to the normal. "

"F.Petrovich (private communication) .
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from all possible orbital-angular-
momentum transfers L. The L=O
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direct and exchange contributions.
L=1 is a non-normal transfer and
hence pure exchange.
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VI. EXCHANGE IN COLLECTIVE EXCITATIONS

In a microscopic description of a collective excitation,
the importance of exchange depends not only on the
magnitude of the various single-particle exchange
amplitudes but also on the degree of constructive inter-
ference present in their coherent sum. Glendenning
and Veneroni have suggested" that the phases of the
exchange amplitudes will be essentially random. Thus
one would expect that the constructive interference
characterizing the direct amplitudes would not obtain
in the exchange case. At variance with this prediction,
however, is the remarkable similarity between direct
and exchange phases observed by Amos et al.' for
"F(p, p') and by us" for "C(p, p') .

It is therefore of some interest to carry out a micro-

scopic calculation of the cross section and angular dis-
tribution for a collective excitation. We have chosen
for this purpose the (p, p') reaction leading to the 2+
state in '"Sn since microscopic wave functions exist"
for this nucleus. In addition, the recent availability of
the '"Sn(p, p') "'Sn(2+) angular distribution" provides
a useful check for our calculation as well as the pos-
sibility of obtaining force constants from the absolute
cross section (see Sec. VII).

Yoshida's collective RPA wave functions" include
approximately 100 two-quasiparticle configurations.
For computational convenience we have chosen the

' S. Yoshida, Nucl. Phys. 38, 380 (1962).
2'W. Makofske, W. Savin, H. Ogata, and T. H. Kruse, Phys.

Rev. 174, 1429 i1968l,
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46 strongest terms, which give about 70'P~ of the total
E2 transition strength. Optical parameters were ob-
tained in the usual way from elastic data. A two-body
Serber interaction was used with a Yukawa shape of
range 0.7 F, and a Coulomb term was included for the
proton transitions. (Angular distributions calculated
with longer Yukawa ranges were generally in slightly
poorer agreement with the data. ) The results are shown
in Fig. 6 with the Serber strength adjusted so that the
direct-plus-exchange curve gives the best visual 6t to
the data. It is clear that exchange makes an important
contribution here, its effect being to raise the total
cross section by a factor of more than 2. This implies
that the cancellation argument mentioned above is
not entirely valid, and it is therefore of interest to
examine the question of interference more closely.

To do this, we have made separate calculations of
direct and exchange cross sections for each of the single-
particle transitions in the 2+ excitation. If we consider
the ratio of exchange-to-direct cross section, os'/oD',
for each transition i, and compute a properly weighted
average of this quantity over all the transitions, the
result (os'/aD')« ——0.395 is obtained. This is to be

compared with the calculated ratio for the total ex-
change and direct cross sections, os"' '/aD"o"'=0. 224.
The observed diGerence is qualitatively what one would
expect if there were relatively more destructive inter-
ference among the exchange amplitudes than among
the direct. To see that this is indeed the case and to
obtain a more quantitative idea of the importance of
such interference, we de6ne a quantity

ill= 1 aD/aD y (22)

which is a measure of the amount of cancellation
occurring among the various single-particle direct
amplitudes. Here oD is the actual direct total cross
section and oa' is the cross section that one would get
if all the direct single-particle amplitudes were exactly
in phase, i.e.,

rrD ( Q (gDi) 1/212 (23)

An analogous quantity @& is defined for the exchange
cross sections. It is clear from Eqs. (22) and (23) that,
if all single-particle amplitudes are in phase, p will be
zero. For the present case the results pD

——0.096 and.
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FIG. 6. Differential cross sections
calculated with a 0.7-F Yukawa inter-
action plus Coulomb excitation but
without collective enhancement (see
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Fro. 7. Phase angles of direct and exchange complex scattering amplitudes as a function of scattering angle for typical single-particle
transitions in "Sn(p, p'). To make the curves continuous, multiples of 360' are added to the phase angle where appropriate. Thus
points which are 360' apart on the graph are actually in phase. There appear to be fewer curves in (a) than in (b) because of the
symmetry of the direct form factor !Eq. (5) g with respect to interchange of initial and 6nal bound states. No such symmetry occurs
in the exchange. Thus, for example, 2d—+1g and 1g~2d have identical direct amplitudes whose phase curves fall on top of each other.
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=0.366 are obtained. Thus, whereas the interference
among the direct amplitudes is mostly constructive

( 10% reduction), the cancellation among the
various exchange amplitudes results in nearly a 40%
reduction in the total exchange cross section. Quali-
tatively, therefore, randomness of the type anticipated
by Glendenning and Veneroni' is actually present in
our calculated single-particle exchange amplitudes
but the resulting cancellation is not sufficient to make
the total exchange amplitude negligible. It is interest-
ing to note that, in spite of this significant cancellation,
the resultant total direct and total exchange ampli-
tudes are almost exactly in phase, there being only
1.5% cancellation between them.

Another important question to consider is whether
the destructive interference present among exchange
amplitudes shows any dependence on scattering angle.
In Fig. 7, the phases of the complex direct and ex-
change scattering amplitudes of the nine strongest
transitions contributing to the '"Sn(p, p') "'Sn(2+)
excitation are plotted as a function of the scattering
angle. The direct phases are quite close together
throughout the angular range, but the exchange phases
tend to diverge at backward angles. This should tend
to make the total exchange angular distribution fall
off more rapidly than the angular distributions of in-
dividual single-particle exchange amplitudes. This
effect can be seen quantitatively by taking the ratio

(ds);, (dB) .,

as a measure of the falloff for the ith single-particle
exchange angular distribution. A weighted average of
this falloB parameter over the nine strongest transi-
tions in '"Sn(p, p') gives f=0 054, wher. eas the cor-
responding value for the total exchange angular dis-
tribution is f= 0.029. We have previously pointed out"
that the tendency of the exchange angular distribution
to fall off more slowly than the direct will increase the
back-angle scattering when exchange is included. The
result just obtained indicates that this effect should be
stronger for transitions between pure shell-model
configurations than for collective excitations. In the
latter, the cancellation among many exchange ampli-
tudes at back angles will cause the total exchange
angular distribution to fall off more rapidly, like the
direct.

There is an additional interesting feature that arises
from single-particle interf erence. We observe large
qualitative differences among the single-particle ex-
change angular distributions and to a lesser extent
among the direct. In summing the direct and exchange

amplitudes separately however, these differences
somehow tend to cancel and one obtains total direct

and exchange angular distributions that exhibit con-
siderable qualitative similarity. Again this implies that
inclusion of exchange may have a much smaller effect
on the shape of the angular distribution in a collective
excitation than in a relatively pure single-particle
excitation.

