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The left-unitary operators that introduce the correlations of the hard core in an uncorrelated bound-
state wave function of a finite number A. of particles are explicitly determined up to a unitary transforma-
tion. Left unitarity is required in order to keep orthonormality. Using a shell-model basis, transformed
according to the correlation operator, it is possible to diagonalize the Hamiltonian in a subspace of the
full Hilbert space with the technique of Bloch and Horowitz. Ground as well as excited states are treated
on the same footing. In practice, the diagonalization is accomplished using the original single-particle
basis and transforming back the Hamiltonian. This results in an A-body operator for which a cluster
expansion is possible. In this cluster expansion, there are three- and four-body terms easy to evaluate,
because they factorize. A particularly interesting application can be made to few-body systems, evaluating
the integrals numerically. The unique approximation is then connected with the cut of the basis. The
method developed seems comparatively simple and is free of the mathematical problems of the hard core.

1. INTRODUCTION

4=0 for r;;=c. (1.2)

Inside the cores the wave function is defined by

4=0 for r,,&c. (1.3)

For more than two particles, the problem cannot be
solved exactly, and perturbation theory must be used.
This cannot be done in the standard way, as matrix
elements of single-particle wave functions with hard
cores are meaningless.

Two approaches have been attempted so far in order
to handle the problem: (i) the well-known Brueckner-
Goldstone theory, ' (ii) the method of the correlation
operators. '

For an extensive review on this subject see B. H. Brandow,
Rev. Mod. Phys. 39, 771 (1967).

d T. Tagami, Progr. Theoret. Phys. (Kyoto) 21, 333 (1939);
N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960); P. H.
Wackman and N. Austern, ibid. 30, 529 (1962); F. Villars, in
Proceedings of the International School of Physics "Enrico
Fermi", Course XXIII, edited by V. F. Weisskopf (Academic
Press Inc. , New York, 1963);J. S. Bell, in Lectures on the Many-
Body Problem, Bergen, 1961, edited by C. Fronsdal (%. A.
Benjamin, Inc. , New York, 1962); J. Da Providencia and C. M.
Shakin, Ann. Phys. (N.Y.) 30, 95 (1964); C. M. Shakin, J. P.
Svenne, and Y. R. Waghmare, Phys. Letters 21, 209 (1966);
D. M, Brink and M. E. Grypeos, Nucl. Phys. A97, 81 (1967);
C.JfM. Shakin, Y. R. Waghmare, M. Tomaselli, and M. H. Hull,
Jr., Phys. Rev. 161, 1015 (1967).

1

S shaH consider the time-independent Schrodinger
equation for a finite system of particles mutually

interacting by a two-body potential having an infinite
core. It is a partial differential equation that holds
for particle separation distances greater than the core
radius, with the condition that the wave functions
vanish on the surface of the cores. With standard
symbols we can write for a system of A particles

A p2 A

Igr —+ Qr V,;—8}+=0, (1.1)
i 2' i&j

««, , = ~
r;—r,

~
&c, where c is the core radius,

Correlation operators are left-unitary operators that
introduce the correlations (1.2) and (1.3) in an un-
correlated basis. Left-unitarity is needed in order to
keep orthonormality. To perform calculations, in ab-
sence of an explicit form for the correlation operators,
the authors cited make assumptions and approxima-
tions lea,ding to the method (i). One of such assump-
tions is that the correlation operators can be written
as e'~, and 8 can be approximated by a sum of two-body
terms.

As far as point (i) is concerned, the situation is that
there is no mathematical proof of convergence, and
that the present results are ambiguous. On this subject
we have already made some observations' that we hope
to extend in a subsequent paper.

Method (ii), on the other hand, since no correlation
operator is known, is at the stage of a variational ap-
proach, where the approximated correlation operators
serve to introduce a trial wave function starting from
an uncorrelated wave function.

Neither of the methods goes practically further than
the study of two-body correlations. The importance of
three- or more-body terms is very difficult to evaluate
in (i) and impossible in (ii) .

In this paper, we exactly determine the left-unitary
correlation operators for bound systems of a finite
number of particles. They differ from one another by
an a,rbitrary unitary transformation. In Sec. 2 we shall
consider the case of two particles in order to introduce
the method, while in Secs. 3 and 4 we shall consider
the most general case.

In order to perform calculations it is convenient to
use an uncorrelated basis and transform back the
Hamiltonian. This will be made in Secs. 5 and 6.
Using the techniques of Bloch and Horowitz, 4 it is pos-

3 C. Natoli and F. Palumbo (to be published) .
4 C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).Better for

our purpose is the version of M. Macfarlane in Proceedings of the
International School of Physics "Enrico Fermi, " Course XI,.
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sible to diagonalize the transformed Hamiltonian in a
Qnite subspace of the full Hilbert space using shell-
model wave functions as a basis.

