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In this notation, the deformation considered by Gerace
and Green"' corresponds to 2=+0.2. Filling the
Cartesian harmonic-oscillator states for protons in
Ca", we obtain

p,- = (2/~'") L(1+os) (1+os) (1—oe) 3"2

Xexp[ —(g2/b 2+y2/b 2/s2/b 2)j
XI l+2(~2/b. 2+&2/b. 2+s2/b. 2)'j (C2)

Substituting (C1) in (C2), changing to spherical
coordinates, and angle averaging, we obtain

pprot= (42r) f pprotdf)

=22r ots(1+-o,e) (1—-2s)'t2

X expt —r'lb'(1+-', c—c cos'()) j
X tt +2(r4/ 'b—) (1+—e—e cos20) 2)d coso. (C3)

Equation (C3) may be cast into a form convenient for
comparison with spherical harmonic-oscillator densities
by expanding the quantities of order e out of the
exponential and integrating. Retaining terms of order
e', we obtain

pnr. t ——22r-st 2)1—
—o,2'$ exp (—r'/b')

X l3+2~/b'+xf (r'/b')" 'x(r'/b') "—+x'x(r'lb') "j
(C4)

Recognizing 2sr ot2(2+2r4/b') as the Cato ground state
in a spherical basis, it is evident that (C4) represents
the removal of e'/6 or 0.67% of the protons from the

spherical ground state and redistribution of them in
higher states. One may verify that the normalization
of (C4) is correct to order e2.

To simplify the inclusion of the single proton in an
excited Nilsson state, it is most convenient to rewrite
(C4) in terms of spherical harmonic-oscillator radial
functions E„,(r). Clearly, there is no unique way of
doing so, but the following form has the advantage of a
small number of radial functions with roughly com-
parable coeScients.

p ot, =p+ (22rr ) 5 geo~op 2& +oP—Be +o2

o 22+102+ 2 22+122+ e esp 27 (C5)

where p, is the density of the Ca" ground state for a
spherical harmonic oscillator. Using Nilsson's tabulated
wave functions, "removing a single proton from orbit 8
and placing it in orbit 14 with &=0.2 corresponds to a
change in density of

b = (22rr2) 'L —0.5Ro22+0.3795Epo2+0.1205Rusj. (C6)

Thus, using (C5) and (C6) and including the fact that
the probability for deformation is 200ro, the total
density correction from the deformed admixture is

AP = (102rr2) 1L—0.0067Roo2 —0.0200Ep12 —0.5833go22

—0.0067k 2+037952 2+0.12058112+0.02678 '
+0.0900Eptsj. (C7)

This correction is extremely small and is graphed
in Fig. 24.

"S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
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The dynamics of nuclear distortion is studied for two spherical nuclei under the influence of their mutual
Coulomb interactions. Both the quadrupole and the octupole degrees of freedom are considered. Realistic
stiffness and effective-mass parameters are employed. It is found that the energy needed to bring the two
nuclei into contact increases as a result of the distortions. However, in the most favorable case, the increase
is only a few percent. This is much smaller than previous estimates using either the liquid-drop model or the
adiabatic model.

I. INTRODUCTION

PREVIOUS estimates of the increase in the
Coulomb-barrier height were obtained by studying

the dynamics of distortion using the liquid-drop
model, ' or by using an adiabatic model with realistic
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stiffness parameters. ' A very large increase in the
Coulomb-barrier height was obtained. The use of
liquid-drop parameters to describe the vibrational
properties of a nucleus is inappropriate, however, as
they do not reproduce the experimental excitation
energies and the transition rates for the first-quadrupole
vibrational state. On the other hand, the distortion
estimated by considering the deformation potential
alone, as done in Ref. 3, would be correct only if the

C. Y. Wong, Phys. Letters 26B, 120 (1968).
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collision process were infinitely slow, so that the nuclei
adjusted themselves to the potential minimum during
the whole process. However, as we shall see later,
because the collision time is much smaller than the
nuclear-quadrupole oscillation time, this assumption of
an adiabatic process is questionable.