As stated in the Introduction, the liquid-drop model
has been remarkably successful in describing collective
nuclear transitions. Such calculations are inherently
direct since they include no nucleon other than the
projectile. It is clear from the results of this section
that the reason for this success is not that exchange
contribution is negligible, but rather that, when all the
individual single-particle transition amplitudes are
added together, the shape of the resulting total ex-
change angular distribution is remarkably close to the
direct.

VII. ABSOLUTE CROSS-SECTION CALCULATIONS

A. Inclusion of Collective Enhancement

Love and Satchler" have shown that it is necessary
to include collective enhancement to predict inelastic
scattering cross sections. Even though the shell-model
wave function including major configurations accounts
for a large fraction of the wave function, the contri-
bution from minor configurations can increase the cross
section by a large factor. Yoshida" has examined the
core contributions in the quasiparticle RPA. It follows
from his results that in "'Sn, for example, while the
51—82 major shell contributes 87% of the 2+ wave
function, inclusion of the 13% of the wave function due
to minor configurations will increase the inelastic
a-scattering cross section by a factor of about 6.

Thus, one is faced with the necessity of obtaining
detailed information about the contribution of minor
configurations. Attempts in this direction have been
made by Zamick" and by Petrovich and McManus, "
who carried out perturbation calculations based on
realistic forces, which treat the core as a system of
noninteracting particles in a Hartree-Pock well. They
have not been entirely successful because of the failure
to take into account the strong neutron-proton inter-
action for the core nucleons, which is expected to pro-
duce primarily v =0 enhancements. "However, better
calculations of this type will be capable of predicting
both inelastic scattering and electromagnetic transi-
tion rates.

An alternative approach, which does not require cal-
culation of detailed wave functions, utilizes the knowl-

edge that electromagnetic transitions and inelastic
scattering are closely related. This fact has been ex-

'W. G. Love and G. R. Satchler, Nucl. Phys. A101, 424
(1967)."L.Zsmick (unpublishedl.
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ploited by Love and Satchler, "who use the collective
model to account for core contributions. Here we use
the same idea but in an approximate microscopic
picture.

The inelastic enhancement factor, which is calculated
in Appendix C, is based on two assumptions. The first
is that in both inelastic scattering and electromagnetic
transitions the collective enhancement comes entirely
from v =0 isospin transfers. The second assumption is
that the ratios of inelastic single-particle amplitudes,
both direct and exchange, to the corresponding elec-
tromagnetic amplitudes are iridependent of the single-
particle quantum numbers.

The first assumption is a statement that the effective
charge of the nucleons in the shell model is due to core
motion in which the neutron and proton Auids are
moving together following the motion of the extra-core
nucleons. This is probably a good assumption since the
low-lying strongly enhanced E2 transitions are those
in which there is no isospin change. Further evidence
is the near equality of the deformation parameter P
determined from different kinds of reactions. " For
example, (p, p') and (rt, e') reactions would lead to
very different values of P if the nuclear protons and
neutrons were involved differently in the core excita-
tions. For the quasiparticle RPA wave functions of
Ref. 19, the core enhancement is within 2% of being
due~entirely to the r =0 transfer part.

The second assumption is rigorously true' " for the
direct amplitudes in the plane-wave approximation for
forward scattering in the limit of zero Q-value scatter-
ing. It has been tested" in the direct distorted wave
approximation for the 1f, 2p shell, where variations of

30% were found in the ratios. However, the phase
difference between the direct inelastic and electro-
magnetic single-particle amplitude was always very
nearly independent of the quantum numbers. It is
clear from the results of Sec. IV that the exchange-
to-direct amplitude ratios have fairly wide variations
from one single-particle transition to another, so the
second assumption cannot be very accurate for ex-
change. However, the phase will be given accurately
for the large single-particle amplitudes because of the
similarity in phase of direct and exchange amplitudes
discussed in Sec. IV. When many single-particle ampli-
tudes are added together, the random variations in
amplitude will tend to average to zero.

As shown in Appendix C, it follows from these two
assumptions that, for a spatially even force and a
nucleus in which the shell-model wave function con-
sists either entirely of proton or entirely of neutron
con6gurations, the enhancement factor for the inelastic

"P.H. Stelson, R. I . Robinson, J. H. Kim, J. Rapaport, and
G. R. Satchler, Nucl. Phys. 68, 97 (1965) .

W. T. Pinkston and G. R. Satchler, Nucl. Phys. 2'7, 270
(1961).

25 F. A. Schmittroth (private communication) .

amplitude is

(L) = El' eo(L) ~ I'.)/(I'o+ ~.), (25)

the upper sign being for scattering of the projectile
neutron or proton from like nucleons in the target.
In Eq. (25), the parameter eo(L) is the v=0 electro-
magnetic effective charge. It is related to the neutron
and proton epee//'7)e charges (taken in units of the true
proton charge) by the expression

with
eo(L) = e„(L)+e„(L)

e„(L) e„(I.) = —1.

(26)

(27)

Thus, if we know empirically the proton effective
charge for a particular electromagnetic transition, we
can calculate the inelastic enhancement. If there were a
r = 1 enhancement, then the right-hand side of Eq. (27)
would be replaced by a v=1 effective charge ei(L),
and this factor would then multiply the V, in the
numerator of Eq. (25).

As a test of Eq. (25), we have calculated the in-
elastic enhancement for '"Sn from Yoshida's quasi-
particle-RPA wave functions" by explicitly including
essentially all configurations and taking the ratio of the
cross section to that calculated with the inclusion of
only the cloud neutrons —those in the 51—82 major
shell. In the notation of Ref. 19, we define the effective
charges as

e„=
g p'0)'/g'])/& g (&)

gO)
(28a)

g p'(&)~/g~]&/2+/ to

g(&)
(28b)

With these effective charges the cloud wave function
gives the total electromagnetic transition rate. This
differs from Yoshida's definition of effective charge,
which would be appropriate only if there were protons
filling the major shell. Equations (28) hold with
neutrons, protons, or both, and they reduce to Yoshida's
definition if there are only protons filling the major
shell.

The neutron effective charge calculated from Eq.
(28a) is e„=0.67 from which, according to Eqs. (26)
and (27), eo ——2.35. From Eq. (25), we obtain e=2.01.
The inelastic cross section, when calculated using only
the cloud configurations, should then be multiplied by
a factor of 4.04. By detailed calculation including all
configurations we And an enhancement of a factor
of 3.34. If only direct terms are included the factor
is 3.69, which shows that the second assumption in-
volved in obtaining Eq. (25) is more accurate for
direct than for exchange amplitudes. The angular
distribution including only major-shell configurations
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TAar.E VI. Cross-section ratios for states in ~Zr including collective enhancement with and without exchange. The enhancement
factors used in the cross section comparison are those from Eq. (25) . The cross section ratios are based on the value of do/dQ at 40'
for the 2+ and 4+ states, and at 60 for the 6+ and 8+ states.

e„(L)b

Enhancement factors'
From From

Kq. (25) Ref. c
No

exchange

do'—(2')
dQ

Including
exchange Experimental

1.79

1.65 12.7

9.0

5.8

19.1

12.6

8.9

6.6

1.0

0.14

0.011

0.00i

1.0

0.18

0.026

0.005

1.0

0.16~0.02

0.029~0.006

0.016+0.007

~ Comparison between inelastic cross-section enhancement factors cal-
culated with Eq. (25) and those from the detailed microscopic calculation
of Petrovich and McManus (Ref. 15).