The transformed Hamiltonian is an 3-body opera-
tor, because of the appearance of a collective variable,
and this is true separately for the transformed kinetic
energy and the transformed two-doby potentials. This
gives the possibility of a numerical investigation about
the rate of convergence of a cluster expansion, as the
many-body terms are explicitly determined. To zeroth
order in the cluster expansion, the transformed poten-
tials involve only two-body terms (and this holds to
all orders for a potential of zero range outside the
core), but the transformed kinetic energy involves two-,
three-, and four-body terms. 5 These are easy to evalu-
ate because they factorize. Now, for sufficiently dilute
systems the cluster expansion will converge rapidly,
but we are afraid that with the nuclear parameters the
convergence is slow. ' If so, the crucial point is: How
good is the zeroth-order approximation? In fact, the
method is of practical use in the measure in which the
zeroth-order approximation is good. The answer re-
quires a numerical investigation. In any case, the
method is free of the mathematical problems peculiar
to the hard core, is comparatively simple, allows a check
of the rate of convergence of the cluster expansion, and
ought to improve the approximation obtained in this
fieM with the inclusion of the factorizable three- and
four-body terms. Moreover, calculations on the few-

body problem can be performed to any degree of accu-
racy by making numerical integrations.

We emphasize that because of the left unitarity the
method allows us to treat on the same footing the
ground state as well as the excited ones and is particu-
larly suitable for calculating moments and transition
amplitudes very sensitive to the hard-core region.

We shall be concerned only with the bound-state
problem, and shall use bound-state single-particle wave
functions for the many-particle basis. The separation
of the c.m. motion from the internal motion can be
obtained with a method previously developed. 7

2. TWO-BODY CASE

Let us introduce the uncorrelated basis C„(ri, rs).
We shall sometimes use the c.m. position vector R and
the polar coordinates p, co for the relative position

5 It may appear to be nonsense for the zeroth order to involve
three- and four-body terms, but it is not so. For, clustering is
not synonymous with the occurrence of many-body terms, but
with close spatial correlation among many bodies; thus it must be
represented by an operator not factorisable in single- or two-body
operators.

This is shown, for example, by T. Stovall and D. Vinciguerra
LLettere al Nuovo Cimento 1, 100 (1969)], who find that 5
correlated pairs are also important in 4He for reproducing the
experimental electromagnetic form factor.' F. Palumbo, Nucl. Phys. A99, 100 (1967).

and set
X„=X(p„.

=0 p(0 (2.1)

(2.2)

Theorem I: If the basis C„ is such that for p~0,
Ci„~p, cr) —1 (a condition generally satisfied), then
the two-particle wave-functions ) „satisfy (1.2) and
(1.3), and are orthonormal if the C„are; i.e., X is a
correlation operator. Proof: First of all we show that
X has the left inverse X~. For

K K=8(p) exp(scP, ) exp( —icp, )8(p) =L8(p)7'=1.

(2.3)
This enables us to write

X =Kg =exp( icp, )8q„exp—(icp, ) exp( —icp, )1.
With a simple series expansion, we derive

exp(+icP ) p exp(&scP ) =p+c,

exp(~icpp) 1= (pic)/p,

so that Eq. (2.2) becomes

(2.4)

~-= L(p c)/p78(p —c)v-(p c—, ~, R) —(2 3)

This satisfies (1.3) and (1.2) by virtue of the assump-
tion &p„~(p—c), n) —1 for (p—c)—&0. To complete
the proof we must show that the )„are orthonormal if
the (p„are. For

(X„ I
X~)= dR doi dpp' 8(p —c)

0 p

Xio *(p—c, ai, R)p„(p—c, (u, R),

from which, putting p —c=x, and taking into account
the fact that p~0 for x—+~, one gets

dR doi dxx'p„*(x, oi, R)q (x, oi, R)

=&..I..), OED.

By passing, we note that X~ is not the right inverse
of X. For

Kit=exp( icp~)8(p)8(p) exp—(icP~) =8(p—c) A1.

(2.6)

Thus X is not unitary. This is obvious, as X changes
the physical properties of the wave functions.

Principles of Quantum Mechanics, edited by P. A. M. Dirac
(Oxford University Press, Oxford, 1947) .

vector r». The momentum canonically conjugate to
p is (putting 5=1) p, = —i(8/Bp+1/p). When using
the variables p, oi, R we shall write q„(p, ai, R) for
C„(ri, rs).

