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Structure of Finite Nuclei in the Local-Density Approximation*
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A new theory is presented for calculating the structure of finite nuclei from the nucleon-nucleon inter-
action. The essential features of the reaction matrix in finite nuclei are obtained from nuclear-matter theory
through the local-density approximation. The resulting density- and energy-dependent effective interaction
is justified in detail, and it is shown that the tensor force plays an important role in saturation. The effective
interaction is cast into two different forms, one convenient for use in calculating matrix elements and the
other specialized for a Hartree-Fock calculation in position space. The density-dependent Hartree-Pock
equations are derived by variation of the ground-state expectation value of the energy, and in addition to
the usual Hartree-Pock terms, one obtains rearrangement terms arising from the variation of the density
appearing in the density-dependent interaction. The appropriate angular-momentum reduction for closed
j-shell nuclei is performed. The need for modifying the effective interaction to account for higher-order
corrections is discussed, and the constraints imposed on this modification by the properties of nuclear
matter are examined. The results of this theory for 0", Ca", Ca", Zr", and Pr'" are shown to yield very
satisfactory agreement with experimental binding energies, single-particle energies, and electron scattering
cross sections. The rearrangement terms in the density-dependent theory are demonstrated to have two
essential effects on nuclear structure: a significant reduction in the central density of the nucleus, and a
modification of the usual Hartree-Fock relation between single-particle energies and the binding energy.
Equivalent local single-particle potentials are calculated and are shown to have significant state dependence.

I. INTRODUCTION

~

& ~NE of the most fundamental and elusive problems
in theoretical nuclear physics has been to under-

stand the structure of finite nuclei in terms of the
nucleon-nucleon interaction. Whereas the theory of
Brueckner and co-workers'' establishes the essential
framework which, in principle, relates nuclear structure
to the two-nucleon interaction, previous calculations
have failed to produce reasonable binding energies,
single-particle energies, and charge-density distributions
for finite nuclei.

The significance of the density dependence of the
reaction matrix was recognized in the early calculations,
which were consequently performed in position space.
Using a reaction matrix based on the Gammel-Thaler
potential, ' Brueckner, Garnmel, and Weitzner, 4 and
Srueckner and Goldman' developed a Hartree-Fock
(HF) theory which included density dependence
through the rearrangement potential. The fundamental
limitation of this work was the inclusion only of the
density dependence of the core repulsion, thereby
omitting the strong density dependence of the tensor
force which will prove crucial in our subsequent theory.
The manifestation of this omission in the calculations
of O', Ca, and Zr' by Brueckner, I.ockett, and
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Rotenberg' and Pb"' by Masterson and I.ockett is far
too little saturation, leading to unrealistically high
central densities. A rather similar theory by Kohlers
suGered from the same difficulty, since his simplified
force included only a central 5-state interaction.

More recent calculations have been performed in a
harmonic-oscillator representation because of the
computational advantage of the convenient decomposi-
tion into relative partial waves. The essential weakness
of calculations thus far using this approach is the
complete omission of the rearrangement potential,
resulting in even less saturation than in the previous
calculations. The basic theory and results for simplified
forces are presented by Davies, Krieger, and Baranger,
and by Tarbutton and Davies. ' Calculations using
reaction matrices instead of simplified forces have been
performed by Irvine" for light nuclei, and by Davies,
Baranger, Tarbutton, and Kuo" for closed-shell nuclei
up to Pb"'. The serious lack of saturation is evident
from their excessive central densities.

In view of these previous results, our present theory
places special emphasis upon the density dependence of
the reaction matrix in finite nuclei. Our approach is
predicated upon the conviction that the essential
properties of the reaction matrix in finite nuclei may be
obtained from nuclear-matter theory, and this connec-
tion is established in detail in our subsequent discussion

'K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961).

7 K. A. Masterson and A. M. Lockett, Phys. Rev. 129, 776
(1963).

8H. S. Kohler, Phys. Rev. 137, B1145 (1965); 138, B831
(1965).

K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl. Phys.
84, 545 (1966);R. M. Tarbutton and K. T. R. Davies, ibid. A120,
1 (1968).' J. M. Irvine, Nucl. Phys. A120, 576 (1968)."K.T. R. Davies, M. Baranger, R. M. Tarbutton, and T. T. S.
Kuo, Phys. Rev. 1'7'7, 1519 (1969).
12M



STRUCTURE OF FINITE NUCLEI 1261

of the local-density approximation (LDA). The pri-
mary limitation of this philosophy is that it is necessary
to account in some way for the discrepancy between the
two-body contribution to nuclear-matter binding
energy of 11.0 MeV and the total binding energy we

expect from the semiempirical mass formula of 15.68
MeV. In this work, we make the assumption that when
higher-order corrections have been evaluated carefully,
nuclear-matter theory will indeed produce the correct
binding, and thus we modify the effective interaction
to produce the proper binding. This assumption is the
weakest point in our theory, but is somewhat sub-
stantiated by our results which yield satisfactory
energies and densities for nuclei from 0" to Pb''.
Even without modifying the eGective interaction, our
results are a significant improvement over the previous
calculations.

Results similar to those in this paper have been ob-
tained by Meldner, " on the basis of a completely
different philosophy. He takes only the general form of
the interaction from nuclear-matter theory —exchange,
density dependence, etc.—and then fixes five parame-
ters to achieve agreement. His agreement with binding
energies of selected nuclei is extremely good, better
than ours, and he also gets very good agreement with
mean square radii. His parameters are adjusted to
yield Os proton energies of approximately 80 MeV,
which we believe to be incorrect. There are significant
differences in the shape of the density distributions:
We believe Meldner's central densities for Ca" and
Pb'ss are about 20% too high, his half-density radius
for Pb is about 4% lower than ours, and his surface
thickness for Pb is only about —', of ours. Since our
results have been tested against electron scattering,
which is sensitive to the half-density radius and the
surface thickness, we believe our results on shape to be
more reliable. This in no way detracts from Meldner's
use of his theory for an extrapolation to superheavy
nuclei, like Z= 114.

II. CONSTRUCTION OF AN EFFECTIVE
TWO-BODY INTERACTION FROM

NUCLEAR-MATTER THEORY

Elements of Nuclear-Matter Theory

In seeking to develop a theory of the structure of
finite nuclei, the natural starting point is the existing
theory of nuclear matter. Thus, we shall sidestep the
questions of the nature of the fundamental nucleon-
nucleon interaction, whether the meson degrees of
freedom may legitimately be suppressed, and whether
the three-body and higher many-body forces are, in
fact, negligible, "and instead, assume that the nucleon-
nucleon interaction may be adequately described non-

"H. Meldner, Phys. Rev. 178, 1815 (1969).
'3 G. E. Brown, A. M. Green, and W. J. Gerace, Nucl. Phys.
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= V—V(Q/e) G(W). (2.1)

For nuclear matter the Goldstone expansion is
particularly simple since translational invariance
specifies the unperturbed wave functions as plane waves,
and momentum conservation eliminates a large class of
diagrams. It is convenient to introduce the following
notation:

C„(rr, rs) = (1/0) exp(ik rr) exp(ik„rs)
= (1/0) exp(iK R)„exp(ik r),„(2.2)

where
R = (rr+r&)/2,

K„=k„+k„,
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'8 B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
"G. Dahll, E. Pstgaard, and B. Brandow, Nucl. Phys. A124,

481 (1969).

relativistically by a phenomenological two-body poten-
tial.

Throughout this work, the Reid soft-core potential
is used. "The nonlocality in angle, with each partial
wave having simple functions of the radial coordinate
multiplying unity, 1 s and S» aGords sufficient Qexi-

bility to fit scattering phase shifts and the deuteron
quadrupole moment, and is computationally much more
convenient than potentials with explicit momentum
dependence or general nonlocality in the two-particle
coordinates. The potential satisfies the minimal condi-
tions one might demand from the present understanding
of meson theory, in that the long-range behavior is
consistent with one-pion exchange and the short-range
repulsion is generated by Yukawas corresponding to
bosons of sensible mass. One should bear in mind that
the T=O states are not as well determined by experi-
mental data as the 7=1 states and, in particular, the
3S~-'D~ potentials, to which the structure of finite
nuclei is particularly sensitive, are not strongly deter-
mined.

Since nuclear-matter theory is extensively described
in the literature '' " " with Day's review article'~

providing an ideal introduction for the uninitiated, we
shall only note the features which are most relevant to
our subsequent work. The essential quantity entering
into the theory is the reaction matrix G, which sums
all orders of ladder diagrams containing the bare
interaction and unoccupied intermediate states. De-
noting Q as the projector onto unoccupied two-body
states and defining the positive-definite operator e such
that e

~
pg)= (E~+E,+W)

~ pg), where the starting
energy 8' is written with the opposite sign from the
usual convention and is defined by the particular
Goldstone diagram under consideration, then

G(W) = V- V(Q/e) V+ V(Q/e) V(Q/e) V- ".
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and to define the correlated wave function + by

A „=GC„. (2.3)

Separation of c.m. coordinates and resolution into
partial waves is accomplished most conveniently in the
entrance-channel description' " in which we obtain

'~= (1/fl) exp(iK„„.R) g i~t4~(21+1))'i'

All of the numerical results of this work utilize solutions
to the Bethe-Goldstone equation (2.5), obtained from
a computer program written by Siemens" based on the
iterative method of Kallio and Day."

Although the unperturbed wave functions are
uniquely specified by translation invariance, the single-

particle energies in the Goldstone expansion are chosen
with the intent of minimizing the eRect of contributions
beyond lowest order. For states below the Fermi
momentum, it is shown in Appendix B of BBP that
the familiar HF potential

(nz
J

UHF
J m) = g L(mn f

G
i nin) —(mn i

G
i nm) j

nag
(2.6)

with G evaluated. on the energy shell, i.e.,
W= ( E„E), — —

corresponds to the exact cancellation of a large class of
diagrams. The lowest-order eRect of UHF is to cancel a
single oR-energy-shell G interaction connected to a
hole loop, and higher-order diagrams are cancelled in

which additional G matrices are added below the level

of UH~ and alternate in level with original or additional
G interactions in the main diagram. UHF defined in this

way must satisfy a self-consistency condition since G
depends on UHF through S" and UHp is defined ln

terms of G.
For states above the Fermi sea, the single-particle

energy does not exactly cancel any class of diagrams,
but rather is selected to roughly compensate the total
contribution of three-body diagrams. YVe shall refer to
three-body diagrams as the set of diagrams in which the
first two' G interactions produce three-particle and.

20 P. Seimens, Nucl. Phys. A141, 225 (1970).
2~A. Ka]lio and B. D. Day, Phys. Letters 25B, 72 (1967);

Nucl. Phys. A124, 177 (1969).

XC(L1J:OM3I)'JJii, z (1/k~~f) uJ i zi i (lt~~~ r) . (2.4)

For the singlet case, the Clebsch-Gordan coefficients
and 'tiJ.. z~ simplify to the usual form involving only
I'10. Introducing the angle-averaged Pauli operator

Q,„, uI. q'~i satisfies the coupled equations

ur, g~ ) (k, i ) = h'r, r,.gr, (kr)
—(Q. /e) Q iver, r,"~II.",J'~&, (2.5)

L,ff

where

three-hole lines, any number of additional interactions
occur between the particle lines with the provision that
only particle states are allowed and two interactions
may not occur consecutively between the same pair of
lines and, finally, the last two interactions return the
system to the state with no particles or holes. Bethe""
has shown that these three-body diagrams do not
converge order by order, but rather must be summed
by means of the Faddeev equation. Since Dahlblorn'4
has calculated the total contribution to be —0.7 MeV
at k~=1.36 F ', it is simplest to cancel the three-body
terms on the average by using zero nuclear potential
energy for excited states.

Local-Density Approximation

There are two basic approaches available for con-
structing an analogous theory for finite nuclei. The
most straightforward and accurate approach, which
we shall call the state-dependent approach, is to begin
with a suitable basis of finite wave functions and solve
the Bethe-Goldstone equation for all two-body states
in this basis. In the special case of a harmonic-oscillator
basis, the formalism becomes particularly simple since
the Brody-Moshinsky transformation" allows exact
decomposition of a two-body product wave function
into relative and c.m. coordinates. More general bases
are conveniently treated by expanding in a harmonic-
oscillator basis, possibly using diRerent Ace for various
states to reduce the required number of terms. Nu-
merous calculations using this approach have been
performed in light nuclei, " "but the method becomes
computationally cumbersome in heavy nuclei.

The alternative approach, which this work pursues,
is to apply the nuclear-matter reaction matrix to finite
nuclei through the LDA. This approximation is
motivated by the fact that two-body correlations are of
relatively short range compared with nuclear dimen-
sions. Thus, it is reasonable to assume that for a given
starting energy S', in the small region about some
c.m. coordinate in which the correlated and uncorrelated
wave functions diRer significantly, the dominant many-
body eRect is simply that obtained in nuclear matter
of the density occurring at the c.m.

The LDA approximates the propagator Q/e in a

"H. A. Bethe, Phys. Rev. 138, B804 (1965); 158, 941 (1967) .
23 R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39, 745

(1967).
'4T. Dahlblom, Acta Acad. Aboensis, Math. Phys. 29, 6

(1969)."T. A. Brody and M. Moshinsky, Tables of Transformation
Brackets (Gordon and Breach Science Publishers, Inc. , N' ew
York, 1967)."T.T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).

27 T. T. S. Kuo, Nucl. Phys. A103, '71 (1967)."R. L. Becker, A. D. MacKellar, and B. M. Morris, Phys.
Rev. 174, 1264 (1968)."R.J. McCarthy, Nucl. Phys. A130, 305 (1969).