"Effective proton charge from Ref. 15.
~ Reference 15.

and that including all configurations are essentially
identical within 1% for 0(60 and never differ by
more than 12'jj~ at any angle. Thus, for this example
the assumptions involved in the derivation of Eqs.
(25)—(27) appear to be valid to a reasonably good ap-
proximation. A further test is provided by the example
of ' Zr discussed below.

B. Ine1astic Scattering in ' Zr

The J =0+, 2+, 4+, 6+, 8+ states in "Zr provide an
especially interesting study for any theory of inelastic
scattering because of their simple shell-model descrip-
tion. Structure calculations" indicate that (except for
the 0+) these states are well described by the (1gs~s)'
proton configuration. In the 0+ state (1.75 MeV) as
well as the 0+ ground state the (1ggs)' mixes strongly
with (2pigs)'; the wave functions are believed to be ap-
proximately

) ground, 0+)= 0.8
i

pi~s') —0.6
( gs/9 ) and

[ 1.75 MeV, 0+)=0.6
( prys )+0.8 [ gsgs ).

The population of these states by (p, p') was first
studied by Gray et al. '~ at 18.8 MeV. They showed that
the direct DWBA with a Yukawa force of range
1 F and strength 205 MeV gave a fair description of the
2+, 4+, and 6+ states if one included a 40% cross-section
enhancement for the 2+ state. This enhancement was
qualitatively expected on the basis of the empirical
quadrupole enhancement. However, for the 8+ state,
the theory fell short of the data by a factor of more
than 3 and also badly described the angular distribu-
tion. On the other hand, the calculated cross section
for the 0+ state was a factor of 5 larger than the upper

"B.F. Bayman, A. S. Reiner, and R. K. Sheline, Phys. Rev
115, 1627 (1959); I. Talmi and I. Unna, Nucl. Phys. 19, 225
(1960).

limits that could be determined from the rather meager
data at a few angles. In view of the very large exchange
effect for higher I values, it appears that the in-
adequancy of DWBA, at least for the 8+ state, may be
overcome by the inclusion of exchange.

For comparison of various cross sections, we have
used the value of the differential cross section for each
state at a particular angle where the theoretical shape
is in reasonable agreement with experiment. " These
angles are 40' for the 2+ and 4+ states and 60' for the
6+ and 8+ states. The choice of this angle for the 8+
state is somewhat arbitrary because of the large ex-
perimental errors and the poor agreement. The 0+
state at 1.75 MeV will be considered separately.

If we now calculate the cross-section ratios for the
8+ to the 2+ state using the wave functions given
above for the excited and ground states and using the
interaction of Ref. 17, we obtain 3.1X10 ' without
exchange and 1.5&10 ' when exchange is included.
The experimental ratio" is 1.6~0.6&&10 '. However,
in spite of the essentially perfect agreement, this result
is not realistic because of the neglect of collective
enhancement. " To remedy this deficiency in our cal-
culation we have included collective enhancement
using the approximation developed in part A of this
section. As in Ref. 21, experimental effective charges for
electromagnetic transitions are required. Since these
are available only for the 2+ state, we first use theo-
retical estimates made by Petrovich and McManus. ""

These are listed in Table VI along with theoretical
estimates of the inelastic cross-section enhancement
factors e(L)' calculated from Eq. (25). The exchange
mixture was taken from the effective interaction
used in Ref. 15 to represent approximately the 6 matrix
calculated from the Kallio-Kolltveit force by cutting
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it off below the separation distance. (This interaction,
which will be referred to hereafter as the KK effective
interaction, is an even 1-F Yukawa potential with an
exchange mixture given below. ) For comparison with
our estimates, we show the enhancement factor ob-
tained by Petrovich and McManus" as the ratio of the
cross section including a microscopic description of the
core to the cross section calculated without including
the core. Also shown are ratios of differential cross
sections including our estimate of the enhancement
factor both with and without exchange. Except for
8+ state, the calculated ratios are in good agreement
with experiment. For the 8+ state the inclusion of
exchange improves the ratio by a factor of 5, but it
still falls shprt pf the data by a factpr pf 3.

The theoretical estimate of effective proton charge
e~(2) is somewhat smaller than the value 2.4&0.5
determined by Love and Satchler" from the experi-
mental B(E2)."If we use the latter in Eqs. (26) and
(27) to determine the effective charge, es(2), then the
enhancement factor, Eq. (25), for the Serber force is
«(2) = 5.2~1.6 and for the KK effective force of
Ref. 15, e(2) =6.6+2.1. These errors are based on an
error of 40% in the experimental B(E2)" and an
estimated 10% error in the approximate method for
calculating the collective enhancement factor. They
do not include any of the error resulting from the
departure of the isovector effective charge from the
assumed value of 1.Using the Serber result, the 0+—+2+

cross section in Zr requires a strength of Vq= —101+
31 MeV which has Vo= —38&12 MeV, V, =13&4
MeV. The value of V, obtained in analysis of the (p, e)
reaction in light nuclei" was about 24 MeV. Since no
exchange was included, this latter number accounts for
some exchange effect, whereas the one determined
above does not. Using the results of Ref. 11 we obtain
a corrected value V,=17 MeV, which is somewhat
higher than our result.

The KK effective interaction is" t(0,1) =
—73.4(e "/r) (1.64(per+(Pre). Using the cross-section
enhancement factor of e'=44~28 given above, we
obtain a differential cross section of 0.81+0.52 mb/sr

' Compared to the actual KK G matrix (Ref. 18) the 1-F
Vukawa interaction overestimates the L=8 direct cross section
by a factor of about 3 while affecting the exchange cross section
very little. (Other multipoles are only slightly different for the
two forces. ) This is consistent with recent results (Ref. 28)
which show that a Yukawa interaction of 2-F range gives a
fairly good representation of the L dependence of a central 6
matrix obtained from the Hamada-Johnston potential. However
since the direct amplitude is relatively small for the L=8 transfer
the 8+ to 2+ cross-section ratio is overestimated by only 20%
when the 1-F Yukawa interaction is used.