Let us de6ne the operator

at= exp( —icP,)8(p), 8(p) =1, p) 0
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We shall make some preliminary considerations that
will enable us to generalize the procedure of Sec. 2.
This will be made in two steps. In this section, we
shall construct for the general case an operator X
analogous to (2.1), but violating translational invari-
ance. That invariance will be restored in Sec. 4.

The configuration space for 2 particles, S3~, has 3A
dimensions. Now

r;;=c, in Ssg

is the equation of a 3(A —1)-times degenerate quadric
that is a rectangular cylinder. Its intersection with the
space S3(&», defined by

rA, =O, k&i, j, r,+r;=0,

is a sphere of radius c, i.e., a closed surface. Then, any
cylinder separates S» in internal and external con-
nected regions that are complementary. For A par-
ticles we have —,'A (A —1) of such cylinders, that inter-
sect with each other. There are points external to one
of them that are internal to another one. The boundary
conditions (1.2), holding separately on the surface of
any cylinder, must also hold on the surface separating
the points internal to at least one of them from the
points external to all of them. The interior and the ex-
terior of this surface will be referred to as regions I
and II, respectively. These two regions are connected
and complementary.

We want now to write down the equation of the
boundary of region I. We shall use the generalized
polar coordinates' r = (ri2+ ~ ~ r~') '", and ~ which syn-
thetically represents all the angular variables. We do
not need the explicit relation of polar to Cartesian

Fonctions IIypergdometriques et IIyperspheriqzfes —I'olynomes
d'Ifermite, edited by P. Appell and J.Kampe de F6riet (Gauthier-
Villars et Cie, Paris, 1926) .

If the C„are a complete system in the Hilbert space
of bound-state wave functions, the )„are a complete
system for bound-state wave functions satisfying (1.2)
and (1.3).

So holds Theorem II: Any correlation operator X'
differs from X by a unitary transformation. Proof: We
shall use the fact that XXt is the unity for wave
functions satisfying (1.2) and (1.3), and that any
operator X' must satisfy (2.6), if it has to give a com-
plete set for wave functions satisfying (1.2) and (1.3).
Then putting )„'=X'q„,
we have

XX X~ =XX X +~=X Ip~)

from which
x'=x(xtx') =+&,

where %.=X~X is unitary, as is very easy to verify.

3. MANY-BODY CASE

coordinates, as we shall only use the relations

r, =«;((o),

r'~ = «a(~)

re = rQfsg 0)

Q '=Q —CY )sl & 2)

(3.1)

(3.2)

(3.3)

As the points of region I belong to at least one cylin-
der, Axed ~, their polar radius must satisfy at least
one of the relations

r;;=rn;, ((o) (c, ~&~=1, ",A. (3 4)

Fixed ~, the maximum value of r satisfying (3.4), is
the polar radius of a point belonging to the boundary
of region I. This maximum value is obtained for the
minimum of the n,;(~) at fixed cg, so that the equation
of the boundary is

r=c min u;, co =o op ) (3.5)

which defines 0 (~).
Equation (1.1) must be solved in region II with the

boundary condition

4=0 for r=o.(u).

In region I, the wave function is defined by

4=0 for r(o.(~).

(3.6)

(3 &)

As above, we shall define the operator

%=exp[—io(cg) p,]0(r),
and the wave functions

(3.9)

Theorem III: If the basis 4„ is such that for r,,—+0,
@„~r;,", n) —1 (a condition generally satisfied), the
many-particle wave functions x„satisfy (3.6) and (3.7),
and are orthonormal if the C„are, i.e., X is a correla-
tion operator. The proof is as in theorem I. First, we
show that X has the left inverse K~

K"%=0(r) exp[ia (&v) p„]exp[—io (cv) p,$9(r) = 1.

As for theorem I we derive, writing y„(r, ~) for
C„(ri, ~ ", rg)

y„=X@„=exp[—io ((o)p,]e(r)q. exp[io. (~)p„]

)&exp[—i~(co) p,]1. (3.10)

A simple series expansion gives

exp[wio ((o) p„]r,; exp[bio ((o) p„5=rgaa (s&) 0,;„
exp[+io (cu) p,51= I [r~a (&o) 5/rI &8 '&~' (3 11)