We have studied the dynamics of distortion using
realistic stiffness and effective-mass parameters C and.
D for the quadrupole and the octupole d,egrees of
freedom. Also, the nuclear diffuseness has been taken
into account. As in previous studies we have limited,
ourselves to head-on collisons of two spherical nuclei.

II. THEORY

The two nuclei under consideration are assumed to
have a Fermi-type charge distribution with a diffuse-
ness a and half-density radii R&":

where

C()&&4) —( 1)~P(4s )ots

XE(24+24) !/(2"&+1)!(24+ 1) I]' ' (7)

and the multipole moments are defined as

~()&t ) = f»"V»(&&, 4)t (», 0) d'».

To the second. order in the deformation parameters !8)!,

and &t/Rp, we have for our charge distribution

M(& tt) = 3„p(3ZeRo /4s) I (4s.)'"3&,p/()&+3)

+Px(1+ (X+4) (X—1)s'&t'/6Ro']

+-,'()&+2) P Bx 8x t()&', )&", )&)
gl $1I~

XL1+ () +3) () —2)s'&t'/6Ro'] I (8)
p&t&(», g) =po&'/{ 1+ exp/(» —R&o)/&t]I (1) where

where the half-density radii are given by

R"'=Rp"'$1+ Z 8x"'V&,o(0"')] (2)
)~=0

However, not all the deformation parameters are inde-
pendent. In fact, from the conservation of volume and
the constancy of the center of mass, we have

(4~) "—' Z»'+o(P')
)t=l

1 1 2

where p, is the reduced mass of the colliding nuclei, r is
the magnitude of the position vector r that originates
from the center of nucleus 2 to the center of nucleus 1,
Dq~') and Cq~" are the effective-mass and stiffness
parameters for the qth degree of freedom in the jth
nucleus, and V, (», Px&'&) represents the mutual Coulomb

interactions between the two nuclei. The latter can be
expanded in terms of the multipole moments Mr(4)
and Ms(4) of the two charge distributions, as in Alder
and Winther'.

~1~281l&t2

(), 4
!C(44) I

py pg p] p2

X Fx,~x, &„,~ „,& (r) ~,(4tt, )l!do()&otto)/»"'+" ', (6)

(X+1)8&,8x+r

,=, L(2)&+1)(2)+3)]&to

The Hamiltonian of the system can be written as
follows:

r~»2+1 g Dx&t&Px&tls+ r P Cxb&8 &t)s

( '»"») = fVx o V&,"oVxo d&

E,O 0 0)
XL(2)&+1)(D.'+1)(2Y'+1)/4s]'t'. (9)

The first factor in Eq. (6) can also be written explicitly
for head. -on collisions. We have

(4 4 4+4)
C(Z,),) ~ l V&i+&,p.p(0=o) = (—1)"'4~

(0 0 0)
Xf(4+4)!/4!4!]/t (24+1)(24g1)] t (10)

The Harniltonian LEq. (5)] leads to the following
equations of motion:

Dx&tlti &t&+C &t&Px&t)+.8V /8P &~&

) =2, 3;i=1, 2 (11)
and,

tt»+8 V,/8» =0.

This set of coupled equations can be integrated to give
the deformation Px&" as a function of time. For this
integration, we start at a distance r))E, so that the
inhuence of higher multiple moments on the initial
orbital is negligible. The initial values of » and d»/dt at
a time t are then given as in Alder et al.'

III. DETAILS OF CALCULATION

Many quantities must be specified in the equations
presented above before one can carry out the program of
tracing the history of deformations of two colliding
nuclei.

For the half-density radius of a nucleus, we have the

4 K. Alder and A. Winther, Nncl. Phys. A132, 1 (1969). ' K. Alder et at. , Rev. Mod. Phys. 28, 432 (1956).
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TABLE I. Eftective-mass and stiGness parameters for quad-
rupole and octupole oscillations in units of their respective values
for the classical liquid-drop with an irrotational Row.

TABLE II. Percentage increase in the Coulomb-barrier height for
various combinations of targets and projectiles.