"W. G. Love, L. W. Owen, R. M. Drisko, G. R. Satchler, R.
Stafford, R. J. Philpott, and W. T. Pinkston, Phys. Letters 293,
478 (1969).

"Yu. P. Gangrskii and I. Kh. Lemberg, Yadern. Fiz. j., 1025
(1965) LEnglish transl. : 'Soviet 'J. Nucl. Phys. 1, 731 (1965)g.' J. D. Anderson, S. D. Bloom, C. Wong, W. F. Hornyak, and
V. A. Madsen, Phys. Rev. 17'7, 1395 (1969).

at 40' compared to the experimental value of 0.97
mb/sr. This is very good agreement. The values of
V, and V„determined from this effective force are
18 and 12 MeV, also in excellent agreement with the
value obtained from charge exchange reactions. "

These results are based on the experimental value, "
B(E2) = (4.2&1.5) &&10 ' cm, used by Love and
Satchler" in their determination of the eGective proton
charge. Recently another measurement has come to our
attention in which the result B(E2)= (8.15&1.2) &&

10 "cm4 was obtained. "With this new value, the KK
effective interaction leads to an inelastic enhancement
factor e(2) = 10.4&1.4 and do/dQ(40') = 2.01~0.54
mb/sr, the latter number being a factor of 2 higher than
experiment. Because of the complete disagreement
between the two B(E2) values we have not averaged
them but have used each of them separately to cal-
culate the interaction strength required to fit the data.
These results will be summarized in Table VII. Ex-
perimental resolution of the B(E2) discrepancy will be
important in establishing the consistency of our
results.

The angular distributions in Zr are not greatly af-
fected by inclusion of exchange. The best fit is obtained
for the 2+ state, shown in Fig. 8. The calculated curve
does not include spin-orbit distortion. Its inclusion
introduces more structure in the angular distributions
and improves the agreement for the 2+ state slightly. '
The angular distributions for the 4+ and 6+ states are
also in reasonable agreement with the experimental
data, but for the 8+ state the agreement is very poor, as
shown by Gray et al. '~ The inclusion of exchange
worsens the agreement slightly for the 8+ state.

The ratio of the 8+ cross section to that of other
states could be improved somewhat by use of a longer-
range force. However, such a force is probably un-
realistic since the Vo term is at least a two-pion-ex-
change interaction. The apparent disagreement of the
calculated angular distribution with experiment prob-
ably indicates that there are other mechanisms in-
volved. The weakness of the direct transition for the 8+
state means that other mechanisms will be relatively
more important in the excitation of the 8+ than for
other states. Better experimental data are needed to
clarify the question of the mechanism for the 8+ exci-
tation.

As mentioned above, the data'~ for the 0+ state at
1.75 MeV was insufhcient to yield an angular distribu-
tion. More recently, this state has been seen via
(P, P') at 12.7 MeV by Dickens ef al.ss who were unable
to fit the data with a microscopic calculation. The
inclusion of exchange greatly improves the angular
distribution at angles beyond 100'. The magnitude

+ T. H. Curtis (private communication).
3 J. K. Dickens, E. Eichler, and G. R. Satchler, Phys. Rev.

168, 1355 (1968).
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FIG. 8. A comparison of the experi-
mental data (Ref. 17) with a calculation
using a 1-F Yukawa force and the ex-
change mixture of the KK interaction.
With the inclusion of exchange and col-
lective enhancement a strength VIE=82
MeV is required to 6t the data. There are
errors of about 50% associated with the
cross-section enhancement factor (see
text}.
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of the cross section is increased by a factor of 3 when
exchange is included but is still a factor of 5 below the
data. This large increase compared to that expected
from the pure (g9/2) 0+—4+ exchange-to-direct cross-
section ratios" can be understood from Table V which
shows that the exchange is relatively more important
for larger numbers of radial nodes. The amplitude for
this transition is proportional to the difference in
single-particle amplitudes for the 2p~/~ —+2p~/2 and the
1g9/2~ 1g9/2 transition. These come close to cancelling
each other for the direct terms, '~ but not for the ex-
change terms since the 2p~/2 exchange amplitude is
expected from Table V to be somewhat larger than the
1gg/2 amplitude.

"This effect of the configuration mixing on the exchange-to-
direct ratios was pointed out to us by F. Petrovich.

C. Inelastic Scattering in '"Sn

In this section, we calculate the absolute cross section
for excitation of the collective 2+ state in "SSn(p, p')
using the KK effective interaction and compare it to
the experimental results of Ref. 20. We also calculate
the Serber force strength required to 6t the absolute
cross section and compare it with that obtained for
"Zr(p, p'). The radial dependence of both the Serber
and KK effective forces is of the Yukawa form with a
range of 1 F.

Although Yoshida's wave functions" for '"Sn do
include a large amount of collectivity, they still fall a
little short of predicting the experimental B(E2) for
"'Sn. Moreover, we do not use all configurations
actually included by Yoshida, so our calculated value
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TABLE VII. Summary of interaction strengths.

Reaction

Serber
strength'

(MeV)

KK
strengthb

(MeV)

~Zr(p, p') 2+ (2.18 Mev)

~zr(p, p')2+ (2. 18 MeV) d

"'Sn(p, p') 2+ (1.22 MeV)

KK effective interaction

(p, n) reactions'

66~9

78&10

150

73'

73

~ Coefficient of exchange operator: ((Pot+(PIo)e "/r.
COefBCient Of exChange Operatar: (1.64 (poI+(pIO)e "/r.' Based on B (B2) value of Ref. 29.

d Based on B (B2) value of Ref. 31.' Strength determined (Ref. 15) from KK interaction.
f Strength determined from average values obtained in Ref. 30 corrected

to a 1-P range and for exchange. The strength given would be required to
give the empirical value of V~ but would be inconsistent with V«.

e„S„+e„S„eo(S„+5„) (5 —5,)—
5„ 25„

~f
B(E2)exot

(B(E2)a,~,

where, again, S„and S„are as defined in Ref. 19. The
quantities 5 +S~ and 5„—5~ are the primed sums in
Eqs. (C3) and (C4). Our calculated B(E2) is 1210 F4

compared to the experimental value" of 1722 F'~
20%. From Eq. (29), we obtain co=1.18&5 jo. The
inelastic amplitude enhancement factor obtained from
Eq. (C9) is

~oVo(5.+5,) —V,(5.—S,)
Vo(S +S„)—V, (S —5~)

(30)

'4T. H. Curtis, R. A. Eisenstein, D. W. Madsen, and C. K.
Bockelman, Phys. Rev. 184, 1162 (1969).

for B(E2) will fall short of experiment still further.
To remedy this defect we again use the technique
discussed in Sec. VII A for obtaining the inelastic en-
hancement factor. Whereas in Sec. VII A we used
both Voshida's cloud wave functions and his more

complete collective wave functions to test the enhance-
ment formula, we now regard the latter as the model
wave function and calculate from it and the experi-
mental B(E2) the inelastic enhancement factor.