We can generalize the procedure of Sec. 2, region I
now playing the role of the sphere p&c. To this end,
let us define the momentum canonically conjugate to r

p„= i[(8/—Br) + (3A —1)/2r ']. (3.8)
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so that Eq. (3.10) leads to

x-= {Lr—a(~)3/r} "" ""~Lr —o(~) ]v-Lr—o(~), ~3

This satisfleslo (3.6) and (3.7). To complete the proof
we must show that the x„are orthonormal if the 4,
are. Using the expression of the volume element in
generalized polar coordinates, ' we derive

r—cr co 3A—1

(z. ~ x ) = f a ar r"
0 r

8/r a.(oj)j—

KKt = exp( —io (co) P„$9(r) 0 (r) exp$ia (to) P„j

=OLr —o-(ol) ]~1.
As in theorem I we conclude observing that if the C„
are a complete system in the Hilbert space of bound-
state wave functions, the x„are a complete system for
bound-state wave functions satisfying (3.6) and (3.7).
So holds Theorem& IV: Any correlation operator K'
difI'ers from X by a unitary transformation. The proof.
is identical with that of theorem II.

The problem arises whether there is a "best" X',
i.e., whether the unitary operator can be chosen a priori
in such a way as to simplify the calculations. Now, the
possible unitary operators can be put into two classes:
Those that leave unvaried the single-particle character
of the basis C, and those that do not. In the 6rst case
the unitary operator changes only the single-particle
wave functions, that have remained up to now arbi-
trary. Their best choice can be obtained in practice
with the Hartree-Fock method. In the second case
K'C„differs from KC„by a con6guration mixing. A
con6guration mixing in practice can only be obtained
by making a diagonalization in some subspace of the
full Hilbert space.

Thus, it is not possible to find a priori an operator
K' "better" than X, and all the correlation operators
&' are a priori equivalent as far as the hard-core effects
are concerned.

We conclude this section with the following remarks:

(i) Eq. (3.12) can be rewritten as

r E
—0-CLl (3A-~)/lA(A-1)l

x-= II
l&m r lm

0(r,„—c)

&&~.*Lr—o(~) ~jr-Lr —o(~), ~ I= (C'-
l
C'-) QED

As for the two particle case, K~ is not the right inverse
of . Fol

the relative distance c for two particles, according to
the total number of particles.

(ii) For 2 =2 we have

X = {Lrls—o(oI) ~12]/rls}'"fiLr —o(~) PV.Lr—o(to) ~l
(3.13)

a result different from that of (2.5). This difference is
due to the fact that in Sec. 2 %=exp(icp, ), p=

~

rls ~,

while now X=exp(icp„), r = (rls+ res) '"
(iii) The operator K of Sec. 2 commutes with the

c.m. position vector, while now K does not. The opera-
tor X of the present section is not translation invariant.

Point (i) will be discussed in Appendix A, where it
will be shown that the way of approaching the relative
distance c for two particles irrespective of the others
is independent of A. This result will be used in Sec. 7.

Points (ii) and (iii), that are closely connected, will
be discussed in Sec. 5.

4. TRANSLATION-INVARIANT
TRANSFORMATION

We saw that the operator X changes the length of
the vectors in 53~, without changing their direction.
Thus we have, for example (see Appendix A),

Xtr,m. = r, (1+c/rsj), Xsj——min {X,;}
XIRX=R(1+c/rsj) .

As a matter of fact, what we want is a transformation
that changes relative distances, as these are relevant
for the intrinsic motion, but leaves unchanged the c.m.
position vector R. To this end we replace the coordi-
nates Irl, ~ ~, rA} with a new set of coordinates
{zl ' ' ' zA 1 R}. Tile {zl ' ' ' zA 1} ale 1IltllIlslc
variables that belong to the intrinsic motion space
Sa~g ~). We can de6ne in 53(g ~) an operator similar
to X, which we shall still call X. The procedure is de-
scribed hereaf ter.

We shall use in 53~~ ~) generalized polar coordinates
(p, &o)

—= {zl, ~ ~ ~, zA 1}.The polar radius

p = (Zl + ' ' ZA —1)

and co is a system of angular variables. The relation of
p to the vectors z; is

Z;=pP, ,

where P,= P, (M). We shall also use the equations"
A—1 A-1

1jj= Ql Gij ZI =p +18;j"pk)

xy„Lr—o.(co), M).

This seems to imply a diferent way of approaching

A—1

r' =P
I ZI o"Ps I =Pe;,,

A.-1 A-1
r,—R= gl b sz„=p gl b,IPs.

k

(4.2)

'0 As a matter of fact, {3.6) only requires C„~r;;, for r,;—+0,
o.)—(3A —tl/2. However, the condition o.)—f is necessary in
order to ensure that j ( x„(' on all the variables but r;; behaves
as P(r;; ol/r;;g'. This will be show—n in Appendix A. "Obviously, co is diBerent from co of Sec. 3. Also, fI;, H

~ g;—g j ~.
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The boundary conditions (1.2) define in Sa&z» the
surfaces r;;=c, with equations

where p= 2 (pq —p2) and P=pq+p2. Using p~= p,'+P/p,
1 orbital angular momentum,

r=c/P;;, (4.3) [P Xj=[P X)=0 Xt(P/p )X=1/(p+c)
that have been written using (4.2) .