C. W. Wong, Nucl. Phys. A91, 399 (1967).
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finite nucleus by that in nuclear matter, and thus
requires the use of plane-wave intermediate states.
Although conceptually the unoccupied states should be
orthogonal to the occupied states, in practice, one
expects significant corrections only for excitations to
the lowest unoccupied states, to which the theory is not
critically sensitive. The energy denominator e is
essentially exact since the difference between nuclear
matter and a finite nucleus is contained in H/'.

The most serious assumption in the LDA is ap-
proximating the exclusion operator in a finite nucleus Q
by the nuclear-matter Pauli operator, and has been
treated in detail by Wong. "For an A =18 nucleus, in
which a harmonic-oscillator basis is valid, Wong com-
pares the Pauli operator in LDA with an essentially
exact global approximation in which (1—Q) is expressed
purely in terms of harmonic-oscillator states. By means
of the Brody-Moshinsky transformation, (1—Q) is
transformed into relative and c.m. coordinates for
calculation of the reaction matrix. The comparison of
results computed in this global approximation with
those obtained in the LDA thus provides a direct
evaluation of the error introduced by the seemingly in-
consistent LDA prescription. For states concentrated
well within the interior of the nucleus, the two methods
agree very closely, whereas in the surface the LDA
gives slightly too much attraction.

Given the uncertainty in cancelling the three-body
contributions, which have never been evaluated in
finite nuclei, it is felt that the small error created by
the LDA in the surface may be neglected. Hence, for
our purposes, we shall now proceed to construct an
effective interaction for finite nuclei based on the
nuclear-matter propagator Q/e.

The sum over k yields 8(r—r"), but the eRective
potential is nonlocal in r.

+ i (~, ko) =f~ (~)8 i (ko~)

where f&(r) is as yet unspecified. Then,

(2 9)

&y„i I
G

I y„.i&= j drR„i(r)R„.i(r)vi'"(r), (2.10~

where
pg'"r =v)r r.

In practice, the precise prescription for f(r) is not
critical. An effective force suggested by Brandow"
corresponds to defining f(r) at some average mo-
mentum:

(2.11)

The zeros in the denominator constitute no serious
problem since they occur at sufficiently large r that N&

has healed essentially to gi and vp" is simply vi. The
validity of this approximation is most easily understood
by considering the defect function xi ——gi —Ni in the
simple case of a pure hard core. Clearly, (2.9) is
equivalent to specifying

&g„~ I
G

I
g„.i)= J dr f dr'R„i(r)R„.i(r')vi(r, r'), (2.8)

where

vi(r, r') = g vi(r)N&(r, ko)gi(kpr ).
kp

In order to construct a potential which is local in r, one
must make the approximation

Construction of Effective Local Interaction x=g(~)8i(k~) (2 12)

As has already been pointed out, one may expand the
most general two-body matrix element into sums of
matrix elements between product wave functions of
relative and c.m. coordinates. Since the bare interaction
only involves relative coordinates, the reaction matrix
at a given c.m. point does not depend on the c.m. wave
function. Hence, the general problem is to evaluate the
matrix elements of G at a given density between
arbitrary relative wave functions. Treating for the
moment only singlet matrix elements between relative
wave functions denoted by I P«) and having radial
functions R„i(r), and bearing in mind that the following

equations pertain to a specific density and starting
energy, we may insert two complete sets of plane-wave
states as follows:

&@-i I
G

I &- i)= & 9-i I @.& 8~ I
G

I &~0& &@~0 I @- i&
kkp

= f dr J dr' j dr" g R„i(r)gi (kr)
kkp

Xgi(kr") vi(r")Ni(r", ko)gi(kpr')R„. i(r'). (2.7)

Inside the core radius, xi=pi so (2.12) is satisfied
identically. Outside the core radius, x~ is equal to a
decaying Hankel function with the normalization
specified by continuity at the core radius c. Thus,
beyond c, the ratio of the approximate p& given by
(2.12) to the true hard core xi is

a (k-)a (k )/a (k )a (k-).
For all k of physical interest, this ratio varies insigni-
ficantly within the range of the Hankel function so that
(2.12) is an excellent approximation. For a realistic
force, one cannot make a similar simple analytical
argument, but the general features should remain the
same and (2.12) should still be a reasonably good
approximation to xi. Since xi is much smaller than g~,

(2.9) must be an excellent approximation to Ni.

3' B. H. Brandow, in Proceedings of the International School of
Physics "Enrico Fermi", Course XXXVI (AcadeInic Press Inc. ,
New York, 1966).
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An alternative definition for f(r) has been used by Siemens" in the context of Thomas-Fermi theory.

f1(r)= Z Z j 2(ki —k2) j 'g&(2 jki —k2 j r)~1(», 2 jki —k2j)/ p g j-', (ki —k2) j

—
'happ jk,—k, jr). (2. 13)

k1&kg k2&kP A'1&1&:g kg&kg

Written in this form, it is clear that instead of defining
an average k, we are averaging f over all the normally
occupied states in nuclear matter. For notational
convenience we shall transform from k~ and k2 to rela-
tive k according to (2.2). Then

d2k2&(2
j ki—k2 j)

k'dk W(k, k2)F(k), (2.14)

where

W(k kr) = (64~'/3) (2k»2+k2 —3k 'k)

In this notation,

f dk W(k, kp)g&(kr) v&(r)u&(r, k)jeff y (2. 15
f dk W(k, kz)y&2(kr)

The argument for the validity of this choice is
analogous to that given for Brandow's prescription, and,
in practice, there is negligible numerical difference
between the two definitions of vp". The present choice
has the technical advantage that the denominator is
positive definite and, in addition, the lowest-order
contribution to nuclear-rnatter binding energy is exact,
as follows trivially from the definition

(kik2 j
n"'

j kik2 —k2k, )
kl&kP k2&kP

It is instructive at this point to note the simple
structure in momentum space implied by (2.9). In
general,

(k j G j
k')= f 81(kr)81(k")~1"'(r)«(2»)

and for S states, the k dependence is particularly
simple,

(k j
G j

k') = ~(k —k') —~(k+k'), (2.1S)

P(k) = —', f cos(kr) n2"'(r) dr.

Equation (2.18) provides another check on the basic
approximation in (2.9), and calculations in the singlet
S state, as well as the triplet S state which is explained
below, have yielded good agreement.

In order to generalize to the triplet case with the
tensor force, plane-wave matrix elements of G are
written in terms of the wave function in (2.4) and
averaged over M:

Z (gL'~g'(kr) j
G j aL(kor) yzz~)

= f drgL (kr) g 2',L (r)uz. ,q& &(r, k,). (2.19)

Since the reaction matrix G is Hermitian for constant
W, (2.19) implies

f «8L (kr) Z ~L L-'(r)»",J (r ko)= g f dk W(k, k2) (2l+1) f dr gP(kr) v&'"(r)
l

= p (2l+1) f dk W(k, kr) f dr/&(kr) v&(r)u&(r, k)
l

(klk2 j G j klk2 k2kl)

= f drpL(kor) g &tLL ~NL, z&L'&(r, k). (2.20)

k]&kp k2&kp
(2.16) Constructing the diagonal effective interaction in the

same manner as (2.15), we obtain

f 1 (r) = f dk W(k, kr)gL(kr) g 21LL (r)»; z& & (r, k)/f dk W(k, kz)gL'(kr) . (2.21)

Although this definition clearly reproduces the
correct lowest-order contribution to nuclear-matter
binding energy, the basic approximation in (2.9) must
be reexamined since we assume

&LL (r)»,J (r k)+ &ALL' (r)NL', J '(r, k)

= [vLL~(r)fL(r) +&1LL ~(r)fL. (r) ]gL(kr), (2.22)

where
I.'=J~ 1 for I.=J~1.

Whereas the argument in the sing1et case still applies to
the fz, term, there is no correspondingly simple argu-
ment for the k dependence of the coupled wave

»,q&L&(r, k). Instead, we consider the contribution of
the tensor force to the perturbation series (2.1),
noting that the only nonlocality arises from the operator
Q/e. The tensor force is most conveniently treated by
considering the long- and short-range parts separately.
The short-range part is very strong and contributes
significantly in the second and all higher orders, but
since it excites very-high-energy intermediate states,
Q is of negligible consequence and the average e is
large compared with the range of significant inter-
mediate states. The long-range tensor force, on the
other hand, is sufFiciently weak that its dominant
contribution is in second order. Kuo and Brown"
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have examined this second-order contribution and show
that here, too, nonlocality is negligible since the
closure approximation is a good approximation.

(Vzz(Q/e) Vrz)=(1/e. zi) (Vzz'), e, zz ——220 MeV.

(2.23)

Thus, we conclude that even the coupled wave com-
ponent of (2.22) is reasonably accurate, and feel that
the definition of fz. (r) implied by (2.21) provides a
sensible average over the small amount of nonlocality.

The nondiagonal effective interaction is defined
analogously to (2.21),

zf, z(r) = j dk P'(k, kz)gz, (kr) g ez z;.z(r) Nz, z&z& (r, k) / j dk W(k, kz)gz (kr) )z (kr) . (2 .24)
LII

According to (2.20), an equivalent definition should be
obtained by interchanging L and L, and, in practice,
this provides a useful check on numerical calculations.
The argument concerning the local approximation
given above still applies for the short-range tensor
force, and we now note that the main contribution of the
long-range force is in first order and is thus necessarily
local. The particular average chosen in (2.24) no longer
is justified on the basis of contribution to nuclear-
matter binding energy, since the nondiagonal tensor
force does not contribute to the lowest-order binding
energy, but it still appears to be a reasonable average.
Finally, we note that the zeros in the denominator,
due to the fact that the integral with LWL' is not
positive definite, are of no practical importance since in
the S—D case at k& ——1.4 F ' the first zero is beyond
6 F, and the zeros of higher angular-momentum
states are correspondingly farther from the origin.

Thus far, we have insisted that the effective inter-
action defined in general in (2.24) be calculated for a
specific starting energy 8'. In practice, the available
nuclear-matter matrix elements involved self-consistent
starting energies, as discussed in connection with (2.6).
Hence, the actual v, ff, , that has been computed

involves an average over a range of starting energies
where the average starting energy is approximately
2.4 F . Corrections for this averaging will be considered
below. The individual interactions v, fg, , in all partial
waves through L= 2 are tabulated by Siemens. "

Matrix Elements of Effective Interaction
in a Finite Nucleus

One of the two main applications of the effective
interaction is the calculation of matrix elements in a
finite nucleus. Since the above development pertains
to the construction of an effective interaction at a
particular density and starting energy, it is now neces-
sary to consider a computationally simple method of
including the dependence on kp and W, which does not
necessitate complete reaction matrix calculations at a
large number of values of these parameters.

Since any finite wave function can be expanded in
terms of harmonic-oscillator wave functions, we need
consider only matrix elements between two-body anti-
symmetrized and normalized harmonic-oscillator prod-
uct wave functions which are coupled to specified
angular momentum J and isospin T. The matrix
element between such states may be written as follows":

(~J.j., ~daj a,' J~
~
e.ii

~
N.l.j. ~4Nj~; JT)=E(1+~~) (1+~.~)j '"

~a g ja ~c g jc

lg
—', ji

LL/S
2 j. ( 1) "g(k".7~L—'7.7~)" Z

nln~l~, NZNI
(elEZ, , L

i
m l.eglb, L)

L S J e S J
X (nV1PZ, I '

~
e,l,eglg, L') (—1) '+"$1—(—1) '+e+r$ Q U(ZlJS; Lg) U(Z/'JS; L'g)

(2 25)

U(glJS.Lg) ( 1)~'+z+sL
L

S J

where
~ah ~ lalg~gaglz~nanli)

L= 2I.+1,
(nlNZ, L

~
n,l,m&lt„L) is a Brody-Moshinsky bracket 2'

and relative and c.m. coordinates are defined

r= (ri—r2)/'4 R= (ri+r2)/+2.

The various terms in (2.25) arise because of the
diferent coupling of angular momentum required for
the over-all two-body matrix element, for the trans-
formation to relative and c.m. coordinates, and for the
matrix element of the two-body force. The factors for
particles a and b arise as follows. The 9-j symbol is
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TAsLE l. Coefficients for density and starting energy dependence in Eq. (2.33) . The last two
entries are the nondiagonal tensor components.

State +8 +8 CL C2L C3L

'so
3S1
1p
3I'0

~1
3'
1D

3Dl

3D2

'D3
S-D
I'-F

0.866
0.703
0.867
0.963
0.908
1.058
1.032
0.566
1.098
0.902
1.025
1.01

1,030 0.723
1.212 0.156
0.919 0.539
1.006 0.888
0.976 0.799
1.055 1.405
1.004 1.061
0.990 1

1.015 1

0.833 1

0.985 1

1.01 1

0.128
0.429
0.236
0.0552
0.1129

—0.209
—0.0741

0
0
0
0
0

—0, 0011
—0.0205
—0.0122
—0, 0019
—0.0099

0.0115
0.0211
0
0
0
0
0

1.014
1.020
1.140
0.997
1.009
0.977
1.003
1
1
1
1
1

—0.0101
—0.0256
—0.0637

0.0009
—0.0042

0.0075
—0.0016

0
0
0
0
0

0.0018
0.0075
0.0000
0.0003

—0.0001
0.0014
0.0001
0
0
0
0
0

used to couple l, and lb to L, —,'and -', to 5, and j, and jb
to J. The Brody-Moshinsky transformation conserves
L, so that 1 and 2 are coupled to L. Because of the
9-j symbol, L in turn is coupled with 5 to form J.
Hence, the 6-j symbol is used to recouple the angular
momenta to J, so that S and i erst couple to g, and
then g and Z couple to J. The 5, i, g coupling is then
appropria, te for the relative matrix element of the
two-body interaction. Finally, (1+8,|,) '~' takes into
account the extra factor required for normalization
when a and b are identical particles.