In this case, there are both neutron and proton con-
Qgurations in the model state. The electromagnetic

amplitude enhancement factor is

For the KK effective force Vo/V, ~—2 and for the
Serber force Vo/V, = —3. These ratios and the value of
eo obtained above give o=1.15~4% (KK force) and
1.16&5% (Serber force). With this value the KK ef-
fective force would require a strength of 64~6 MeV
and the Serber force 78&10MeV to ht the experimental
data in Fig. 6. The error includes a 20 jo error in the
measured B(E2)" from which the inelastic enhance-
ment factor was calculated and a 15'Po error in fitting
the theoretical differential cross section to experiment.

These results and the interaction strengths required
for the "Zr(2+) excitation are summarized in Table
VII. The strength required for '"Sn lies between the
two strengths determined for "Zr on the basis of cal-
culations from the two inconsistent experimental
values of B(E2), discussed in Sec. VII B.

VIII. DISCUSSION

It has been the hope in recent years that the micro-
scopic model of nuclear inelastic scattering and charge-
exchange reactions in the DWBA with some effective
interaction would be adequate for the interpretation
of experimental data. Once this has been established,
these reactions can be used as a tool for nuclear spec-
troscopy. Inelastic scattering data are not as simple to
interpret as one-particle transfer data, which directly
give occupation numbers of nucleons in various single
particle levels j.Because the j appears coherently in the
inelastic scattering cross section, the interpretation is
more complicated. On the other hand, the interference
can yield important information about relative phase in
configuration-mixed wave functions.

The primary application of inelastic scattering
analysis probably will be for determining spins and
parities of levels and for testing nuclear wave functions.
For example, charge-exchange reactions give essentially
the same information as P decay but do not have the
severe limitation to low-lying states. In order for in-
elastic scattering and charge-exchange reactions to be
useful for testing wave functions, the effective inter-
action must be one which does not vary much from
nucleus to nucleus or from state to state in a given
nucleus.

In general, it is possible to write the transition am-
plitude for inelastic nuclear scattering or charge ex-
change as a matrix element of the t operator

A=Jr' &Cr
~

I
~

I,;P,~+&). (31)

The t operator is complicated and generally nonlocal.
From a practical point of view it is important to be able
to approximate t sufficiently accurately with a simple
interaction —one would hope even a local form. Unless
exchange is included explicitly this will not be possible,
because the knockout exchange is itself part of the
nonlocality in Eq. (31). If nuclear forces were weak
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enough that a literal DWBA with real forces were
accurate, the eRect of antisymmetrization could be
included as a particular nonlocality:

A= Qy' '(0') Cg(1', 2, 3 ~ ~ ~ iV)
I

V(0, 1) (hp, p 5i,i.

—'p, i'i,p) I
~'(12 " &)|t""'(0)) (32)

where 6;,- is a Kronecker delta in the sum over spin and
isospin coordinates and a Dirac delta in the integral
over the space coordinates. The second term in the
operator in Eq. (32) gives the exchange amplitude. In
effect, what was being done in inelastic scattering
calculations until recently was to try to replace the
highly nonlocal operator in Eq. (32) by a local one.
The procedure was surprisingly successful, except that
it led to a strong L dependence, and therefore a state
dependence, of the interaction. This L dependence is
explained naturally by the explicit inclusion of ex-
change. The results presented in this paper show that
in the 0—150-MeV range, no nucleon-nucleus scattering
calculation with a simple local interaction which omits
exchange will be accurate.

On the other hand, if exchange is included explicitly,
there is considerable hope that realistic forces with the
hard cores removed" by a Scott-M oszkowski separ-
ation'"" are capable of giving absolute cross sections
in the DWBA. The results presented in Sec. VII with
the KK effective interaction show that, if collective
enhancement is taken into account, the DWBA in-
cluding exchange is capable of giving correct ratios for
various final states in 'PZr(P, P'). The calculation still
gives a small result for the 8+ state, but we should
reserve judgement on this transition until better ex-
perimental data are available. The question of how well
the realistic force fits experimental absolute cross
sections is somewhat obscured by the two inconsistent
experimental values of B(E2) for the 0+—+2+ transition
in "Zr. However, it appears that realistic forces have
sufficient strength to explain experimental cross sec-
tions when both exchange and collective enhancement
are included. The realistic forces have a proton-proton
strength which is a factor of more than 10 weaker than
that which was thought to be required before the im-
portance of these effects was understood. At the same
time, . the KK effective interaction has almost exactly
the isospin transfer strength which has been deduced
from analysis of charge-exchange experiments" when
the latter are corrected for the exchange effect. Thus,
our results indicate that the same semirealistic central
force is capable of explaining both inelastic scattering
and charge-exchange reactions.

"S.A. Moszkowski and B. L. Scott, Ann. Phys. (N.Y.) 11,
65 (1960)."G. E. Brown, in Unified Theory of nuclear Models and
nucleon-A"ucleon Forces (North Holland Publishing Co., Amster-
dam, 1967), 2nd ed.

The assumption made in connection with the calcula-
tion of the collective enhancement factor is probably
close to being correct; that is, the core enhancement in
nuclear transitions comes from the AT=0 part of the
interaction. The isovector effective charge cannot
always have the assumed value of e&

——1; its value is, of
course, model-dependent. The wave functions of Ref.
19 for which the cloud nucleons have almost exactly
e~= 1 were calculated assuming equal neutron and pro-
ton orbits a,nd using an isoscalar two-nucleon force. If
the isospin dependence of the two-body force had been
taken into account, it is expected that the value of e~

would have been lower because of the stronger attrac-
tion of the valence neutrons for core protons and vice
versa. Thus the difference e~ between the neutron and
proton effective charges is less than the value of unity
that it would have if they each attracted core protons
equally. 3 '

When a value of e~(1 is used for estimating the
cross section in "Zr, the resulting cross sections are
increased. For example, for the rather extreme assump-
tion of a purely isoscalar transition, e&= 0, the estimated
enhancement factor would be 90 instead of the factor
of 40 obtained from using e~

——1.In fact, the procedure
could be reversed and used to calculate e~ from proton
or neutron inelastic scattering, when the B(EL) is also
known, if it can be established that a local effective-
two-body interaction is adequate to describe inelastic
scattering in DWBA.