The discussion following (3.3) can be repeated. in
all details, and we arrive to the following equation for
the boundary of region I, which we still call 0..

p= c/min {r,;}=cp/rM 0(~——).
We can now repeat the procedure of Sec. 3, de6ning
the momentum canonically conjugate to p in Se~@ q~,

p, = i[(a/—~p)+ (3~ 4) /2P—-' j,
and the operator

X=exp[—io.(o))Pp)0(p) .

Applying X to the uncorrelated basis C„(rq, ~ ~, r~) =-

p„(p, a&, R), we obtain the new basis

& =L(P—~(~))/Pl'" ""0[P—~(~)3P LP
—~(~) ~ K.

(4 4)

These still satisfy (3.6) and (3.7), and are orthonormal
if the C„are. The )„have the same properties as the
y„as far as the intrinsic motion is concerned, and the
same properties as the C„with regard to the c.m.
motion. For 3=2,

)„=[(r»—c)/r»]9[r» —cjoy„[r»—c, ~, R], (4.5)

that are idential to (2.5) .
It is very easy to prove that the )„gives rise to the

same two-particle relative behavior as the x„near the
core. This will be done in Appendix B.

S. TRANSFORMATION OF THE TWO-PARTICLE
HAMILTONIAN

In the previous sections, we have obtained a cor-
related basis useful for handling the hard core, and
we have studied some of its properties. However, in
order to perform actual calculations, it is more conven-
ient to consider the problem

A p.2Xt Qy + Qy V,, X EC =0, C =Xt%' —(5.1)
i 2m i(j

that is equivalent to (1.1) in virtue of the left unitarity
of X.

Again we shall first consider the case 2 =2 for sim-

plicity. Throughout the paper only central potentials
will be considered, as we are only interested in general
properties connected with the core. The transformation
of other potentials is straightforward, using the formu-
las that will be developed for the kinetic energy.

The transformation in the two-particle case is im-

mediately obtained. From Eq. (5.1), one gets

{Xt[(p'/rm) + (P'/4m) +V(p) )X—E}C =0, (5.2)

and (2.4) and (5.2), we obtain

{
p2 P2—+ -+P ——, +V(p+c) EC—=0,
m 4m (p+c)' p'

i.e.,
1 1

(pl +p22) +12
2m (p+c)' p'

+V(p+ ) —~ C=0 (5.3)

In Eq. (5.3), the potentials are always evaluated out-
side the core. The new potential P[1/(p+c)' —1/p'j is
zero for s states, and attractive for other states. It
accounts for the fact that the centrifugal barrier is less
effective because of the core.

6. TRANSFORMATION OF THE MANY-PARTICLE
HAMILTONIAN

In this section, we shall derive the transformation
of the many-particle Hamiltonian. Possibilities for prac-
ticle calculations will be discussed in Sec. 7.

I et us first consider the transformation of a central
potential

X'V(r'~)X= VI r'~+c(r'~'/rM) j (61)
Observe that as r;,/rM&1, the transformed potential is
always evaluated outside the core. Moreover, if in

Eq. (5.1) r„=0, (s, t) &(i, j), then rM r, ~ 0, —— ——

XtV(r,;)X=V( ~) =0 for r,,/0.
In the discussion of the importance of the clusters, the
difference between geometrical clustering due to the
boundary conditions and dynamical clustering due to
the close approach of three or more particles must be
considered. An example of geometrical clustering has
been seen above. It consists in the effect on the inter-
action of the pair (i, j) of the close approach of the
particles s, t, irrespective of the distance between the
pairs (s, f,)and (i, j). It c'an be easily seen that the
geometrical clustering is more probable than the dy-
namical one. The expression (6.1) can be written more
explicitly [see (A3) $.

A reXtV(r, ,)X= P V r,,+c —" 5'„
8(t ra t

with

6„= g& '& [1—0(r„—r„„)]=1—gS+PW —".
m(n

(6.2)

Possible approximation to (6.2) will be discussed in

Sec. 7.



F. PALUMSO

We now consider the kinetic energy split into its
intrinsic and c.m. parts:

T= Ts+P'/2A, m= i.