The essential simplification employed in evaluating
the reduced matrix element

(EZ
i

(nl i i, ii„& i nV) i 1PZ)

is to factorize the density dependence so as to perform
the relative and c.m. integrals independently. Simply
multiplying the effective interaction at some k& by a
function of kr is a priori a poor approximation because
of the different physics of the excitations by short-range
and long-range parts of the force. However, because of
the fact that the c.m. integral always includes the
product of m, gg with harmonic-oscillator functions
whose range of variation is strictly limited by physi-
cally sensible values of Ace, the reduced matrix element
cannot be extremely sensitive to the detailed spatial
distribution of density dependence. Hence, in this
work, the e8ective interaction is divided at 1 F into a
long- and a short-range part, each having the spatial
dependence of v. ii(kF, r) at kr ——1.4 F ', but being
multiplied by separate functions of kg. It should be
noted that the resulting discontinuities in v, ii(kr, r) at
other densities at which the multiplicative functions
may not agree are physically quite acceptable, cor-
responding only to discontinuities in the second
derivatives of wave functions.

In the spirit of approximation which has been estab-
lished above, the multiplicative density factors at any
k~ are defined such that the nuclear-matter average
of this factor times v, ii(kr ——1.4, r) is identical to the

nuclear-matter average of n, f f(kr, r). Thus,

dr dk W(k kp) F8(kr)

Xg~(kr) v, f f (kr —1.4, r)g~. (kr)

I k, p

dr dk W(k, kr)g~(kr) v.ii„(kr, r)g~ (kr),

(2.26)

and similarly for F~. By definition, F(kr ——1.4) =1.
Values of P(kr) have been computed at kr ——1.0 F '
and k~=1.7 F 'for partial waves through L=2, and the
kg=1.0 F ' values are tabulated in Table I. In con-
sidering the entries in this Table, it is important to
note that the separation at 1 F often results in a great
deal of cancella, tion between attractive and repulsive
contributions. For this reason and because of the
angular-momentum barrier in the I' and D states, the
numerical contribution of the short-range part is
usually small, so that the large change in I'~ does not
really imply a large density dependence.

Since k& ——1.4 and 1.0 F ' roughly correspond to
nuclear-matter density and 3 nuclear-matter density,
respectively, requiring that a simple function for
F(kr) reproduce the calculated results at these points,
assures that the physically significant contributions
to the reduced matrix element will be adequately
approximated. Although rough qualitative arguments"
suggest quadratic dependence on k&, we find that a
linear function fit to k& ——1.4 and 1.0 F ' yields much
better agreement with the calculated values at the
unphysical Fermi momentum, kp ——1.7 F '. The most
serious extrapolation error at kr ——1.7 F ' is a 10%
discrepancy which occurs for the '5& long-range con-
tribution, in which the change from k~ ——1.4 to 1.7 F '
is much less than expected on the basis of the change
from k& ——1.0 to 1.4 F—'. This is easily understood
since the '5& saturation arises principally from the
Pauli operator cutting off the attraction from the
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second-order tensor contribution through intermediate
states close to the Fermi momentum, and such satura-
tion cannot continue to increase linearly in k&. Dahl-
blom's calculations in Table I of Ref. 33 exhibit the
same feature at k& ——1.7 F ', and are very accurately
linear from 0.9 to 1.5 F '. Hence, we conclude that
linear interpolation is adequate for the present work.

The above prescription results in the following
simple structure for the c.m. part of the reduced matrix
element:

(K2/b) RNg (V2R/b) RN P (&2R/b)

X II (1.4F—1)/0.4]+kp(p(R) )I (1—F)/0.4]}dR,

(2.27)

where Ii is the appropriate long- or short-range density
factor at k~=1.0, b is the harmonic-oscillator size
parameter (5/M~)'~', and k& is related to p by the
usual relation

density factors. Since the starting energy dependence
arises from the second- and higher-order terms in

(2.1), we expect the functional form of the factor to be
roughly

(2.31)A+B/(E+ W) .

For least-squares fitting of parameters, it is much more
convenient to use a polynomial in t/t/', and thus we use a
second-degree polynomial to roughly preserve the
generality of (2.31). In order to evaluate the six
coefficients for each angular-momentum component of
'v f f nuclear-matter calculations have been carried out
at kg=1.36 F 'for k=0.136, 0.476, 0.884, and 1.224 F '
and 8"=0.48, 1.69, and 2.40 F ', where these values
have been selected to cover the physically most sig-
nificant range of H/' and k. Correcting v, f f at kg —1.4 F
to k& ——1.36 F ' using the density factors in Table I, we

then require

(y I G(W) I p& (C,s+C,sW+CasW') (0 9+0 1FB)

kp ——(—,'vr'p) '". (2.28) X g 2(yr)p„, (»(P~=1.4 r)+(C z+C rW+C W')

The function p(R) is taken to be a simple Fermi func-
tion

X (0.9+0.1F ') gP(kr) v, f f&»(kp ——1.4, r). (2.32)

where

p(R) =
1+expL(R —c)/a] '

a= 0.54,

c= (0.978+0.0206A'~') A'"

3A

4~c'(1+~'a'/c') '

(2.29)

A,co= 1.85+35.5A "'. (2.30)

by normalization. The form for c in (2.29) is chosen to
fit proton charge distributions throughout the Periodic
Table, '4 with the assumption that proton and neutron
distributions are sufficiently similar for this application.
The contribution to (2.27) by the term independent of
kg is simply 8» by orthogonality of the harmonic-
oscillator functions, with the nondiagonal contributions
arising from the integral over p(R) '~'. For most applica-
tions, the size parameter in the harmonic-oscillator
wave functions is determined by Bethe's35 formula for
the harmonic-oscillator energy,

For the 351 state, the six coefficients are defined to ob-
tain a best least-squares fit to the 12 matrix elements
specified above. For the 'So and I' states, the starting
energy dependence is sufficiently weak that it is
satisfactory to allow only four free parameters by
requiring C,+C,(2.4)+C3(2.4)'=1 and to 6t the six
matrix elements with k=0.476 and 0.884 F '. The
starting energy dependence of the off-diagonal contribu-
tions and D states are neglected.

The final form of density and starting energy de-
pendence of the reduced matrix element is as follows:

y~ I
(ei I('8+')~ (( .(w) I

ev&
I
&'~&

= (Cp+C28W+CssW')

X {L(1.4FB—1)/04]bN¹+I (1 F )/0.4](~~&}
1

R„t(r/v2b) R„.~. (r/v2b)

Xp.„„,J (p~= 1.4, r) dr+ (Cgi+CpW+C3 W')

X {L(1.4Fr —1)/0.4]AN +L(1—F~) /OA](4) }

X (1/&2b)
Starting energy dependence is treated similarly to the

density dependence described above. Ke again assume a R„E(r/v2b) R„.( (r/%2b)
separate multiplicative function for the short- and 1

long-range parts of the effective interaction. Rather Xv, ff .~(k~ ——1,4, r)dr,
than explicitly investigating the density dependence
of the starting energy factors, we assume that their
dependence is adequately approximated by the over-all (y~& (~2/b) I dR RNz(~2R/b) RN, z(v2R/b)

(2.33)

» H. A. Bethe, Phys. Rev. 107, 879 (1968).
'4 M. A. Preston, Physics of the Nucleus (Addison-Wesley

Publishing Company, Inc. , Reading, Mass. , 1962).
"H. A. Bethe (private communication).

2 2 1/3

1+exp L(R—c) /a]
and C, Ii are tabulated in Table I. For partial waves
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TABIE II. Is-Od shell matrix elements (ab ) G ( cd-dc) in MeV, as defined in Eq. (2.26l. The contributions of the nondiagonal
tensor force, partial waves higher than /=2, and Rnite nucleus starting energy corrections are omitted in the partial matrix ele-
ments and included in the total matrix elements. Kuo's results are from Ref. 27. The single-particle states are denoted Od5~2=4,
fg112

——5, and 0/312 ——6.

Partial Total Kuo T J u b c d Partial Total Kuo

0 1

0 3

4

4

5
5
5
5
6
6
6
6
6
6

0 2 5
5
5
6
6
6

4
5
5
5
6
6
6

0 4 6

4 5 5
4 6 4
4 6 5
4 6 6
5 5 5
5 6 4
5 6 5
5 6 6
4 6 4
4 6 5
4 6 6
5 6 5
5 6 6
6 6 6
4 5 4
4 6 4
4 6 5
4 6 4
4 6 5
5 6 5
4
4 5 4
4 6 4
4 6 6
4 5 4
4 6 4
4 6 6
4 6 4
4 6 6
6 6 6
4 6 4

—0.29
—0.34
—2.27

0.11
2.50

—2.23
—1.30

0.65
—0.19
—3.06
—0.58

0.18
—2.09
—0.41
—0.46
—0.49

1.20
2.24

—2.35
—1.47
—1.40
—0.90
—0.89
—1.16

0.51
—2.57
—0.56

0.36
—0.80
—1.01
—1.72
—2.93

—0.40
—0, 34
—3.02
—0, 04

2.02
—3.24
—2.06
—0.23
—0.53
—5.23
—1.80

0.25
—3.01
—0.81
—0.13
—0.62

1.32
2.46

—4. 14
—1.63
—1.65
—1.01
—1.35
—1.53

0.31
—3.30
—1.00

0.32
—1.33
—1.63
—2.37
—3.98

—0.30
—0.27
—2.60

0.11
2. 10

—3.01
—1.61

0.08
—0.42
—4.33
—1.42

0.11
—3.02
—0.82
—0.22
—0.53

1.30
2.51

—3.59
—1.59
—l.57
—0.79
—1.24
—1.47

0.39
—3.12
—1.01

0.12
—1.11
—1.72
—2.43
—4.16

0 5
f 0

1 2

4

4 4 5
4 4 6
5 5 5
5 5 6
6 6 6
6 4 6
6 4 6
6 5 6
4 4 4
4 4 5
4 4 6
4 4 6
4 4 6
5 4 5
5 4 6
5 4 6
5 4 6
6 4 6
6 4 6
6 4 6
6 5 6
6 5 6
6 6 6
5 4 5
5 4 6
6 4 6
4 4 4
4 4 6
6 4 6

4

5
6
5
6
6

5
5

4
5
6
4
4
5
6

5
6
5
6
6

4

—2.47
—1.26
—0.69
—3.16
—2.04
—0.56

0.03
—0.41
—0.02
—0.27
—0.95
—0.60

0.35
0.52

—0.70
1 ~ 21
0.15
1.40

—0.75
—0.46
—0.71

0. /3
—0.63

0.04
—0.14
—0.31

0.07
—0.58
—0.42

1.02
—1.95

—3.38
—1.54
—0.77
—3.33
—2.26
—0.64
—0.23
—0.50
—0.13
—0.36
—1.12
—0.64

0.40
0.58

—0.64
—1.26

0.22
1.48

—0. /9
—0.42
—0.70

0.85
—0.66

0.08
—0.28
—0.34

0.09
—0.54
—0 ~ 47

1.09
—2.12

—3.42
—1.24
—0.63
—3.02
—2.05
—0.53
—0.09
—0.33
—0.17
—0.33
—1.01
—0.56

0.41
0.55

—0.60
—1.17

0.18
1.45

—0.75
—0.36
—0.66

0.78
—0.59

0.04
—0.28
—0.29

0.06
—0.40
—0.43

1.05
—2.02

higher than 2, we simply take OPEP with no density or
starting energy dependence.

Using the effective interaction summarized in
(2.33), a general computer program has been written
to calculate matrix elements according to (2.25) .
Matrix elements from this program will be used later
in this work to calculate spin-orbit splittings. In
addition, for the sake of comparison with other work,
we tabulate s-d shell matrix elements obtained
from this theory in Table II. In this calculation,
W —(E +Ep+E +Eg) /2 where Eppes

——0.269 F
E$ 112 O.244 F ', and Eprj312 G 146 F fLR 14
MeV, and the half-density radius of the nucleon dis-
tribution is 3.04 F. The spacing of the single-particle
energies relative to Od5~2 was obtained from the 0'~ data
reported by Cohen et al. ,

' and the energy for Od5~2 was
obtained by computing the average removal energy for
protons and neutrons throughout the Od5~2 shell from

I B. i.. [Cohen, R. H. Fulmer, A. I . McCarthy, and P.
Mukher&ee, Rev. Mod. Phys. 35, 332 (1963).

binding energies+ and correcting by 1 MeV to account
for rearrangement. To indicate the contribution of the
off-diagonal tensor force, partial waves beyond I.=2,
and starting energy dependence, matrix elements
without these contributions are also tabulated. For
comparison, Kuo's'~ state-dependent matrix elements
using a LDA with the Hamada-Johnston force are also
presented, and although the over-all agreement is good,
our matrix elements generally tend to be stronger.
This seems to be primarily due to our treatment of the
tensor force which is more complete than his second-
order closure approximation. Finally, calculation'8 of
the core-polarization corrections which are discussed in
Ref. 26 using our matrix elements yields results 10-30%
larger than those obtained by Kuo, which yields a
further increase of the contribution of our effective
interaction to finite nuclei in comparison with his.

'~ J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl.
Phys. 6'7, 1 (1965)."E. C. Halbert (private communication).
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Even- and Odd-State Forces

The second major application of the effective inter-
action in this work is to calculate the self-consistent
structure of nuclei. One possible approach which has
been used in recent HF calculations~" is to work in an
harmonic-oscillator basis, in which case the separate
interactions in each partial wave discussed in the last
section would be directly applicable. However, since in
deriving the self-consistent density distribution from a
variational principle, it is much simpler to include the
density dependence of the effective interaction in
coordinate space, we now consider the construction of
an effective interaction which does not require projec-
tion into separate relative partial waves.