C2/C2(LD) D2/D2(LD) C3/Cg(LD) Da/Dg(LD)

60Ni 106Pd 206Pb

60Ni

106pd

206Pb

1.12
0.331

23.9

11.1
9.90

74.9

5.10
2.60
2. 13

23.6
22.9
7.46

60Ni

106Pd

206Pb

0.4 1.8
4.1

0.8
3.2
1.6

In Table I, it can be observed. that "'Pd is very soft
against quadrupole deformation and, has a relatively
small effective mass, while '""Pb is very stiff and has a
very large effective mass. The "Ni nucleus is inter-
mediate but resembles "'Pd more than "'Pb. For octu-
pole vibrations, "'Pb is relatively soft and has a small
relative mass parameter among the three nuclei, while
~Xi has large relative stiffness and mass parameters.
The relative octupole vibrational parameters for"'Pd
are between these two extremes.

Now, with the knowledge of all the parameters and
the initial conditions, we can proceed with the integra-
tion of the equations of motion PEq. (11)g. Figure 1

shows the results of calculations of the collision of
' 'Pd with "Pb at an energy of 8=344 MeV (which is
about 10 MeV below the Coulomb-barrier height
defined later). The time is expressed in units of the
collision time, the time origin being approximately the
moment of closest approach. It can be seen that the
quadrupole deformations of the two nuclei are small at
the moment of closest approach. They become much
larger after the two nuclei are appreciably separated
from each other. This is because the collision time for
the process is only about 1/25 of the natural quad-

rupole-oscillation period of "'Pd. For the octupole
vibrations, the deformation at the moment of closest
approach is about the same as that of the oscillation
amplitudes after the two nuclei are parted. This is
expected, as the natural octupole-oscillation period is
now only a few units of the collision time.

IV. COULOMB BARRIER AND INTERACTION
BARRIER

The nucleus-nucleus interaction consists of both the
Coulomb interaction and the nuclear interaction. If
the nuclear interaction is of the form of a square well
with a sharp edge at a definite separation, the Coulomb-
barrier height is well de6ned and is equal to the energy
needed to bring the two nuclei to that separation. We
know that nuclear interaction, although being short
range, still can extend quite far as the surface of a nu-
cleus is diffused. The total potential has a peak whose
position and. height depend not only on the Coulomb
energy but also on the nuclear potential. The situation
is illustrated in Fig. 2. The height of this peak can be
conveniently called the interaction-barrier height E~.
This is also the energy that may be measured. by experi-
ment. " When the imaginary potential is relatively

TABLE III. Deformations for various combinations of colliding
nuclei at their Coulomb-barrier height E,. For each combination
of nuclei, the deformations are such that the nucleus on the left
side has a negative value of p3, while the nucleus on the right
side has a positive value of p3.

Ec
Ei
E.

~ ~ o~ 6oNi+ 0Ni

(MeV)

92.0 Ni
Ni

+10'p2 102'

—0.80 —0.23
—0.80 0.23

60Ni+ 106Pd 141.6 ¹i
Pd

~ 1
—6.5

—0.28
0.52

60Ni+206Pb

106Pd+106Pd

225. 1

221.2

Ni
Pb

Pd
Pd

—1.4
—0.47

—8.5
—8 ~ 5

—0.32
1.4

—0.63
0.63

FrG. 2. The position of the Coulomb-barrier height E, as
compared with the interaction-barrier height EI. The quantity
E, is defined with respect to a square-well nuclear potential,
whereas Eg is defined with respect to a diffused potential. The
total nucleus-nucleus interaction potentials in these cases are
shown as a solid and a dashed curve, respectively. For the case
when there is no distortion and a square-well potential is assumed,
the, total potential is shown as a dotted curve. The Coulomb-
barrier height is Eo in that case.

106Pd+206Pb 354.2 pd
Pb

2o6Pb+2o6Pb 569.1 Pb
Pb

'3 U. Smilansky (private communication) .

—12
—0.65

—0.96
—0.96

—0.76
1.8

—2.3
2.3
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unimportant, this is the energy at which the probability
of absorbing the projectile reaches a value of one-half,
as given by the Hill-Wheeler penetration formula. ""
Lacking any knowledge on the nuclear part of the
nucleus-nucleus interaction. , we shall consider only the
Coulomb barrier in our calculations, keeping in mind
its distinction from the interaction barrier.