This gives

c'=macmt, c,'=x(y, sc)xt.

p;,XC = {—i ', (3A —4) ~--'(V, ,~)X

+ pg (v;,t7 (rg —R)+Rf)otpl, }C;

The c.m. part is left unchanged by X, so that we need
transform only

Ti=
A

Zi p" p' =2(p' —ps) (63)A;(,.
A sketch of the transformation follows. We write the

argument of C in such a way that only vectors that
transform simply under K appear:

C =4[(r&—R)+R, (r,—R)+R, ~, (rA —R)+Rj.
Now R is invariant under X, while

K(r;—R)At=7 (r;—R), 7 = (rM+c)/rM (6.4. )

This enables us to derive simply that

y;AC = i (V;—p.&'A +12)4-'

+ gg r~'A '&'2{ V,,tv (rg —R)+Rj}@g', (6.5)

We remind the reader that r~ is the minimum of the
{r,,},and pM is the momentum canonically conjugate.

Expression (6.6) for XTsKt is obviously translation-
invariant and Hermitian. It commutes with R and P,
as can be seen by observing that we can everywhere
replace p; with p,—(1/A) P.

Also the expression for the kinetic energy, like that
for the potential, is an A-body operator, because of
the appearance of the collective variable r~. Using
(A3) and (6.2) a cluster expansion can be immediately
obtained.

It is perhaps worth while to add that the some proce-
dure can be applied for calculating matrix elements of
any operators. In particular, for the mean-square nu-
clear radius

R„=A 'Qg (r,—R)',

the transformed operator is

A A s +c 2

~~X„%=A 'Qg Qg (r,——R)' (P.1.
i s(t ~st

As X E K is much different from E, it is difficult to
choose a priori a basis giving the experimental mean-
square nuclear radius. However, as

( ) A'. ,)1,

the single-particle basis C„must give an expectation
value of "X~X X greater than that of R .

A

mtT, X= —P, {X&'-,'(3A —4);i(v,,~)2 i&,

+ Zi p»'(& L.(r~—R)+Rj)}

y{—i ', (3A —4)~-'(V-;,~)X
A

+ Qg (V;,Lr(rg —R)+Rj)Jlpp},

which, after some very tedious calculations, leads to
C2

Ts——,'(3A —4) (A —2)
rM'(rM+ c) '

2s'Mc+ c—A-' gp;; 2P~
7M C

g2

+ Pgp; ~ (r;—R) (r—R) .prM'(rM+ c)'

V. POSSIBILITY OF ACTUAL CALCULATIONS

l'(~' ) =~(~' —c) /(~' —c)'. (7.1)

The formal theory so far developed has given a
transformed Hamiltonian that is an A-body operator.
This was to be expected, because if the fully correlated
wave function 4' is transformed to the uncorrelated C,
the full correlation must be shifted to the Hamiltonian.
The correlation appears via the collective variable ~~,
which seems very untractable.

In the following, we make some speculations about
the relative importance of the zeroth and higher orders
in the cluster expansion, and about the rate of con-
vergence. These are separate problems: We could have
a good zeroth-order approximation with a slow con-
vergence of the rest.

%'e start by considering a case in which the trans-
formed potential is as simple as possible. This arises
when the potential external to the core is of 8 type

C+ Zs PM'rM , (r;—R) y;r„(rM+c)'
A

C+ Zi p'. (r.—R) &m' Pm. (6.6)

The denominator is needed in order that U give non-
vanishing matrix elements. In fact, it is shown in
Appendix B that after the integration over all the vari-
ables but r;;, i

'A„P behaves as (rg —c)' near the core.
In this simple case, we can exactly evaluate the ma-
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trix elements (X„ l
V

l
X ). In fact,

8(r;;—c) ~ o/r;;+c(r;, /r„) —cj
( ' —)' ~ l: '+ ( 'z/ ) —~j'

that gives nonvanishing contributions" only for r;;=
r„=0.But (P, ~ l,„~——1, and then

and the equations"

limsr —'Lc/(xs+c') j=8(x)

lim fx/(xs+c') j= (P/x, (principal value)

rttfb(r;, —c)/(r,; c)'jX—=8(r;;)/r sx=2x.8(r,;).
Realistic potentials are not of course of type (7.1).
Nevertheless, the above makes it plausible that for a
potential of a suKciently short range the cluster ex-
pansion of 6', t will converge rapidly. Unfortunately, it
seems that this is not the case in nuclear physics. 6 For,
the feasibility of a cluster expansion requires that the
integral of C„*(P,t4 on all the variables but r, t vary
slowly (as a function of r„) within the range of the
potential. Let us call this integral f~ "(r,&). We believe
that f~ "(r„) has a range of the same order as the
potential or less. Thus we are in a situation in which,
if we evaluate the matrix elements with the exact
f "(r,&), the many. -body corrections are not probably
exceedingly large, but if we attempt to evaluate f (r, ~)

with a cluster expansion, we obtain a slow convergence.
All the above is of course only speculative, but it may
be checked by numerical calculations.