The simplest way to motivate our development is to
consider the HF choice of the occupied state potentials
(2.6) for nuclear matter and a finite nucleus. Even
though we shall modify this prescription subsequently,
it still contains the most essential features, and serves
as a useful guide. Writing out in detail the nuclear-

matter contribution indicated in (2.16) and neglecting
over-all normalization, we obtain

1 ( )'+8+r~(2T+1)(2J+1) f W(k k~)dk
STJl

X f dr& s+ &p i& ~(r)gi2(kr). (2.34)

Since the triplet interactions always contribute in the
same combination, it is useful to define an average
triplet interaction

'~. „(r)=
I Z (2~+1)'~.i4 '(r) j/I Z (2~+1)j.

(2.35)
Then, (2.34) may be rewritten

1—(—) '+s+r j (2T+1) (25+1) (2l+1)
STl

X f W(k, kr)dk f dr~'s+'&n ii«(r)gi2(kr). (2.36)

For the case of a finite nucleus comprised of harmonic-
oscillator functions,

P (12 I i.ii I
12—21)= Z

nial 1jlmlr1T3f T,n2l252m2~2 J~J 72

T )'(ji
(2T+1) (2J+1)

Mpj (mi m2 Mg)

X (1+4, ,bi, i,b;„,) (nili jin2l~ j2; JT
I
i.ii I nili jin24 j2', JT), (2.37)

where the antisymmetrized matrix element is given in (2.25) . Removing the 3-j symbols by summing over ri, r2, rni,
and nz2, the 9-j symbols by summing over j1 and j2, and the 6-j symbols by summing over J, one obtains

Q (12 I jeff
I

12—21)= P C(nlNZ)I 1—(—)'++ j(2T+1)(25+1)
12

where

nlNZST

X f (v2/b)[R~g (v2E/b)]'dE f (1/&2b)LE i (r/v2b)]' ' "v ii, (r)dr, (2.38)

C(nlNZ) = g (2L+1) (nlNZ, L
I

nilin2l2, L)'.
n1n2l pl 2L

Equations (2.36) and (2.38) exhibit the explicit
wave function weighting of the effective interaction in
individual partial waves specified by the HF potential.
Since Ca" is the largest nucleus which is accurately
represented by harmonic-oscillator functions of a single
ku, we consider (2.38) to yield the true weighting of
individual partial waves in Ca" and compare-with the
contributions specified by the nuclear-rnatter weighting
(2.36) at the local density. It is important to note that
diGerent ranges of the effective interaction have differ-
ent partial waves emphasized. This is most obvious
in (2.36), since as r~0, go(kr) is the only nonvanishing
contribution, whereas for large r many partial waves are
significant. Hence, we shall consider two values of the
relative coordinate, r=0.526 and 1.578 F, which indi-
cate the typical weighting of the short-range repulsion
and long-range attraction, respectively. Taking the
harmonic-oscillator size parameter b=1.86 F, which
yields the best agreement with electron scattering, we
obtain the relative weighting of the effective interaction

in individual partial waves as a function of the c.m.
coordinate indicated in Fig. 1.

The most important result indicated in Fig. 1 is that
in the interior of the nucleus the nuclear-matter and
harmonic-oscillator compositions roughly agree, with
the long-range interaction wave function weighting
being approximately 65% in 5 wave, 30% in I', and
5% in D and with the short-range interaction weighting
being 95% in 5 wave and 5% in D. Hence, if one
considers separate even- and odd-state forces, the odd-
state force need only reproduce the I'-wave contribution
accurately, whereas the even-state force must reproduce
the S-state effective interaction very accurately, and
give reasonable results for the D state. Since the
nuclear-matter weighting is roughly correct in the
interior and has the correct qualitative features in the
surface, it is natural to define even- and odd-state
effective interactions with the same nuclear-matter
weighting prescription which we have used previously.
This argument then motivates the definition used
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I00%—
r = I. 58

I00%—
r =.53

80%— 80%— - .I2

60%-S--
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D=—
I I

20%-
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- .IO

—.8

-.6

- 4

—.2

Fro. 1.Weighting of S, P, and D states
of the two-body interaction in Ca' as a
function of the distance from the center
of the nucleus R for relative coordinates
of r=1.58 F and r=0.53 F. Nuclear-
matter weighting corresponding to the
local density is indicated by the dashed
lines, and the solid lines denote harmonic-
oscillator weighting. The harmonic-
oscillator density distribution is shown
for reference in dot-dash lines.

0 I 2 0 I 2

previously by I.in" and Siemens"

(r) =
I Q L1—(—)'+ + ](2T+1)(2S+1)(21+1)"+' v gg„( )

l even

&& f dk W(kp, k)gp(kr) I/I 2 L1 ( ) i+s+r](2T+1) (25+1) (2l+1) f dk W(kp, k)gp(kr) I. (2.39)
l even

v,dd(r) is de6ned by the analogous sum over odd / We use O. PEP for all partial waves higher than l= 2 by noting
the relation for sums of spherical Bessel functions

(2l+1)jP(s) =
2 (1~sin2s/2s) (2.40)

l (even, odd)

and writing the sum of partial waves greater than /=2 as the sum of all partial waves minus those with 1 less
than or equal to 2. Thus, we obtain

v (r) =Pf dk W(k, kp) I~go (kr) ( vpo(r)+ vop(r)+6VopEp(r) )+2/2 (kr) ( v2(2)r+ (rv2)2+6V Epop( ))r
—

2 (kr)'(1+sin(2kr)/(2kr) )VopEp(r) I]/Lf dk W(k, kp) 2 (kr)'(1+sin(2kr)/(2kr) )],
vodd(r) I f dk W(k kp) I zocll (kr) ( v«(r)+9 vll(r) —18VOPEP(r) )

+ ~'~ (kr)'(1 —sin(2kr)/(2kr) )VopEp(r) I]/D dk W(k, kp)-,'(kr)'(1 —sin(2kr)/(2kr) )], (2.41)

where VopEp(r) = (10.4/3) (e~'"/0 7r) and &' .+uv«(r)
is understood to be 's+' v, ff„(r,k p) .

Having motivated the construction of even- and
odd-state forces by our basic philosophy of nuclear-
matter averages, it is important at this point to examine
the quantitative accuracy of this approximation.
Considering first the even-state force, it is clear that
the short-range part is almost entirely from the S-state
interaction, because of the Bessel-function weighting.
Hence, the short-range contribution to S-state matrix
elements should be very accurate, and there should be
negligible short-range contribution to D-state matrix
elements. The S-state and D-state weightings become

39 '. C. Lin, thesis, Cornell University (unpublished); V. C.
Lin, Xucl. Phys. A140, 359 (1970).

equal at 3 F, and for very large r the situation is
exactly reversed with only the D-state force con-
tributing to the effective interaction and the interaction
only signi6cantly contributing to D-state matrix
elements. However, the long-range part of the nuclear
interaction contributes strongly in the region inside 3 F,
and there is no a priori reason to expect an even-state
force to reproduce correctly the separate S- and D-state
interactions. However, it is a very fortunate property
of the nucleon-nucleon force we are considering, that
the long-range behavior of the S- and D-state inter-
actions are sufficiently similar that individual S- and
D-state matrix elements are very accurately reproduced.
The situation for the I' and Ii waves with the odd
effective interaction is analogous.
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TABLE III. Matrix elements of the full effective interaction and the even- and odd-state interactions multiplied by the appropriate
statistical factor, F. UNM is the contribution of each partial wave to nuclear-matter binding at k~ ——1.4 F '. The sums of the even- and
odd-state contributions to UNM are identically reproduced by P, and P',zd, respectively, and are not tabulated.

k= 1.40
PJJP(kr) Vdr

k= 1.05 k=0. 70

UNM

(Mev)

Even &2

Odd) 2

3/16

3/16

3/8

3/16
27/16

15/8

15/16

15/16

15/8

j,
&effoo

3
&effoo

1
&eff11

3
&effu

sum

1'fief f22

3
&eff22

sum

~ev

OPEP
OPEP

—1.115

0.146
—0.969
—0.856

6.032

1 .477

7.509

7.698
—5.119
—5.986

—11.105
—13 ~ 522

—3.754
—3.370
—7.124
—6 .942

2.300
—0.298

2 ~ 002

2.238
—2.208
—2.948
—5.156
—5.101

—3.503
—3 ~ 361
—6.864
—6.833

0.465
—0.183

0.282

0.519
—0.600
—0.870
—1 .470
—1 .297

—16.42
—15.32

2.72
—0.45

—2.85
—3.97

—0.90

1.94

In Table III, individual matrix elements of the
even- and odd-state interactions are compared with
matrix elements of the individual effective interactions
in the lowest three partial waves for kg = 1.4 F '. In
comparing these matrix elements, it is important to
note that the c.m. phase-space weighting function
W(k, kr) .speci6ed in (2.14) goes to zero quadratically
at k =k~ so that the most significant S-state contribu-
tions arise from k in the range 0.7—1.0 F '. From
Table III, we note that in this range the even-state
force underbinds by at most 3%. For I and D states,
the matrix elements become very small at low k, so the
region of most significant contribution is shifted to
somewhat higher k. In this region, the agreement in
Table III is again seen to be quite good. Finally, to
demonstrate the relative contributions of various
partial waves to nuclear-matter potential energy, in
contrast to the wave function weightings shown in
Fig. 1, these energy contributions are also tabulated in
Table III. Because of the nuclear-matter average, the
total contribution to the nuclear-matter potential
energy must be exact.

The even- and odd-state forces defined above contain
the averaged central contribution of the tensor force
but no explicit o8-diagonal contribution. This is
consistent not only for nuclear matter, in which the

off-diagonal tensor force does not contribute to the
lowest-order HP energy, but also in spin-saturated
hnite nuclei, where it also does not contribute. For the
spin-unsaturated nuclei we shall consider, the oG-

diagonal tensor force can only contribute to the
potential of the few nucleons in the unsaturated shells,
and we feel that this has a su%ciently small effect on
the over-all nuclear structure that it may reasonably
be neglected.

As a result of the average in (2.35), the explicit two-

body spin-orbit force has also been averaged out of the
effective even- and odd-state forces. This averaging
causes negligible error when we consider the total
contribution of both levels in a completely filled l shell,
but requires the introduction of an effective one-body
spin-orbit potential when only the lower state of a
spin-orbit couplet is ulled.

In contrast to the previous section, the detailed
spatial distribution of the starting energy dependence
is important for the present application. Since almost
all of the binding energy arises from the 5-state con-
tributions, as evidenced in Table III, the total starting
energy dependence is adequately approximated by that
of the triplet S state. Considering the average nuclear-
matter starting energy to be TV = 2.4 F ', we may write,
using an average k as in (2.11),

6'v. &~„(W, r) = 'v, g~(W, r) —'v. ~~(2.4, r)

=
t voo (r) (up, g (r k W) uo g (r k 2.4) )

+ v02 (r) (u2, i (r, k, W) —u2, i (r, k. , 2.4) )j/g (k or) . (2.42)
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I--X

G

K

FIG. 2. Goldstone diagrams for the 6rst few terms in the energy
and density expansions.

The correction LVv, tt(W, r) has been calculated at
kg=1.4 F ' for TV=0.48 and 1.69 F '. The long-range
part is well fit by

III. DENSITY-DEPENDENT HARTREE-FOCK
THEORY OF CLOSED-SHELL NUCLEI

Variational Principle for Single-Particle Potential

In order to utilize the effective interaction in a
practical calculation of the binding energies and
density distributions of 6nite nuclei, it is useful to
consider in greater detail some formal aspects of the
many-body theory of finite nuclei.

Although a formalism exists to treat the case of a
degenerate or nearly degenerate ground state, "
we shall restrict our attention to closed-shell nuclei
for which the Goldstone expansion is applicable.
Noting that in the finite nucleus no diagrams are
excluded by momentum conservation and adopting
the notation that the single-particle potential U is
denoted by a X and the density operator is denoted by a
heavy dot, the lowest-order diagrams for the energy
and density expansions" are shown in Fig. 2. The
fundamental problem, of course, is to select the optimal
definition of the potential U.

First, we consider the HF potential for occupied
states and zero potential for unoccupied states. Because
of the lack of momentum conservation, we generalize
(2.6) to

hvs(W) = f rs(6sv, ffee(E, r) —Qv~, „s(W, r) )dr

= —5.86+2.64W—0 0805W' MeV. (2.44)

From (2.39), it is evident that the starting energy
dependence of the even-state force is

hv, (W, I
rr —rs I) = —',Asv, tt„(W, I

rr —rs I)

= 2srvs (W) 2 (rr —rs)

+s»~-s(W Irt —rs I) (2 45)

In this work, we do not include the density depend-
ence of Av, (W, r) but, rather, use (2.45) at all den-
sities. Physically, it is clear that at low densities the
starting energy correction should become even larger
for a given 8' less than 2.4 F ', since the Pauli operator
allows more attraction through the second-order tensor
force. Since, however, the contribution to the nuclear
potential depends on dv, p, the increase in the low
density correction receives such little weight that it
may be legitimately neglected.