It is probably worth pointing out here that the iso-
vector effective charge could be obtained also from a
comparison of the (p, p') and (e, e') results on the
same nucleus. In "Zr, for example, if the simple (g@p)'
wave function were correct, the KK effective force
would lead to an (e, e') to (p, p') cross-section ratio of
I-(Vp —V,)/(Vp+ V,) 7' 9, neglecting Coulomb e6ects.
The ratio of the deformation parameters p obtained
with a collective-model analysis including the collective
enhancement effects in the effective-charge approxima-
tion of Sec. VII A would be

P(e, B') LVpep —V,ei7/)Up U, (X—Z)/A7-
p(p, p') LVpep+ V.ei7/LUp+ Ui(& Z)/A7 '—(33)

We are grateful to Professor B. R. Mottelson for conversa-
tions clarifying this feature of isovector effective charge.

37 G. R. Satchler, R. M. Drisko, and R. H. Bassel, Phys. Rev.
136, B637 (1964).

where Uo and V~ are the strengths of the charge-
independent and T t terms in the nuclear optical
potential. Taking the values Uo ——49 MeV and U~=
24Mev" (ignoring the isospin dependence of the
imaginary part of the potential), one obtains from Eq.
(33) for the 0+~2+ transition in "Zr, p(e, n')/
p(p, p') =1.46 for ei=1. If the transition were purely
isoscalar, ei ——0, the P ratio would be 1.12.

In spite of the uncertainties connected with our knowl-
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edge of e&, it is true that for any reasonable estimate of
the isovector effective charge, large enhancement
factors are obtained. This is particularly true when the
model state consists entirely of the same kind of nucleon
as the projectile, since the model-state cross section is
then very small. In cases of inelastic scattering where
AT=0 transfer is possible, it seems to be true that no
simple shell model is adequate to give absolute cross
sections. This kind of difficulty is familiar from E2-
transition calculations with shell-model wave functions,
and the difficulty arises from precisely the same effect
in the nucleus: the large contribution of a small fraction
of the wave function containing a very large number of
minor configurations involving the core.

On the other hand, charge-exchange reactions may
be relatively free of these core effects. The agreement
of the isospin-transfer parts of the KK interaction
with phenomenological charge-exchange strength sup-
ports this possibility. The detailed microscopic treat-
ment of collective enhancement in inelastic scattering
is, of course, an interesting problem in itself. As a test
for shell-model wave functions, however, the charge-
exchange reaction is highly preferable to inelastic
scattering just because it avoids the necessity of in-
cluding the core enhancement.

IX. SUMMARY

We have reported in this paper the results of a study
of the efIect of knockout exchange on nuclear inelastic
scattering. The following properties of the exchange
mechanism have been demonstrated:

(1) There is a strong I. dependence in the relative
contribution of exchange and direct amplitudes for
ranges &0.5 F due to a rapid decrease in the direct,
amplitude with increasing range when the orbital-
angular-momentum transfer L is large.

(2) Exchange effects do decrease in importance with
increasing projectile energy, but are not negligible in
the 10—150-MeV range.

(3) The exchange contribution is relatively more
important for transitions between single-particle states
with radial nodes, particularly when the number of
nodes is different in the initial and anal single-particle
wave function. There is a slight increase in the relative
importance of exchange with increasing single-particle
binding energy.

(4) Amplitudes for the direct-forbidden non-normal
transfers, (—1)~W (—1) '~", give a small contribution
to the cross section in most cases, but they can be
important for high-L transitions where exchange
dominates.

(5) For single-particle transitions between states
with the same radial quantum number the phases of
the complex direct and exchange amplitudes are nearly
the same. When e&~e2 the phases can be very different.

(6) Exchange single-particle amplitudes contribute

signihcantly to the cross section for collective states
although there is some tendency for cancellation due
to random phases. For a typical 0+—+2+ transition the
inclusion of exchange increases the cross section by a
factor of about 2.

Simple plane-wave expressions have been found using
an expansion of the interaction around zero range
which demonstrate qualitatively the properties (1)
and (2) above.

A simple method is presented and used for estimating
the collective enhancement for inelastic scattering cross
sections from the empirical nucleon effective charges.
Application has been made to calculation of the relative
cross sections for the 2+, 4+, 6+, 8+ states of "Zr in-
cluding exchange and using effective charges obtained
by Petrovich and McManus" from a detailed micro-
scopic model. A I-F Yukawa interaction normalized to
reproduce the 2+ cross section also gives the mag-
nitudes of the 4+ and 6+ cross sections accurately.
Although the inclusion of exchange increases 8+ cross
section by a factor of 5, the result still falls short of the
data by a factor of 3.

Application has also been made to the calculation of
absolute cross sections for the 2+ excitations in
'"Sn(p, p') and 'OZr(p, p'). The cross section was
calculated with 1-F Vukawa interaction having an
exchange mixture determined by Petrovich and Mc-
Manus to give approximately the same scattering
for the 2+ excitation as G matrix for the KK inter-
action. With this interaction the absolute cross section
is in agreement with experiment for '"Sn(p, p'). There
are experimental uncertainties connected with the
estimate of collective effects in "Zr. The charge-
exchange terms in the interaction are in agreement
with those obtained by analysis of charge-exchange
reactions.
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APPENDIX A: ANTISYMMETRIZED FORMALISM
WITH SPIN-ORBIT DISTORTION

We present in this Appendix a formulation of the
antisymmetric nucleon-nucleus scattering modified to
include the effects of spin-orbit distortions. The effect
of spin-orbit distortions in direct reactions has been
treated previously by Satchler" and by Tobocman. "

38 G. R. Satchler, Nucl. Phys. 55, 1 (1964).
3 W. Tobocman, Theory of Direct Nuclear Reactions (Oxford

University Press, New York, 1961).
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The space-direct and space-exchange single-particle
radial integrals for definite orbital-angular-momentum
transfer are given by

«o II Vz II li) &L If V, II L,)
I

where RJ and R; are continuum and bound radial
wave functions. We define a composite amplitude

M(I, I', L) = Q d;„,(I, I', L)
2122

X RJ,* ro gl, '»' ro RJ& ro r02dro, Ai

gl. ' ""'=(—1)"Q W(L&l&L&lo) XL)(Lo (~ V), ~~ li)
where the coefficients are as defined in Sec. II.

In terms of these quantities the transition amplitude
&&o I~I»1~IIi) f" (~)~;(~i)»(~o, i) for particular initial and final projections of nuclear

total angular momentum M;, My and projectile spin
XRJ (»i)R;, (»o)»i »o'd»id»o (A2) p' Ijf is

A(xr' '(0)C)r(1, 2, ~ ~ ~ A)
~

Voi
~ x +'(0)4, (1, ~ ~ ~ A) —x +'(1)C,(0, 2, ~" A))

= Q C(J;JrI; M;, —Mr, I(I) (——1) * ~'O, (IJ,;prIX), (A. 4)
1'N

where

6 (1)(jp»IX) =
LMIIJ1J2J1L2

(4 )2'( Lm—~p0(0—) p' M'(lo )

&CJiJQ'I" Jo Lo C(JiJoI; p, , M pr, X—)—
I I'I.