Ke turn now to the problem of evaluating matrix
elements of the kinetic energy. Here the situation is
worse, because the kinetic energy never reduces to
two-body operators. The most favorable case obviously
happens when c is so small that, to a good approxima-
tion,

& ~z'3~~2z+c&&z&

C
ATz lim ——,'(3A —4)——(A —2)

rM' (rM+c) '

2rM+c
Zr p.s

( + ), ps

A c+ g& p; (r,—R), , (r,—R) p,j(j ~3f ~M

+ g, pM rM&rM(rM+c)'j '(r; R).p;— —

+ Zl p (r R) 5~M(rM+c) j rM pM ' (7'2)

Using the identity

1/(x+c)'= 1/(xsics) —(2xc)/(x'+c') (x+c)s,

"In fact, for (f; j)N (s, f),

sf';;+c(r;;/r, g) c58(r;, r,~) = (1+—c/r, q)
—&Jr;; c/(1+c/rid) 5—

Xe L r,g/(1+c/r. g) 5=0. —
Then only the contribution from (i, j) = {s, t) survives, giving
a{r;;)jr;;2.

lim ~—
'l 2xc/(x'+ c') 'j= —(8/Bx) 8 (x) =—&'(x) „

we can carry out the limits

lim [c/rMs (rM+c)' j=rr/8 (rM) /rM' j,
c~0

lim
l (2rM+c)/(rM+c)sj = 2((P/rM)+xrM8'(rM) = 2/rM,

lim AM(rM+c) sj '= (1/rM') ((P/rM)+sr[8'(rM)/rM j
=(1/r ')((P/r ) —l&(r )/aj,

where it has been taken into account that rg(r) =
r6'(r) =0, and that (P/r can be replaced with 1/r,
whereas (1/r')(P/r cannot be replaced with 1/r'. Then
we have

b, Tg= —-',sr(3A —4) (A. —2) gr
g(r )

s(t ~8 t

A A 2—A 'Zr Zrp', —(P. p;;
i&j s&t ~zf t

A 4 g(r )+x gr grp; (r,—R) ",—(r;—R) p;i(j s(t ~st

A 4 1 (P g(r )+QrQr, —(P, ,—x ', (r;—R) p;
i agt ~st ~st ~at

1 (P S(r„)+p; ~ (r,—R) — — —(P„—x
'

. (7.3)
~et 4t ~ t

If it were not for the principal-value contributions, wc
would have in (7.3) at most four-body terms easy to
evaluate as their matrix elements factorize. However,
because of the principal-value term, we are still faced
with the 6', t. The importance of these terms is reduced
from the short-range character of f~ "(r„),but again
to take advantage of this we ought to be able to
evaluate f "(r„) without recourse to a cluster expan-
81on.

It is perhaps worth noting that the above terms
introduce long™range correlations.

8. CONCLUSION3

In this paper, we have determined a left-unitary cor-
relation operator for bound-state wave functions, and
we have shown that the most general correlation op-
erator divers from this one by an arbitrary unitary

3 The Quantum Theory of EaCiation, edited by VV. Heitler
(Oxford-Clarendon Press, 1953).



transformation. The correlation operators can be chosen
to be translation-invariant.

Using the techniques of Refs. 4 and /, it is then
possible to diagonalize the Hamiltonian in a subspace
Of the full Hilbert space using shell-model wave func-
tions as a basis, obtaining intrinsic motion eigen-
functions. Ground as well as excited states are treated.
in the same way.

The diagonalization, in practice, can be better ac-
complished using the original basis and the transformed
Hamiltonian, which results in an 2-body operator. For
dilute systems it can be approximated by two-, three-,
and four-body operators. The three- and four-body
operators are very easy to evaluate.

Unfortunately, nuclei are not dilute systems, so we
are faced with the problem of evaluating many-body
terms, where a cluster expansion will give presumably
a poor convergence. We emphasize that this is not
imputable to the method, as the arbitrary unitary
transformation in the correlation operator cannot be
determined a priori in order to simplify the calculations.
In any case, the method, to the approximation ob-
tained in this 6eld, is comparatively simple and free
of the mathematical problems of the hard core. More-
over, to zeroth order in the cluster expansion we are
able to include the three- and four-body terms that
factorize.