Av~»s(W, r) = (—285.+159.5W—17.1W')

Xt (r—0 7)'/(0. 69+r")j MeV (2.43)

for r&0.7 F and 8" in F '. For convenience in subse-
quent calculations, we lump the short-range part and
the difference between (2.43) and the true long-range
part into a delta function. For the strength of this
delta function, we obtain

where m, m', e are occupied and a, b are unoccupied.
As a result of the BBP cancellation, diagram h in
Fig. 2 cancels g and k plus an infinite series of higher-
order diagrams. Baranger44 has generalized the BBP
result, showing that for the potential (3.1) diagrams
c, d, e, and f sum identically to zero. This cancellation
also occurs in the density expansion so that diagrams
B—I yield zero contribution. Despite the appeal of this
large cancellation of diagrams, there is no real evidence,
either intuitive or formal, that this choice of single-
particle potential is optimal.

Brandow4' has recently improved this situation by
formulating a many-body variational principle for the
single-particle potential. One important observation
relevant to this work is the fact that all of the on-energy-
shell contributions to the single-particle mass operator
have the cancellation property displayed above for the
HF potential which is simply the lowest such on-energy-
shell insertion. Since the variational principle specifies

C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).
4' B.D. Day, thesis, Cornell University lunpublishedl.
4'B. H. Brandow, in Lectures in Theoretica/ Physics (Gordon

and Breach Science Publishers, New York, 1969), Vol. XI.
4'D. J. Thouless, The Quautuvt Mechanics of Marty Body

Systems (Academic Press Inc. , New York, 1961).
44 M. Baranger, 1967 Varenna Lectures (unpublished).
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the potential to be the particular on-energy-shell in-
sertion obtained by functionally diGerentiating a set of
skeletal diagrams approximating the energy, we do not
sacrifice any cancellation and have a formally motivated
method for extending beyond the HF prescription.
The next-order contribution beyond the HF potential
in this formalism, where we assume momentum con-
servation for convenience, is

XL1—l 2 (~1—l~
I G/e

I
~&)(~& I G/e

I
~l—l~)3.

(3.2)

To cast this into a more useful form, we introduce the
integral of the defect function, ~. Defining f ~——C~—+,q,

with partial wave components x already defined above

.=(1/A) g Q.,
~
f,„—f„„)=(1/A) g.„

(1 ( 1) t+s+ )(2T+1)(2J+1)9p/(327rkp')

J+S
X ff W(k, kr) P x~.~&'&(kr) dk dr (3.3)

«-J—S

in nuclear matter. From Eqs. (2.1) and (2.3) it follows
that (QG/e)

~
C~)=

~
f~) Then, . evaluating (3.2) on

the energy shell,

= g (mii [ G
(

mm —em)(1 —~„). (3 4)

Since ~=0.136 in nuclear matter at k~=1.4 F ', the
potential (3.2) is roughly 14% more repulsive than the
HF potential in a finite nucleus. Thus, the additional
term has precisely the eGect of the Brueckner rearrange-
ment potentia14 and will contribute significantly to
saturation. Although we shall use an alternative
potential which is more convenient for numerical
calculations, (3.4) will be quite useful because the
extent to which our modification of the HP prescription
reproduces the ~ correction will indicate the extent to
which we may expect the cancellation in this formalism
to carry over into our theory.

Since we have developed an eGective interaction
which is a function of relative coordinate and density,
the most straightforward and intuitively appealing
definition of the single-particle potential is to write the
lowest-order contribution to the binding energy, Fig.
2(b), in coordinate space and vary the wave functions.
$0ne should note that Fig. 2(a) contributes to the
change in energy from the unperturbed energy 6p=

P (I
~
T+U

~ I), but it exactly cancels the sum over
U in ep, so that it does not contribute to the binding
energy. ] The variation of the wave functions in the
kets yields the ordinary HF potential, whereas the

variation of the wave functions which comprise p in the
density-dependent interaction leads to additional
8V/8p terms. Since only the lowest-order contribution to
the total ground-state energy is being minimized, one
should expect Qnite nuclei to be underbound by an
amount comparable to that which occurs in nuclear
matter. Since the potential energy determines the
single-particle eigenvalues, which in turn determine the
tails of finite nucleus wave functions, it is clear that a
significant error in energy will seriously affect the
density. Hence, we shall take into account higher-order
contributions to the binding energy in a very crude
way, by adjusting the strength of the two-body eGec-
tive interaction in the energy expression which we vary
so as to reproduce nuclear-matter binding energy. The
precise adjustment of the eGective interaction is
discussed in the following section.

In order to calculate higher-order diagrams in Fig.
2 correctly with this potential, it is necessary to note
that the two-body eGective interaction is only increased
in the definition of the potential and not in the reaction
matrices explicitly occurring in the diagrams. Thus, the
ground-state energy obtained by varying the energy
expression with the enhanced interaction is not equal
to the contribution of Fig. 2(b); rather we expect it to
be close to the total contribution of the entire series of
diagrams. If one were to undertake a serious program to
calculate the diagrams in Fig. 2, which we do not
attempt in this work, it would be most efficient to
write our potential as (3.2) plus an additional term.
Then the cancellation described above would occur for
the component corresponding to (3.2), and a much
smaller class of diagrams would remain involving the
small additional term. Since we do not systematically
evaluate the perturbation series, this work cannot
claim to be a fundamental theory of nuclear structure.
However, the higher-order terms we do evaluate in a
later section turn out extremely small, and this one
choice of potential yields reasonably good results
throughout the periodic table. To this extent, then, our
intuitively motivated procedure maintains contact
with the formal many-body theory.

Direct and Exchange Forces

Having defined the single-particle potential in
terms of the variation of coordinate space wave func-
tions, we now' consider the appropriate modification
and parameterization of the effective interaction for
this purpose.

To motivate our construction in the more complicated
general case, we now consider spin-saturated nuclei
with equal numbers of neutrons and protons. As
mentioned previously, the absence of a t'~ o-body
spin-orbit potential results in a single radi;~1 function
corresponding to the weighted average of the two
radial functions of a spin-orbit doublet. Denoting

~
m)=Z, (r) F,,„(n)x.r„
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and
m) =z„r.(r) Vl (n) =y„, (3.5)

a~
V(dir, ex) 8Vev~ SVodd (3.9)

At this point an important numerical consideration
arises. When matrix elements are expanded in relative
coordinates, v,« is always multiplied by a product of
radial functions which behave at small r as gP(k&)
so that the contribution is never as singular at short
range as the bare V. However, in (3.8) the even and
odd projectors have already been used to eliminate the
spin and isospin dependence so that the strong short-
range contributions of the odd force in the direct a,nd
exchange terms must very closely cancel. Whereas the
formal cancellation is clear in (3.8), numerical calcula-
tions would have to use an exceedingly 6ne grid to
accomplish such cancellation in practice.

Physically it is clear that to the extent to which the
short-range force is represented by a delta function the
matrix element in (3.8) only depends upon the sum of
vq;, +v, so that the distinction between direct and
exchange is completely arbitrary. Since the direct
numerical integral is much simpler than the exchange
integral, it is clearly desirable to place all of the short-
range contribution in the direct force. For realistic
forces of nonzero range this modification amounts to
arbitrarily changing the short-range part of v,«which
does not contribute signi6cantly. Since v,«coincides

where x and r are spin and isospin functions, respec-
tively, and writing

V= —', (1+8„)s,+2(1—P„)n.gg, (3.6)

where P is the Majorana space exchange operator, the
space and spin functions separate trivially.

(ME I
V

I
MX—XM)

= ff d'rqd'r2$ t (1)f„t(2)x t (1)x„t(2)r t (1)r„t(2)

XL-,'(1+& )v. +-,'(1—& )~.aa]

&&L4'-(l)4"(2)x (1)x-(2)r (1)r (2)
—f (2)f„(1)x (2)x„(1)r (2) r„(1)j

=(
I l(1-~,~,)'-+-:(1+~,~.)'- I )

+ (sin
I

-', (1—b,b,)V. —
g (1+8,b,)s.gg I N51), (3.7)

where b, =b, ,„and similarly for 5„. To the extent to
which neutron and proton radial functions are identical,
it is sensible to de6ne the spin and isospin average
of (3.7). Then,

(MN I
v

I
MN 1UM) = (me I

—Sv, j-',v.gg I me)
rtnXtn

+(me I sv.„——',v.QQ I
em). (3.8)

Noting our convention of adding instead of subtracting
the exchange term, it is convenient to define average
direct and exchange forces

with 5v, in the region of r=0.5 F without any modifica-
tion, this is a natural point to begin adjustment of
v,dd. Hence, we modify v,dd as follows:

v~, '=-53v,. for r&0.45 F,
for r&0.60 F, (3.1O)

and v,«' is joined smoothly between 0.45 and 0.60 F.
This change in v,dd results in 0.043-MeV error in
nuclear-rnatter binding at k+= j..4, which is clearly
negligible. With this modification, v,„is identically zero
inside 0.45 F and is attractive at all larger r.

The direct force obtained in this way is highly re-
pulsive inside approximately 0.75 F and attractive
outside. For numerical purposes it is useful to separate
the direct force into a repulsive short-range part, which
is identically zero beyond 0.85 F, and an attractive
long-range part, which is zero inside 0.70 F. In the
region between 0.70 and 0.85 F, the two potentials are
defined so as to approach zero smoothly and to yield
the proper sum. The direct integral of the strong short-
range direct force may then be performed in relative
coordinates, and the direct and exchange integrals of
the long-range forces may be easily performed in the
individual particle coordinates. The direct and exchange
forces so de6ned are tabulated in Table IV for kg= 1.0
and 1.4 F ' and are graphed in Fig. 3 for kg= 1.4 F '.

800-
Vs

600- '

400-
200-

0
-l0-
-20-
-30- DIR

r (F)

-10-
-20-
-30-

g -$0-
-50-
-60 "

-70 "
"80

FIG. 3. The short-range direct interaction V~, the long-range
direct interaction Vq;„and the long-range exchange interaction
V„. The solid lines, short dashes, and long dashes correspond
to the average, unlike, and like interactions, respectively. Note
that the scale for V& is contracted by a factor of 20.
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TABLE IV'. The short-range direct interaction Vg, the long-range direct interaction Vd, and the exchange
interaction V„,at kg ——1.4 and 1.0 F '. The form "A (b)" means A &&10'.

(F)
Vs(4 =1.4)

(MeV)
V, (kg=i. 4)

(MeV)
Us(ks =1.0)

(MeV}
V..(k~= 1.0)

(MeV)

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

—5.9062 (—1)
3.6950 (2)
4.7712 (2)
5.5064 (2)
5.7730 (2)
5.5507 (2)
4.9327 (2)
4.0697 (2)
3.1142 (2)
2.2549 (2)
1.5966 {2)
1.1618 (2)
7.2956 (1)
4.0086 (1)
1.7848 (1)
5. 1576 (0)
0 ~ 0000 (—1)

0.0000
—6.7949
—2.3097
—4.7282
—5.6382
—6.1533
—6.3154
—6.1999
—5.8882

(—1)
(0)
(1)
(i)
(i)
(1)
(1)
(1)
(1)

3.2625 (—1)
3 1127 (2)
4.3070 (2)
5.1961 (2)
S.6089 (2)
5.5015 (2)
4.9571 (2)
4. 1280 (2)
3.1748 (2)
2 2773 (2)
1.5437 (2)
1.0556 (2)
6.2314 (1)
2.9605 (1)
1.3827 (1)
4.2306 (0)
0.0000 (—1)

—5.7758
—6.1233
—6.1472
—S.9345

(1)
(1)
(1)

0.0000 (—1)
—4.8500 (0)
—1.6500 (1)
—3.8437 (1)
—S.0273 (1)

V„,{k =1.4) V..(k =1.4) Vg(kp ——1.0) V„(kp = 1.0)

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.20
2.40
2.60
2.80
3.00
3.40
3.80
4.20
4.60
5.00
5.40
5.80
6.20
6.60
7.00

0.0000 (—1)
—1.8831 (0)
—6.1964 (0)
—1.2437 {1)
—1.9561 (1)
—2.3523 (1)
—2.5225 (1)
—2.4569 {1)
—2.1180 (1)
—1.7188 (1)
—1.3457 (1)
—1.0317 (1)
—7.8179 (0)
—5.8935 (0)
—4.4415 (0)
—3.3591 (0)
—2.5547 (0)
—1.5255 (0)
—9.5678 (—1)
—6.3098 (—1)
—4.3375 (—1)
—3.0656 (—1)
—1.5867 (—1)
—8.2451 (—2)
—4.2428 (—2)
—2. 1735 (—2)
—1.1190 (—2)
—5.8311 (—3)
—3.086'/ (—3)
—1.6600 (—3)
—9.0475 (—4)
—4.8781 (—4)

—5.4527
—4.9515
—4.4279
—3.4267
—2.5624
—1.8779
—1.3568
—9.7080
—6.9031
—4.8923
—3.4665
—2.4649
—1.7627

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(0)
(0)
(0)
(0)
(0)
(o)

—9.5232 (—1)
—5. /555 (—1)
—4.0252 (—1)
—3.1978 (—1)
—2.7410 (—1)
—2. 1533 (—1)
—1.6646 (—1)
—1.2416 (—1)
—9.0338 (—2)
—6.4890 (—2)
—4.6364 (—2)
—3.30'/3 (—2)
—2.3589 (—2)
—1.6833 (—2)
—1.1919 (—2)

0.0000 (—1)
—7.9952
—1 .4890
—2.1423
—2. /829
—3.1037
—3.1986
—2.9885
—2.5314
—2.0343
—1.5852
—1.2134
—9.1973
—6.9417
—5, 23/3
—3.9618
—3.0068
—1.7715
—1.0790

(0)
(1)
{1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(0)
(0)
(0)
(0)
(0)
(0)
(o)

—6.823'/ (—1)
—4.4838 {—1)
—3.0536 ( —1)
—1.5438 ( —1)
—8.3878 ( —2)
—4.6900 (—2)
—2.6311 (—2)
—1.4664 (—2)
—8.1103 (—3)
—4.4641 (—3)
—2.4546 (—3)
—1.3535 (—3)
—7.3219 (—4)