XC(Li-',Ji, Op;p, )C(Lo-',Jo, M) pr, M+pr) (—1)~' ~ "I zo rM~'~'(II'L), (AS)

~o= o fg(»)»'d'».

A is the number of target nucleons, x is the projectile where c2 is the coefFicient
distorted wave, and 4 is the wave function for the target
or residual nucleus. The cross section is (82)

do f 2m)'kr
, I

—C2(2J'+1)3 ' 2 I ~()"wI&) ['
dQ (47','i k,

APPENDIX B: ZERO-RANGE EXPANSION OF
PWBA IN CUTOFF APPROXIMATION

We start by applying the expansion about zero range,
Eq. (15), of the space-direct and space-exchange
amplitudes, Eqs. (2) . Carrying out the integration
over r~ gives us the following expressions

Ig ' ——fyf*x 7'(y$,~ops,~') d'»,

I (2) —fx oy m)go(x, y mm) do»

(83a)

Using the Hermiticity property of the V' operator we
may write these integrals alternatively as

The first terms in Eqs. (81) are the zero-range ampli-
tudes, and they are identical. The second terms are the
second-order corrections in the range parameter. Let
us denote these integrals by

I'= (—1)" Q C(liloL; mimoM) Vofxr*(r)y;(r)

&& (1+c,V') (@~ ~&(r)(l)~, '(r) )d'», (81a)

( ) fy mme mug (x ox ) do»

I (o) —fx y motto(x *y my) do»

(83a')

(83b')

G= (—1)'& Q C(li/, L; mimoM) Vofxr*(r)y(, "&(r)
The form Eq. (83a') is very convenient if we are using
plane waves since in that case the V' operation is simply

& (1+~o~') (x'(r) A "'(») )d'», (81b) V'(xr*x ) = —q' exp( —oq r), (84)
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Gz~ ——(—1)" Q C(l&lpL; m&mpM) VpcpiQ
m] m2

~ f exp( iq r) (P&,"'VP&,"& y—&,"&Vy&,~&) d'r .(88)(85)FLM (1 cpg )FLMq

where q = kf—k; is the momentum transfer. Combining where
Eqs. (8 la) and (84), we have simply

where Fl.~ is the zero-range amplitude, the first term
of Eq. (81a). The finite-range effect expressed by the
second term leads to a more rapidly falling angular
distribution thaD the zero-range amplitude. This is a
reasonable result, since the inclusion of the finite range
makes the effective size of the distracting object larger,
leading to a narrower diffraction pattern.

In order to calculate the exchange integral, we take
half the sum of the two forms Eqs. (83b) and (83b')
and carry out the V' operation, putting in plane waves
for xf and x;, take the derivative of the plane waves,
write the results in terms of q and Q= (kz+k, )/2
and integrate by parts in the resulting q terms to get
the result

I "&= 'f$ —kf' —k'+—Kp+Kp+(2m/fP) (2V)+qq

&&exp( —iq r)p» 'p&,~2d'r+iQ ~ f exp( —iq r)

where

&& IV(A'ALlp. li1) —(—1)"+'~zRi (r)

x Z&i,~(r)(—1)"Z« II & II»

)&liW(AXLlii lp1) I Tz(gii, (89)

t' l+1 l'"fdRi lRi't

&2l+1J & dr
X=l+1

( l l"'(dRi l+1
Rg

&2l+1j & dr r

Using the gradient formula~ we can write Eq. (88)
after some recoupling of angular momenta

Gz,pz
——iVpc&Q ~ f exp( —iq. r)

&& IRi, (r) 2 (—1)"Lzi.~(r) Z «i II V~ II »ip

X (Q, 'VQ, '—,"', ') d', (86)
=0) otherwise

(2o)

where exp//2m is the single-particle binding energy and
U is the binding potential.

The first term of Eq. (86) is closely related to the
direct term Eq. (85). In particular, when a cutoff is
taken beyond the range of the binding potential, the
U term will be zero in the integrand. The rest of the
terms in the bracket in Eq. (86) are constant and can
be factored out of the integral. In that case, we have

and T1.~~1)~ is the vector spherical harmonic. We note
that for normal transfers, (—1)"+" z=1, so for the
special case where the initial and Q.nal single-particle
levels are the same, the two terms in Eq. (89) will
cancel each other and 61.~"'2 vanishes.

APPENDIX C: INCLUSION OF COLLECTIVE
ENHANCEMENT

for the space-exchange amplitude Collective enhancement is not expected to be im-
portant for spin-fhp transitions (I'= 1), so we consider

GziLz= [1+ipcp(xzP+xpP kP kzP+zI')—]Fzj—z+GzM, (87) here only I'=0, for which the cross section is

(' m'tI kz Jz+
dn &4~IPj k, 2(2J,+1)

$1 2 /1

X (—1)' +,$1/2 jp & ip S(JJzL,jjip~~)

oz).
&(C(p pr; n u0) (—1)' ' ~ Q (2S+1)—(2T+1)p(p —p8,imari)Ara(Fzgg"" —(—1) + GzM""~"), (C1)

TS

where v is the isospin transfer and the charge index a is
now written explicitly. Aside from the spectroscopic
amplitude S(J;JzL; jijpaa), the sign of the coeflicient
is different for neutrons and protons for the 7.= 1 term
but the same for the 7-=0 part. Thus for collective
motions in which neutrons and protons are moving

together as nuclear Quid, which will have

S(J'JfLA Jdp) S(JJzL, jijp —
p
—'p)

the core contributions to the v. = 1 term are expected to
be much less important than to the r =0.

' M. E. Rose, ELementary Theory of Angular Momentum (John
Wiley 8z Sons, Inc. , New York, 1957},p. 124, Eq. (6.42) .



EXCHANGE IN NUCLEON-NUCLEUS SCATTERING

In the microscopic picture, collective motions con-
tributing to electromagnetic and inelastic enhancement
of simple shell-model states are included by appropriate
mixtures of very small percentages of configurations
beyond the major shell. Let us assume that the part
of the amplitude due to r= 1 isospin transfers is not

changed significantly by the inclusion of these
minor configurations, but that the r =0 transfers
are changed —increased significantly for collective
states.