The method also lends itself to an easy evaluation
of matrix elements where most of the contribution to
the integration comes from short interparticle distances,

as in such a case, we can make a cluster expansion.
These matrix elements are important because they are
very sentive to the region of the core.

A particularly interesting application can be made
to few-body problems, where the approximation is only
due to the cut of the basis if many-body integrals are
performed numerically.
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APPENDIX A

We must show that the way of approaching the rela-
tive distance c for two particles, irrespective of the
others, is independent of A. To this end, we shall
define a two-particle function

I tp I' (let us refer for
definiteness to the particles 1 and 2) by

(A1)

This is the probability of ending particle 1 at r1, par-
ticle 2 at r2, irrespective of the position of the other
particles. We shall show that

lim
I y„P

r12~c

is independent of A.
In order to evaluate (A1), we shall write

I ip„ I'= fdri' fdr&' ~ fdr~'x„*b(ri' —ri) 8 (ri' —r~) y„=fdri' fdr&' ~ fdr~'4 „*K8 (r»' —ri.)8(R»—R») XC„
=fdri' fdry' ~ fdr~'C „*8Lr»'(1+o/r) —r»)&I R»'(1+o/r) —R»]C„. (A2)

We need some explicit forin of o/r to evaluate (A2). We observe that Eq. (3.5) can also be written a/r=%~
with r~ ——minIr, ;I. Now an obvious representation for a function f(r~) is

f(r~) = Qi f(r,;) P""0(« —r,,), (A3)
i&j Z&m

where P« ""means the product of all the terms l(m, except the term (i, m) = (i, j) .
Using (A3), we have

C C
r»' 1+ ——ri. 6 R»' 1+ ——r»

~3f ~ALII

r12

cl, c= gi 8 r»' 1+, I

—r» 6 R»' 1+ —, —R» Qi'" 8(ri ' r,,'). —
i&j r." Z&m

Let us consider separately the contribution from i= 1,j= 2.
This will be shown to be the leading term in Eq. (A2) in the limit r» +c. In fact, —

C C f12—Cl, 1'12—C
r»' 1+ —,—r» 5 R»' 1+ - —, —R» g""8(ri ' —r»') =

I
5 r»' — r»

~12 ~12 l&m ~12 )

~12—C
X8 R»' — R» go ii &[ri„'—(r» o) $ (A4—).

~12 Z&m
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This, put into (A2), gives

(re—C ' f12 c r12 c0(r„—c) dr, '
~ dry' g&' ') 8(rg„' (re —c)j C„rg, r2, ra', ~ .rg', (A5)

r12 lcm r12 r12

whose behavior for r12~c does not depend on A. It can be easily seen following the above procedure that the
remaining terms of (A2) give contributions that tend to zero at least as [(r|q—c)/re)'.

We conclude observing that a factor [(ri2—c)/ri2j disappears in (AS) when the integration over Ri2 is per-
formed, and we are left with the relative behavior of Eq. (2.5).

APPENDIX 3
We rewrite the defining Eq. (A1) replacing x„by

I'= fd»' ..fdr&'C' *8
I r12 [1+(c/r~) ] rg2—I Xtb[R„' R„—]%4„

We need now the transformation of &[R~2' —Rim]. We are reminded that, while ri2' belongs to S,(g j) R/2 does
not. In order to And the transformation of R12, we write it as a sum of vectors belonging and not belonging to 53(A &~

R$2' ——-', (ry'+r2') =-,'[(ry' —R') + (r2' —R') g+R'.

c . . . , , c, c i c 2XtRg2'X= — 1+, [(ri' —R')+ (r2' —R') j+R'= 1+, Ru' —,R'= 1+, ———,R„'
2 r~' r~' r~' r~' 3 r~'c,~, r~'+c —(2c/A), c

rM rllI rM

r~'+ c (2c/A )—
Xtb[Rg2' —Rg2jX =8, Rg2'—

rhI

c
, A —'g, r, ' —R„

r3II

r3II 3

r~'+ c (2c/A)—

If we consider the contribution due to r~' ——r12',

c 'I f'12—C
b res' 1+, i

—ru &'&[Ri2'—%~7&=
ru'J r12

C A

r~'+ c (2c/A )—
r12—C

ri2 F2—(2c/A)

rM
R12r~'+ c (2c/—A )

c 1 A

X~ R„'—
F2—(2c/A) A

We find the relative behavior (ri2 —c)' as in (A4) . For A = 2 we have (2.5) exactly.

r12—C

R12
r)2—(2c/A)