—S.5646
—S.1036
—4.6014
—3.6058
—2.7273
—2.0183
—1.4725
—1.0644
—7.6500
—5.4790
—3.9179
—2.8034
—2.0057
—1.0514

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(0)
(0)
(0)
(0)
(0)
(0)

—5.8047 (—1)
—3.5233 (—1)
—2.4333 (—1)
—1.9094 (—1)
—1.4773 (—1)
—1.2344 (—1)
—1.0030 (—1)
—'/. 8246 (—2)
—5.9108 (—2)
—4.3680 (—2)
—3.1833 (—2)
—2.3011 (—2)
—1.6565 (—2)
—1.1803 (—2)
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Having motivated the construction of direct and
exchange forces by the simple case of identical wave
functions for neutrons and protons, it is now straight-
forward to generalize to arbitrary closed-shell nuclei.
Instead of simply defining even- and odd-state inter-
actions as in (2.41), we now define separate singlet
even (SE), triplet even (TE), singlet odd (SO), and
triplet odd (TO) interactions. The forrnal definition
is Eq. (2.39) with the sums over 5 omitted. These
separate even and odd interactions reproduce indi-
vidual matrix elements somewhat less accurately than
the composite even and odd interactions, but the
average contributions should be sufficiently accurate
for our needs. Then (3.6) is replaced by

V=(1+8 ) (1+8,) VTz+-,'(1+8 ) (1—P,) Vsz

+-'(1—&-) (1+I'.) VTo+ '(1 I'-) (-1—&—.) Vso,

(3.11)

where I', is the spin-exchange operator, and we obtain

(Mx
/
v

/
Mx xM)—

=-'L(1—8,5 +8„—8,) (mn ( VTz
~

mn)

+(1—S,S„+S,—S,) (mn
~

VTz
~
nm)

+ (1—&,&„—&„+&,) (mn i Vsz i mn)

y (1—S,S„—S,+S,) (mn
~
V.,

~
nm)

+(1y~,r„y~,y~, ) (mn
~ V„~ mn)

y( —1—~,~„—~,—~,) (mn
~

VTo
~
nm)

+ (1+8,8 —8„—8,) (mn
~

Vso
~
mn)

+(—1—8,8~+8 +8,) (mn j Vso I nm)j (3.12)

For unlike particles, 8,=0 so that averaging over spin
yields

—,
' g (MX

i
V

i
M1V—XM )""

xtn

= (nm ( svTz+-,'Vsz+svTo+-, 'Vso
~

nm&

+(nm
~

SVTz+svsz —sVTo ——,Vso
~
mn). (3.13)

For like particles, 8,= 1, and averaging over spin yields

—', Q (MX
i

V
i
MX—XM)'k

xts

= (nm I lVsz+-:VTo I
nm&+(nm

I
-'V« ——:V»

I
mn&.

(3.14)

We now define the interactions within the direct and
exchange integrals in (3.13) as vq;,""and v,„"",respec-
tively, and similarly define vz;, ' and v, ' from (3.14).
From (2.39) and (3.9), we note that these definitions
are consistent with the average direct and exchange
forces defined above since

v(kr =1.4, r) v(ki 1.0—, r)——
+kr

' ' ' ', (3.16)
1.4 —1

which reproduces the forces at kg= 1.0 and 1.4 F ' and
select n to give reasonable results at kp ——1.7 F '.
For numerical purposes it is advantageous to have n
integral, and we find the best value for the short-range
force to be o.=3 and the best value for the direct and
exchange forces to be 0.=1.

Rather than use separate functions of r for the like
and unlike forces which would essentially double the
computing time for our calculation, since the spatial
dependence for like and unlike forces shown in Fig. 3 is
similar to that of the average force, we define multi-
plicative factors of the average forces to approximate
the like and unlike forces. Consistent with our nuclear-
matter weighting philosophy, these factors are defined
so as to reproduce the correct like and unlike contribu-
tions in nuclear matter. Since the direct contribution to
nuclear-matter binding is proportional to the volume
integral of the short-range and direct forces, we define

Fk, '"= f v'k(kr, r)r'dr/(f v' (kp, r)r'dr) (3.17)

for both the direct and short-range forces, and similarly
for Ii"". Since the exchange contribution to nuclear-
matter energy is proportional to

f p,„(kr, r)v, (r)r'dr, (3.18)

In the same way as described previously for the
average direct and exchange forces, we place all the
short-range contribution into the repulsive short-range
direct term and construct long-range direct and
exchange forces for the like and unlike interactions. It
will be convenient to refer to the direct short-range
force as simply the short-range force and the long-range
direct and exchange forces as the direct and exchange
forces, respectively. These forces are graphed in Fig. 3
for kg=1.4 F '. One observes from this figure that
the like and unlike forces have the expected property
that the force between like particles is over all much
less attractive than the force between unlike particles.
It is also important to note that sv, + sv, qq is much less
attractive than —Sv, ——,'v, d~ so that the exchange inte-
grals will be quite significant.

Thus far, our discussion has pertained to any k~
but, as before, it is necessary to adopt a simple func-
tional form of density dependence. Short-range, direct
and exchange, like and unlike forces have been com-
puted at k~ ——1.0, 1.4, and 1.7 F '. We select the
functional form

(1.4)"v(kr ——1.0, r) —v(ki = 1.4, r)
vg r +'vi r kp

(1.4) —1

d' av — (v&, 1k+v&. un)

and similarly for exchange.

(3.15) where

p „(kv, r) = j dk( 36/4 'v) W(kz, k) sin(2kr)/(2kr),
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TABLE V. (a) Integrals in Kqs. (3.17) and (3.18), in MeV. The interactions Vs, Vs;„and U, are as in Table IV, and av, lk, and un
indicate average, like, and unlike, respectively. (b) Factors defined in Eqs. (3.17)-(3.23), with the same notation as part (a) .

kg (F ') Force fv„,r dr

(a)

fp,„(1.0, r) v„(kr, r) r dr fp.,(1.4, r)v„(kr, r)r'dr

1.0
1.0
1.0
1.4
1.4
1.4

av
1k

av
lk

Force

lk, S
un, S

1k, dir
un, dir

lk, ex
un, ex

25.091
16.914
33.268
26.029
17.705
34.353

0.674
1.326

0.721
1.279

0.547
1.453

—39, 730
—28.658
—50.807
—33.089
—25.259
—40.921

P1,4

0.680
1.320

0.763
1.237

0.637
1.363

(b)

1.0374

0.8814

0.9773

—2.629
—1.431
—3.820
—2.560
—1.560
—3.559

0.671
1.329

0.650
1.350

0.329
1.671

0.840
1.160

0.409
1.591

—3.328
5.328

—5.415
—3.096
—7.714
—5.311
—3.385
—7.237

we define

F.„k,~= ' ' ' ', (3.19)
f p, (kp, r)v, 'k(kp, r)r'dr

f p.„(kp, r) v. »(kp, r) r'dr

f p.„(1.0, r)v. ' (1.4, r)r'dr

f p, (1.0, r) v,„'"(10, r) r'dr. (3.21)

Then, for each of the short-range, direct, and exchange
forces, de6ning

Vs'k ——L(1.4) Fr.s'k —RF1.4'k$/((1. 4) —R) (3.22)

and
V1'k ——(Fr.P' —RF1.4'") /(1 —R), (3.23)

for the exchange force, and similarly for Ii"". The
indicated integrals and Ii factors are tabulated in Table
V for kJ = 1.0 and 1.4 F '.

Whereas the factors derived above pertain to the
individual contributions at k~ ——1.0 and 1.4 F, it is
most useful to have factors multiplying the vs(r) and
v1(r) terms in (3.16). In order to obtain these factors,
it is necessary to de6ne the ratio of the average force
at kg=1.4 to that at 1.0 F '. For the short-range and
direct forces, it is clearly consistent to define

R= f v' (1.4, r) r'dr/(f v' (1 0& r) rsdr). (3.20)

For the exchange force, weighting by p, at the two
densities yields slightly diGerent values so we define the
average

1 f p,„(1.4, r) v,„'v(1.4, r) r'dr

2 f p, (1,4, r)v, ~v(1.0, r)r'dr

we obtain the desired form for the like force

v 1k+v 1kk a V 1kv sv(r)+ V 1kv sv(r) k n (3 24)

and the unlike force is treated analogously. These V
factors are also tabulated in Table V.

The starting energy dependence of (2.45) is easily
adapted to our present treatment. Since we only con-
sider the triplet-5 starting energy dependence, by
(3.13) and (3.14), the only starting energy dependence
is in the unlike potential. Exploiting the freedom to
distribute all delta-function forces in the direct integral
we obtain, using the statistical factors in (3.13),

Av, k.„„""= 47r (-,') vs (W) 3s (r1—rs),

Av&;,""=Av,.""=', Avt...(-W, i r, r, i), (3.—25)

where vs(W) and Av1, ,(W, i
r1—rs i) are given in (2.43)

and (2.44).
Since (3.25) is independent of density, our treatment

of the starting energy dependence is somewhat incon-
sistent and requires further explanation. The approxi-
rnation we make in (3.25) for computational simplicity
is that the correction at all densities is the same as for
k&= 1.4 F '. Whereas this is obviously a good approxi-
mation in the interior of a nucleus, we now consider a
state with a single-particle energy of 10 MeV in the
surface of the nucleus. For this case (3.25) corrects for a
change from 50 to 10 MeV, whereas the actual change
from the average nuclear-matter single-particle energy
at the local density to 10 MeV is much smaller, so we
appear to be including too much attraction. However,
at low density, Q does not exclude nearly as many
low-lying states so that a given change in starting
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energy produces much more attraction. Hence, at
least part of our apparent excess attraction is justi6ed,
and we believe (3.25) is therefore a satisfactory ap-
proximation.

In the previous section, we discussed the need for
adjusting the effective interaction to obtain the correct
nuclear-matter binding energy. Having now reduced
the effective interaction to essentially six functions of r,
namely, vo (r) and vts«(r) for short-range, direct, and
exchange forces, and appropriate multiplicative factors
for like and unlike forces, clearly the most convenient
means of adjusting the interaction is to introduce
additional factors. Rather than defining a large number
of parameters allowing very general modification of the
interaction, we use four parameters of+fairly direct
physical significance. The direct and exchange average
potentials are multiplied by the single parameter I'I,.
The short-range average potentials at kg=1.4 and 1.0
are multiplied, respectively, by I'z, &.4 and I'8,&.0. In
order to independently vary the absolute difference
between the like and unlike potentials, we define the
parameter I',~ and use modified Ii factors,

F'= 1+(P 1)P„ /P—, (3.26)

where I' denotes the parameter multiplying the average
potential corresponding to P. Note that varying these
parameters varies the Vo and V& factors both by
varying F&.0 and P&.4 and also by varying R for the
short-range force. The choice of these parameters to
reproduce the properties of nuclear matter is discussed
in the following section.

Bulk Proyerties of Nuclear Matter from the
Effective Interaction

The three physical properties of nuclear matter
relevant to this work are the binding energy per
particle, the symmetry energy, and the saturation
density. The first two properties may be extracted
from the semiempirical mass formula. Since the data
are not sufficient to well determine separate bulk and
surface symmetry energies, we prefer the analysis of

a~= 15.68 MeV,

a2= 18.56 MeV,

a~~ ——28.0 MeV.

(3.28)

Other analyses which have attempted to separate
volume and surface contributions have yielded some-
what higher volume symmetry energies with Green"
and Cameron'~ obtaining 31.5 MeV.

The saturation density cannot be directly obtained
from the semiempirical formula. Old arguments4'
have suggested that it is roughly equal to the density
in the interior of a large nucleus, but it is difficult to
believe that Coulomb, symmetry, and surface effects
compensate sufhciently to justify this assertion. Current
prejudice tends to favor kg=1.36. This value is con-
sistent with the central density argument, is not
unreasonably different from the nuclear-matter reaction
matrix result of k& ——1.44, and seems to be supported by
a Thomas-Fermi argument" using Bethe's differential
theory. "However, the nuclear-matter calculation is not
a strong argument since the saturation density is
sensitive to the interaction in higher partial waves which
has been included only in the phase-shift approximation,
and since the higher-order contributions are likely to be
quite density-dependent and have only been calculated
at a single density. The central density and Thomas-
Fermi arguments only crudely relate finite nuclei to
nuclear matter whereas our present density-dependent
HP theory much more directly and accurately estab-
lishes this connection. Hence, rather than select kp

by past prejudice, we feel that it is most sensible to use
our present theory to determine the k& which most
nearly reproduces the properties of Gnite nuclei.

Writing out the lowest-order contribution to nuclear-
matter energy per particle with our effective interaction
in detail, we obtain, for X=Z,

Myers and Swiatecki, 4' which assumes the form

BE/A = —(at —~A 'Io) (1—~L'(N —Z)/A)')+ ~ ~

(3.27)
and determines the parameters

E=LP T;+
k1k2, spin, isospin

((ktk, i vd;, +vs i kiks)+ (ktks i v,.( kskt)) ]/A

=3k''/(10m)+4k''(3v) 'IP(2.744—kz')/1. 744jPs, o f r'vs' (1.0, r) dr

+ t (kr' —1)/1.744]Ps, , f r'vs'«(1. 4 r) dr 2.20—53.4' + (0.989+2—9.9' ) W

—(00302+3.20')W'+f(1.4—kr)/04jPL, f r'vd;, (1.0, r)dr+Dkz 1)/04]PI, —f r'vd;, (1 4, r)drI.
+ (16/v) [(—53 4+29.9W—3.20W') ff (2+ (k/kr) '—3 (k/kr ) )O'Lsin(2kr) /2kr] L (r—0.7)s/(0. 69+r"))rsdk dr

+ff (2+ (k/kr)o —3(k/kr) )k'/sin(2kr)/2kr5r'(P(1 4 kr) /0 4]P—I,v'«(1 0, r)+ L(k r1)/0 4]Plv, '«(14, r) t dkdr],

(3.29)
4' W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).
'6 A. E. S. Green, Rev. Mod. Phys. 30, 569 (1955); Phys. Rev. 95, 1006 (1954).' A. G. W. Cameron, Can. J. Phys. 35, 1021 (1957).' B.H. Brandow, thesis, Cornell University (unpublished).
"H.A. Bethe and P. J. Siemens (private communication).
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where

1~= f L(»—0 7)'/(o 69+»")j"«
TABLE VI. Nuclear-matter saturation curve constants in Eq.