Corresponding to Eq. (C1) the reduced electric
transition rate is

j&

2
~(JJfL,i'~i 2~~) L2

—~)Ls~7~ j 2 k 1- (12 II "Vr («) II f~&
2J; I;„; ' '

( )
where again n is the isospin projection of the nucleon.
The erst term in the brackets is the r =0 part and the
second, the r=1. We define an isoscalar effective
charge eo(L) in units of the proton charge for the «=0
part with the relation

e0(L) Z fj»aa= Z fj&j2a& (C3)
9122& 2122O'

&1(L) Z firma~= Z fj»' a&j„
7122ol

where f;„, is th.e quantity in the sum in Eq. (C2)
excluding the brackets. The primed sum extends only
over major configurations, and the unprimed sum ex-
tends over all configurations. We also define an isovector
effective charge with the relation

particle amplitudes are approximately proportional:

Fr~""-(&)= (f2~
~ ~

«'Vr. («)
~ ~

f~n)FI ~(&),

GLM"'-(~) = (4~ I) «'V~(«) ji ~~~)G~~(~) (C~)

where Fr~(8) and Gz~(8) are proportionality factors
independent of j&j2. With this assumption it follows

from substitution of Fz,~&»2 ~ from 'Eq. (C5) into

Eq. (C1) that the « =0 part of the inelastic scattering
amplitude is enhanced by the factor eo.

For electromagnetic transitions and for direct in-

elastic scattering, it is obvious what the r=0 and
r=1 terms of the interaction are. In the latter case,
they are respectively the terms in the amplitude coming
from the Vo and V, terms in the spin-independent
term of the central effective two-body force

Vo+ V-.~i &~ (C6)
The assumption that the collective enhancement comes
almost entirely from the r=0 part of the amplitude is
equivalent to setting e~~1.With this assumption we can
rewrite the effective electromagnetic transition operatoi
in terms of neutron and proton effective charges, e„=
-', (co+1), e„=—', (eo—1) . Thus we have eo

——e„+e,
e„—e =1.

In order to use this information on effective charges
in inelastic scattering we must make a further assump-
tion. We assume that the electromagnetic single-

particle matrix element and inelastic scattering single-

These are precisely the combinations of Az z that
appear in Eq. (C1) for «=0 and «= 1. For the case of

exchange scattering the combinations of Apg giving
rise to pure charge-exchange or pure spin-exchange

given in Eq. (C1) have in general no simple relation-

ship to the spin-isospin dependence of the two-body
force. However, for a spatially even force they are the
same combinations as for the direct. We now restrict
the derivation to the even force case, for which the
cross-section equation (C1) becomes

do ( 2m 'I' k«2J«+1
dQ &4nA, ') k, 2(2J,+1) g 7zg2 j2

(r. o 1.)
l2 S(J;J«L;j j&,nn)

)&2/VO 4nV, ](Fr~&»' —+GrM& »' ) . (C7)'
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Using Eqs. (C3)—(CS) and the assumption that el ——I,
we can write the cross-section equation (C7) including
sums only over major configurations just by multiplying
the Vo term by the isoscalar effective charge eo.

Analogous to the neutron and proton effective charges
we define a neutron and proton inelastic enhancement
factor which is to multiply the neutron and proton
shell-model contributions to the inelastic amplitude in
order to account for the core configurations:

Voce(L) &V,

, (L) Vo&V,

Equation (C8) holds for (p, p') reactions; for (rt, rt')
reactions the ~ signs are reversed.

If the shell-model wave function consists only of
protons or only of neutrons, the r=0 enhancement
simply amounts to a multiplication of the cross section
by a factor e„'(L) or e„'(L).
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Determination of the Quadrupole Moments of First Excited 2+
States in Cd»4 and Fe" by Coulomb Excitation*

G. ScHILLING, t R. P. SGHARENBERG, AND J. W. TIPPIE)

Departraeut of Physics, Purdue IIIsioersity, Iafayette, IudharIa 47P07

(Received 23 June 1969l

The diEerential Coulomb-excitation probability for the 0.558-MeV 2+ excited state in Cd'~' and for the
0.847-MeV 2+ excited state in Fe"have been measured by Coulomb exciting with 0"ions of 25- and 30-MeV
incident energy. Inelastically scattered ions were separated from ions scattered elastically by requiring a
coincidence with a deexcitation p ray detected in a large scintillator placed close to the target. The differen-
tial excitation probability was interpreted in terms of the reorientation eGect to yield the static electric
quadrupole moments for the 0.558-MeV 2+ state in Cd", Q»= —0.64%0.19)&10 "cm2, and for the 0.847-
MeV 2+ state in Fe' Q22

———0.345~0.054&&10 cm~.

I. INTRODUCTION

ECENT measurements of the static electric quad-
rupole moments of excited nuclear states' ~ are

~ ~ ~ ~ ~

providing insight into the character of the first excited
2+ states which have been classified as vibrational
states. The present paper is intended to describe in
detail our determination of the static electric quadru-
pole moment of the 0.558-MeV 2+ state in Cd"4 and
the 0.847-MeV 2+ state in Fe".These experiments were

* Supported by the U. S. Atomic Energy Commission under
Contract No. AT (11-1) 1746 (Chicago Operations Office).

t Present address: Department of Physics, University of Notre
Dame, Notre Dame, Ind.

f Present address: Argonne National Laboratory, Argonne, Ill.' J. de Boer et al. , Technical Report, California Instute of Tech-
nology, 1965 (unpublished) .' R. G. Stokstadt et al. , Nucl. Phys. A91, 319 (1967).' J. J. Simpson et a/. , Nucl. Phys. A94, 177 (1967) .' P. H. Stelson et al. , Bull. Am. Phys. Soc. 10, 427 (1965).' P. H. Stelson, in Proceedings of the Summer Study Group on
the Physics of the Emperor Tandem Van de GraaR Region,
Brookhaven National Laboratory, 1965, Vol. III, 1005 (unpub-
lished) .' J. E. Glenn and J. X. Saladin, Phys. Rev. Letters 19, 33
~1967).

7 G. Schilling et al. , Phys. Rev. Letters 19, 318 (1967).

carried out by measuring the differential Coulomb ex-
citation cross section of 25- and 30-MeV 0' ions scat-
tered off Cd"' and Fe" nuclei. The scattered ions were
detected in coincidence with the deexcitation 7 radia-
tion. The shape of the differential Coulomb excitation
cross section can give conclusive evidence for the pres-
ence of the "reorientation effect."~"

Consider a charged particle incident upon a target
nucleus. In the language of the semiclassical Coulomb
excitation theory ' the differential excitation cross sec-
tion can be written

do/dQ (inelastic) = P($, 0) do/dQ (Rutherford), (I)

where J'(f, 8) is the excitation probability. If E($, 0)((
then the elastic differential cross section do/dQ

(elastic) closely approximates the Rutherford cross sec-
tion. Here $ is the adiabaticity parameter associated

G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955).' G. Breit, R. L. Gluckstern and J. E. Russell, Phys. Rev. 103,
727 (1956)."G. Briet and R. L. Gluckstern, in Encyclopedia
(Springer-Verlag, Berlin, 1959), Vol. XLI/I, p. 548."K. Alder et al. , Rev. Mod. Phys. 28, (432 1956).