Accordingly, we shall define the Coulomb-barrier
height as the energy needed to bring the two nuclei
into a "touching" position. Two nuclei are said to be
touching each other if the separation of centers is

s(P) =E&'&(t&=180' Pg&'&)+2&2&(8=0', P&&'&)

+-', Q 7&'&+X, (13)

where X is the Compton wavelength of the pion, in-
cluded here to take into account approximately the
range of nuclear forces. This condition also coincides
approximately with that used in the traditional estimate
given by s= 1.5 fm)( (A&'&'+A2'").

For the set of nuclei under consideration, the
Coulomb-barrier height E, can be obtained and com-
pared with the same quantity Eo when there is no dis-
tortion (i.e., when pq"&=0).

The difference hE= E,—Eo divided by E, for various
combinations of projectile and target is presented in
Table II. The distortions at the touching moment are
depicted in Table III.

V. DISCUSSION AND SUMMARY

The most important conclusion one can draw from
Table II is that the fractional increase B,E/E obtained
in a dynamical model is, even for the most favorable
case, only a few percent, which is much smaller than
previous estimates with the liquid-drop model' ' or the
adiabatic model. ' The diGerence is also partly due to
the use of a larger and more realistic contact radius
PEq. (13)j, so that the distortion effect terminates at a
larger separation.

We come now to investigate the effect of dipole
distortion on the Coulomb-barrier height. Since the
dipole-oscillation period. is comparable to the collision
time, an adiabatic model can be used to estimate the
dipole distortion. Here, Eq. (4) for p& has to be aban-
doned, as now one has to speak of a neutron medium
oscillating collectively with respect to a proton medium.
Instead, the displacement parameter p„&&'& for the pro-
tons can be shown in the adiabatic model to be

~

p~q&'&
~

= (3/4m )'&'(Z&Z2e2RO/r'C&&'&).

The stiQness parameter C~~" can be estimated from the
energy of the giant-dipole state and the effective mass
for dipole oscillation. In the Goldhaber-Teller model, "
the latter is

D,= (3/4~) (ZA/X)m, Z„
where m„ is the mass of a nucleon. This gives a stiGness

"D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

of 3.5&&10' MeV for ' 'Pd and 7.5&(10' MeV for "'Pb.
The fractional decrease in the Coulomb-barrier height
due to dipole distortion is of the order of 10—4. The effect
of the dipole oscillation on the Coulomb barrier is
therefore very small.

When we compare the importance of the octupole
with the quadrupole degree of freedom, we find that,
since the octupole-monopole interaction becomes effec-
tive at a separation closer than that for the quadrupole-
monopole interaction, the octupole distortion is usually
less important. However, there are important excep-
tions for nuclei such as "'Pb, which is soft against octu-
pole and stiff against quadrupole vibrations. For these
nuclei, p3 may be larger than p2. (See Table III.)

For permanently deformed nuclei, the stiffness and
the effective mass for quadrupole oscillation are rather
large. One should, expect small distortions during the
collision. Thus, as far as the Coulomb-barrier height
is concerned, the important eGects are the geometrical
and rotational effects. The first effects arise because the
Coulomb energy and the touching condition depend on
the orientation of the symmetry axis. The maximum
and minimum energies may differ by as much as 10%.
This diGerence may be rejected in the threshold be-
havior for some reactions, which for colliding deformed
nuclei should be diGerent from that for spherical nuclei.
The second eGects have to do with the dynamical
rotational force when one (or both) of the colliding
nuclei is endowed with a permanent intrinsic quadru-
pole moment. This force tends to rotate the nucleus
so that its symmetry axis is perpendicular to the
collision axis. The averaged Coulomb-barrier height
therefore increases. "

When the present work was completed and the
results reported at the Conference on the Properties
of Nuclear States, " a similar calculation on Coulomb
distortion was published by Holm et al. ' However, with
a simpler method using the Alder-Winther interaction, 4

we have treated the collision of other cases. Although
the results obtained by Holm eI, al. '~ are qualitatively
similar to ours, the fractional increase in the Coulomb-
barrier height is substantially larger than what we
obtain here. This may be due to the diGerence in the
choice of the contact radius.
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