(3.34) . Units are such that 8 is in MeV.

obtained from (2.43), and W is the average starting
energy. S' may be written in terms of E, using

kg

t,
'F-') Co C8.1.0 Cg, 1.4 Cg,

~&= 2 Z (0~+&'), (3.30)

so that
0= 2E—3k22/10m, (3.31)

and thus

W= —
l 4E—3k''/Sm](41. 467) ' F '. (3.32)

At any specific kz, (3.29) may be written in the form

CO+CS, 1.0(+$,1.0 1)+CS,1.4(J S,1.4 1)

1.1
1.2
1.3
1.4
1.5

—11.40
—13.08
—14.18
—14.42
—13.48

11.45
10.68
7.29

—0.067
—13.09

2.80
7.99

16.70
30.38
50.89

—38.06
—46.63
—55.85
—65.58
—75.69

1.162
i.196
1.232
1.272
1 ~ 318

trivially by noting that the total kinetic energy is
proportional to E'~'+Z'l'. Expanding about (X+Z) /2,

+Cr, (I'r, 1)+C1E+—C2F2 (3 33) + L( +
where the C's are simple numerical constants obtained
from the integrals indicated in (3.29). Since C0 is the
dominant term and the C2 term is quite small, we may
write

(CO+ CS,1.0 (+S,1.0 1)+CS,1.4 (1 S,1.4 1)

+Cr, (I'r, 1) )/D, (3—.34)

where D=1—C1—C2C0. The constants in (3.34) are
tabulated in Table VI for k~ from 1.1 through 1.5 F '
and trivially yield the nuclear-matter saturation curve
for any values of the adjustable parameters.

The cumulative error in our approximate effective
interaction may be checked by comparing our nuclear-
matter binding of 11.4 MeV at k~=1.4 with the actual
reaction matrix result of 11.1 MeV obtained by Sie-
mens. '0 This small discrepancy results from a combina-
tion of the simplified starting energy dependence in
(3.25), using the average starting energy indicated in
(3.32), cutting off our integrals at 7 F, and the fact that
Siemens uses the phase-shift approximation in partial
waves above 3=2, whereas we use OPEP. The fact
that our eGective interaction saturates at kp ——1.35,
whereas Siemens's calculation saturates at k~ ——1.44
is due to the fact that the phase-shift approximation is
more attractive than OPEP, tending to give more
attraction at high densities and due to the approximate
density dependence we assume. We note in passing that
recent calculations by Reid" indicate that OPEP now
appears to be more reasonable than the phase-shift
approximation for higher partial waves.

Symmetry Energy

We now derive the contribution to nuclear-matter
symmetry energy at k&=1.4 F ' from our effective
interaction, neglecting at present the contributions of
terms involving the derivatives of G with respect to
proton and neutron densities. The contribution of the
kinetic energy to the symmetry energy is obtained

' R. V. Reid (private communication).

&& (1+0D & Z)/(&—+Z) 3'+ t'lL(& Z)/(&—+Z) j'»
(3.35)

so that the general kinetic contribution to the binding
energy per particle is

El, = (3k '/10m) (1—0L(1V—Z)/(X+Z) )2). (3.36)

Throughout this symmetry energy discussion kz is the
Fermi momentum corresponding to X+X particles per
unit volume. Evaluating (3.36) at k2 ——1.4 F ', the
kinetic term is

El,; =24.4(1——00L(W—Z)/(X+Z))2) MeV. (3.37)

The symmetry energy of the short-range and direct
interactions are equally simple since the direct integrals
contain no momentum dependence and the difference
between like and unlike forces is contained in the
multiplicative factors. Noting

(P""—1) = (1—F")= (Fu"—F'")/2, (3.38)

the total energy from the direct integral is proportional
to

Q2 f lllk»2dy+Z2 f lllk»2«+2+Z f lluu»2dy

—(1llT+Z) 2 f &uv»2«

&& (1——,'(Fuu —F'~)
l (1V—Z)/(1V+Z) $') (3 39)

Using the normalization factors from (3.29), the
contribution to the binding energy per particle from the
short-range and direct forces at kJ = 1.4 F ' is

ESydlv= 30.4 (1 0.32l (Ã Z) /(1V+Z) $2)

—38.8 (1—0.24L(X—Z) /(X+Z) $2) MeV. (3.40)

In order to compute the exchange contribution for
unequal E and Z, it is necessary to generalize the
relative momentum weighting function (2.14) to
account for unequal Fermi spheres. In general,

W(ky„k „k)= f d2E 0(k,—
l
k+K/2 l)

X8(ky, —l
k—K/2 l). (3.41)
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The resulting integrals are evaluated most simply if we
consider Fermi spheres of radii Or+x and Or —x.
Then the exchange contribution to the binding energy
is proportional to

O'W(OF+x, Or+x, O)

X Lsin(2kr) /2kr]F '"v '«(r) r'dk dr

from the direct terms. Whereas the direct contribution
arises solely from the difference between like and unlike
forces, the exchange term is roughly proportional to the
strength of the average interaction and arises pri-
marily because the wave function weighting for
exchange changes for E/Z. Thus, any enhancement
of the exchange interaction automatically significantly
increases the symmetry energy. In terms of the adjust-
able parameters discussed above,

O'W(kp x, Op——x, k)

X t sin(2kr) /2kr]F, ~'~v ' (r) r'dk dr

+2 O'W(kr+x, Op x, O)—
X Lsin(2kr)/2kr]F ""v ' (r) r'dk dr. (3.42)

Explicitly writing out the indicated integrals, one
may obtain a Taylor series in x for A' about x=0 by
differentiating the integrals. The linear terms cancel as
before and the resulting second-order expression for
the exchange contribution to the binding energy per
particle is

E.»= (16/vkp') If O'(2k''+O' —3O 'O)

X t sin(2kr)/2kr]v ' (r) r'dO dr

+3x' f O'(2k' —O) /sin(2kr) /2kr]v ~«(r) r'dk dr

——'x O
' I OLsin(2kr) /2kr]F ""v '«(r) r'dr dkI.

(3.43)

The quadratic terms in (3.43) are not the symmetry
energy terms since Fermi spheres of radii Or+x and
kp —x do not have the original number of particles.
Thus, we should consider spheres of radii (Or+LS&~x),
where to keep the number constant, Ak& ———x'/O&.

Adding the correction (Akr/A) LB (AE, ) /Bkr] to
(3.43) and noting that

L"(X—Z) /(X+Z) ]'=9x'/Or'+ 8 (x')

we obtain

E, = (16/v.kr') (J O'(2k''+O' —3k''O) (sin(2kr) /2kr]

Xv & (r)r'dO dr+L(1V —Z)/(X+Z)]'(O '/6)

X I2 J jPLsin(2kr)/2kr]v '«(r)r'dk dr

Or f OLsjn(2kr) /2k) ]P unv a«(r) r' dk dr I )

Er:Eg' +Es+g'+E =136+644P

+7.26I'z, MeV at Ov
——1.4. (3.45)

With no adjustment of the force, E» is 27.3 MeV.
Several important eGects must be included in order to

compare E., with (3.28). Having emphasized the
effect of the density dependence of the effective inter-
action, it is clear that BV/Bp terms should contribute
significantly to the symmetry energy. Since our
parametrization of the density dependence is based on
equal sized Fermi spheres, it cannot in its present form
reproduce the intricacies of the density dependence of
the interaction between unlike particles with EAZ.
For this reason, we use the results of the complete
nuclear-matter calculation by Siemens'0 for S4Z in
which he obtains 31 MeV including BV/Bp terms and
27 MeV omitting them. This 4-MeV correction is
quite significant since it should really be compared
with the experimental symmetry energy minus the
kinetic contribution of 13.6 MeV.

Since the volume contribution to symmetry energy
is to be compared with the nuclear-matter symmetry
energy, we must modify our calculation at kg ——1.4
to nuclear-matter density. Siemens" has shown that
the symmetry energy varies as kp' to an excellent
approximation so that we should require

(Or-'/1. 4) '(E„+4.0) = 28 MeV. (3.46)

In our subsequent density-dependent HF calculations,
the force is adjusted such that saturation occurs at
kp: 1 31

y
Ip 1 Oy and I,y~ 1 0, with the result that

(3.46) yields 27.5 MeV.
It might appear that our treatment neglects the

effect of the difference between nuclear-matter starting
energies and those in finite nuclei. Since the starting
energy correction only appears in the unlike force,
the direct contribution in (3.39) is quite significant
because it depends on the difference between like and
unlike forces. Using (3.25) in (3.39) and (3.44), we

obtain

= —27.1+14.1I (X—Z) /(F+Z) ]' MeV E,~= 7.90—4.15W+3.55W' MeV. (3.47)

for OF ——1.4 F '. (3.44)

It is interesting to note that the exchange contribu-
tion to the symmetry energy is physically quite different

The average single-particle energy in Pb'" of 25.0 MeV
obtained in our subsequent calculations yields AE,y

3.4 MeV which one might be tempted to include with
E,r in (3.46). However, this would be incorrect since
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the starting energy varies with A, and hence is included
in the surface term. Physically, this is evident since the
single-particle energies are determined in part by the
surface energy, and this inAuence must decrease as the
ratio of surface to volume decreases. To verify this
quantitatively we use the result obtained in a later
section that the average single-particle energy in Ca"
is 24.1 MeV and in Pb"' is 25.0. However, as discussed
later, the starting energy for protons is not simply the
sum of the single-particle energies of the two interacting
particles, as for neutrons, but rather must be corrected
for the Coulomb potential in intermediate states. These
corrections modify the average single-particle contribu-
tions to starting energy in Ca4' and Pb"' to 28.3 and
32.9, respectively. Since the ratio of surface to volume
contributions in (3.28) is —1.18 and since (3.47) is
sufficiently linear over a range of 15 MeV, we write the
average single-particle contribution as Eo(1—1.18A '")
where E0——41 MeV yields the best fit to Ca4 and Pb' 8.

Now E0 is the average single-particle energy appropriate
to the volume term and, hence, should be compared
with the average single-particle energy in nuclear
matter at the saturation density. Using the argument in
(3.30) and noting that the binding energy at kz ——1.3
F ' is 10.5, we find that the average single-particle
energy at 4+=1.3 F ' is 42 MeV. Hence, assuming
nuclear-matter saturation at k~ ——1.31 F ', the starting
energy correction is quite adequately included in the
surface term.

Angular-Momentum Reduction

Before performing the variation of the wave functions
to derive the density-dependent HF radial equation, it
is desirable to perform as much angular-momentum
reduction as possible. Considering first the simple case
of completely closed l shells with the same radial func-
tions for protons and neutrons and using the notation
in (3.5), the contribution from Fig. 2(b) is

—', Q (MM'
I

V
I

MM' M'M) =—
nlm, spin, zsospin

f drgdQg
n~l~m~, spin, isospin

f d;dn, LI Z. & (;)V, „.(n, ) I

where

g V(l rg —rp I) I R„((rg) Vg„(Qg) I'+R ( (r2) F') „*(Q2)R ((rg) Y(„*(Qg)

&& V(l r~ —r2 I)~- ~ (r~) V~ - (~~)&.~(r2) V~-(~2) j (3 48)

V(l ri —r2 I) =~8-+~~;.-
V(l r~—"I) ="--.

It is useful to expand V and V in I egendre polynomials,

V(l rg —r2 I) = Q Vp(rg, r2) PI, (cos(u)s),
&=0

V~(r~, r,) =-', (2k+1) f V(l r~ —r2 I)PI, (cos~~~) d(coscu~~). (3.49)

Noting that V and V already contain the appropriate spin and isospin average from (3.7), the direct term in
(3.48) is

f dr, dr,d0~24(2l'+1)R„, ,'(r, )4(2l+1)R„P(r~) V(l r~—r, I)/4~
nLn«~

f dr&dr24(2l'+1)R„&'(r2)4(23+1)A„P(r&) Vp(rq, r2). (3.50)
nLn~L~

Using the addition theorem for spherical harmonics,

the relations

P/(cosM]g) =I 47r/(2k+1)] p (—)™'Yk"(Ql) F'k "(02),
m f/ Ir

(3 51)

('1' 1 k) f 1'

= (—1)""I (2l'+1) (21+1)(2k+ 1)/4~j"'
I (3.52)
&000)&—m m —m)
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and
lsd L

Fl. .(Q) V2 "(0)= Q Q (—1)~
L=~ll—a) m—L

(i' u L) (i' u L)
&& I (2~'+1) (2&+1) (2L+1)l4~1"'! !! I

VI 3E(D)— (3 53)
&0 o o)& ~ ~)

and the symmetry relations for 3-j symbols, we obtain

dil2&p (il2) &1 (foal) &l (~l2) Vjd(rl, r2) Pjd (coR1)12) Q ( 1) ™~jm1V2 (rl, r2) (21'+1)
m~~m~V. ~

(1' t I)(t' I u)(1' u i )(i' u L)
yL, (2L+1) (2E+1)]'j'! !! !! !! !

F'I 22(Q, )
(0 0 0) (0 0 0) (222' 2)2" —221) (r)z' 221" M)

Thus, the exchange term in (3.48) is

= Z V2(rl, r2) (2~'+1)
I !

V (0 ). (3.54)
(0 o o)

2 Z
nlnf l~k

!dr, dr,4(2t'+1) R~ l. (r2) R„.p (r,)4(23+1)R„l(r,)R„l(r,) V„!
(0 oo)

(3.55)

Proceeding to the more complicated general case of closed j shells, the wave functions must be written

! M)=R, , (r)g,; (n)r, . (3.56)

The assumption that R„l(r) does not depend on j is consistent with the previous development since we will only
consider the average radial function for closed l shells and only the lower level of an unfilled spin-orbit doublet.
The eBect of the two-body spin-orbit force, which has been averaged out of our effective interaction, is not included
in the present discussion, but will be approximated at a later stage. For notational simplicity, we denote the
projectors appearing in (3.11) as

P= (1+aP +bP,+cP P,)/4, (3.57)

where each of the four cases may be treated by appropriate choice of u, b, and c, and we use I', instead of P,
because of the explicit r dependence in (3.56). Then, (3.48) becomes

where

SE,TE; SO, TO nljs, nI i~Ps~
(1zljs! VP ! lr'jl' )s, (3.58)

(21jls! VP! 22' 's') = p drldQldr2d02R„1(rl) R„.l (r2)'JJ12 *(1)'JJ1j '*(2)
mml

Xr, (1)r, (2) V(r12)PLR„l(rl)R„p(r2)'JJ12. (1)'gpl '(2)r, (1)r, (2)

—R l (r2) R„ l (rl) 'JJ 1j (2) 'JJp, ~'(1)r, (2)r, (1)]
j &(-:jdrdndrd12(2j+, 1) ,(2j,'+,1)

~

mm~m lml~msmg~, n lnl~ns+s m ml —1Ã N +l —m

(-: ~' j')(-: &'

X! II I R-l(rl) R- p(r2) Vl- *(ill) Vl - (1l2) X-.(1)
m, ' ml' —m' e,' el' —m'

&&X,(2)r, (1)r,.(2) V(r12)PC R~l(rl)R~'1'( 2) Vl~ (%) Vl.„,.(02)X„,(1)X„,(2)r, (1)r, (2)

—R 1( )R r2l(rl22) Vl., (02) Vp. , (1ll) X-.(2)X-.'(1)"(2)" (1)3. (3.59)
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Explicitly inserting P from (3.57) and denoting 8,=b„as before, we obtain

dt'j dQydt2dog
mme zm $~,msms~n zn zI

(2j+1)(2j'+1)R„i(ri)R„.&. (i'2) Fi,*(Qi) F&. ..*(Q2)

j' l(-:
I V(~12)!R l(~1)R 'l'(r2) Vz-, (Qi)

m mz m m Rz m m mz m m

X F).„,.(Qg) (1+b8,)+R.i(ra) R„ i. (r, ) F,„,(Q,)Fi.„,.(Q,) (a+c5,) $

mm~mZmZ~, msms~nZn Z~

j)(-', l j)
(2j+1)(2j'+1)R i (ri) R„.p (&2) F'i„,*(Q,) Fi.„,.*(Q,)!

m mz m m fez m

(-: &' j' )(-:
X! ! ! V(riz) PR„i(ri)R„.i (r2) Fi„,(Qi)T& „, (Q2)

m mz m m sz m

X (—c—a8,)+R„i(r2)R„.i. (ri) Fi„,(Q2) Fi.„,.(Q,) (—b —5,)] . (3.60)

The fundamental difference in structure between the two sums in (3.60) is that the four 3-j symbols in the
first sum yield B,„,B„,„, /L(21+1) (21'+1)]when summed over m, m. , m, ', and m', whereas no similar reduction
occurs for the second sum. Thus, it is convenient to rewrite the second sum as two terms, by rewriting

(-: » &(-: ~' j' ) 1&-: » l(-:
m. ' ez —m m. &z' —m' m, &z —m m. ' &z —m'

jl(-: ~' j'l 1(-: ~ j~(-:
m, ' ez —m m, nz' —m' m, ez —m m. ez —m

Then, the first sum plus the first term of the second sum reduce as in (3.48), with the result

d,hard&(2 j+1) (2j'+1)!R„P(ri)R„.i'(r, )

X Vo(ri, r,) (1+M,—(c+a8,)/2)+R„i(ri)R„ i. (ri)R„i(r2)R„ i (r~)

where

(l P k)'
xg! ! Vq(ri, r2) (a+cd, —(5+8,)/2)$+(VP)q;, +(VP), , (3.62)

~ I,oo 0)

1
(VP)g;, ——— drgdOgd~gdOg

mmmm zm z~, msm~~n zn $~

(2j+1)(2j'+1)R„i2(ri) R„ i 2(r2)

j i(-: ~ j'i (-:
X F i„,*(Qi) Fi.„,.*(Q2)!

m mz —m m mz —m m Rz —m m Rz —m

~ l(-:
V(riq) (—c—a8,) Fi„,(Qi) Fi „, (Q2) (3.63)

m Rz m m flz m



(VP). =—1 dr~dQ~dr2d02
mmmm zm z~, m$m$~n zn z~

(2j+1) (2j'+1)&-~(r )&- ~ (")

(-: f j)(-: ~' j') (-:
)& F(,*(Qg) F(,.*(Q2) !

m, mz —m m, ' mz' —m' m, ' Ãz —m m, ez'

V(r„)(—b —8,)E„((r,)R„.p(r, )F,„,(0,)F,.„,.(0,). (3.64)
sz —m m sz —m

The statistical factors weighting the interaction in (3.62) are precisely the same as in (3.13) and (3.14), since
using (3.57),

(1 ~/2+Lb —a/2jb, ) V=-,'(1—8,) VqH+ —',(1+8,) VsE+s(1+8,) Vvo+s(1 —8,) Uso (3.65)
SE,TE; 80,TO

and
(a b/2+$—c 1/2]8,—) V= s (1—8,) V'fE+ 8 (1+8,) Vsa —,(1+8,) Vyo —

s (1—8,) Vso. (3.66)

Then,

Z
SE,TE; SO, TO

If either / or f is a completely closed shell, then (VP) a;, and (UP), in (3.62) vanish identically. To demon-
strate this, we assume for definiteness that the levels j=l+-', are filled. Then,

(-:
(2j+1) I

emm~, msm$~ m, mz —m m, mz —m

(-:
x

m, Bz —m m, Rz —m m, Ãz —m m ISz —m

j' )(-'
m m$m$ im mZ m / im 'ISz —m /

l' j' )(-', l' j' )
&&

I ll I

= 0.
m$ mz m m$ Qz m

Hence, the potential energy contribution from the interaction of two particles, at least one of which is in a closed
l shell, retains the same simple structure as (3.50) and (3.55), with the average interaction simply being repls, ced
by the like or unlike force. For the case of identical proton and neutron wave functions, (3.62) and (3.58) reduce
identically to (3.50) and (3.55), since 2V'"+2V""=4V'» and

2+1/2

(2j+1)= 2(21+1).
2= z—1/2

In order to compute the potential energy contribution of two particles in the closed j shells, j= l+ ~ and j' = l'+ ~~,

with the levels l—~ and l' 2complet—ely empty, it is necessary to evaluate ( VP) z;, and ( VP), in (3.62) . To show
that (VP) d;, = 0, it is convenient to deiine

G(m, m, '; e,e,') = Z
mmmm m ~

m/ Xm. mz —mg

jl(-: f' j'l 1(-: ~ jl(-:
x (3 6g)

m$ 'ISz m m$ 'ISz m ms Sz —m m$ +z(!»)(l
G(m, —e,'; ~,—m, ') =

m. mz —m/ im, —ez

(-:
x

m, ' ez —m m$ —mz' —m'

—m')

1(-: » l(
2 m ez m mf

P j'
(3.W)--) '
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and in both cases, the second term is
B„,„,B„,.„../(2(2l+1) (2l'+1) ).

Since we only consider the lower level in a spin-orbit doublet, the only 3-j symbols which are required are

(— l (l+—)
l

= (—1) g+"+g
L (i+I+1)i (2l+ 2) (2l+1) egg'

2 S —
2
—n

(3.70)

(3.71)

!
= (—1) '+"! (l—gg+1) j(2l+2) (2l+1) !'g'.

g
—S

We first consider the case m'@e'. Then,

(3.72)

j l(-:
G(mgmg', egggg') G(—mg ggg'—, Ng —mg') =

m, mz —m m, ' eg —m

(-: l' j' l(-: l' j'
& (-: l j' i(-:

ml m m +l m m ~|I m m

l j'
(3.73)

—m, ' —m')

From the fact that the m s in each 3-j symbol must sum to zero, it is clear that for nonzero contributions to (3.73),
m, 'Wm, and mg' ggg'&——1 Using . (3.71) and (3.72),

Dining
G(mgmg', ~gggg') G(m—g ggg',—ng —mg') = 0.

f(mgmg', egeg') = &g,*(&g) &g, "'(&2) &g~, (&g) &g, (&2),

(3.74)

(3.75)

it follows from the properties of the spherical harmonics and the fact that m~' ——n~'~1 that

f(mgmg', egng') = (—1)""+""f(mg ng', egg
—mg')—

ml +l +l ml
Thus, we obtain

f(mgmg', gg gN g') G(mgmg', Ign g') + f(mg gg g', eg —mg') G—(mg ng', gg—
g mg') —= 0.

Now consider mz'= ez' which requires m, '= m, and e&= m& for nonzero contributions to G. Then,

(3.76)

(3.77)

(-:
G(mgmg', mgmg') =

m2R~mgg
S

j ~(-', l' j' ~(-', » l(-;
m$ m m m$ m m m$ m m m$ m

—L2(21+1) (2l'+1) ] '

so that

2 (l+ 1) (l'+ 1)+2mgmg'

(2l+1) (2l+2) (2l'+1) (2l'+2)

G(mgmg', mgmg')+G(mg mg', mg——mg') =0.

(3.78)

(3.79)

Noting that f(mgmg', mgmg') =f(mg —mg', mg mg'), w—e again obtain

f(mgmg', mgmg') G(mgmg', mgmg') +f(mg mg', mg —mg') G(—mg mg", mg——mg') =0. (3.80)

Thus, we have demonstrated that (3.76) is true, in general, so that the sugn over mg, mg', eg, and ng' in (3.63)
yields identically zero.

It is indeed fortunate that (VP)qg, gives zero contribution since otherwise it would have been necessary to
Legendre-expand the direct interaction. However, it has already been necessary to expand the exchange inter-
action so it is no further complication to evaluate (VP),„in general. Using (3.51), (3.52), and (3.53) as before, we

may rewrite (VP).„as
1

(VP),„= — drg dr, (2j+1)(2j'+1)R g(rg)E g (gg)E~g(r2)R g (g2)
4

(l l'

x P! I
Vg,. (rg, r,) (—b —b,)X(/j7j'0), (3.81)

~ (00 oj
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where

X(ljl'j'k) =
mmmm zm z~mg, mg~n zn gimel

( 1)ml+ml +m (2)+1)(2/+ 1)

(t' i u)(t t' u )(-', t j)(-',
xl —mg' Sz m" —mg Sz' —m" m, mz —m m, ' mz' —m'

(-: ~ ~ l(-: &' j'l 1(-: » &(-:

m, '
Sz —m m, Sz' —m' m, Sg —m m, ' Sg' —m'

X(jllj''k) may be most easily evaluated using identities involving 6-j and 9-j symbols. ~' Simplifying the erst
term in X, we obtain

mm~mzmz me, ms &znz m

(P i u'I(i t' u )(-,'
( 1) i+ i'+'I

—mz' Sz
m" —mz Sz' —m" m, mz —m

(-: ~' j' &(:»&(-:

m mg m m Sz m m Sz m

mzmz~, nznz~mI ~

e )(t i' u ) (&
( 1)mg+m(&+m~ Z

1—mz sg m/ y
—mz sg —m/ '' ymg —m m,

j' 1(~
lmz' m, ' —m' —m m, ' Sz m, —m' Sz'

m zm z~n zn z~,ml ~X/

(v i u)(i(-1)-+-'+-"
I I (2X+1)

mz Sz m mg Sg m

(i t' X'r (X
&&I

(~, m,

l l' X

mzmz~p, nzn )~m~~

(t X t') (r
( 1)m~+m~~+m~r+l+V+If,

!

Sz p Sz Sz m —mz

(t X P)( i u

xl
mz y mg' —mg —m" Sg'

l l' X

= g (2X+1) .
l X l'

l' X,

( 1)2l,

l k l'

jI li

2 l —' j' l' k l l' 2

k j'. . k l j.
(3.82)

"M. Rotenberg, R. Bivins, N. Metropolis, and J. Wooten, The 3-j and 6-j Symbols (Technology press, Cambridge, Mass. ,
1959), Eqs. (3.21), (2.18), (3.22), and (2.16).
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Since we consider only the case j'= l'+ s, j=l+ —'„we may evaluate this explicitly,

(t +') (~+') .

(k+ l+J'+ 2) (l+ l' k+—1)
(23+ 1) (2l'+1) (21+2) (2l'+2) (3.83)

The second term in I is trivial since the 3-j symbols immediately reduce by orthogonality,

r
( 1)mt+m(1+m«!

mmmm )m ~~ms, ms~n ~n ~~ALII

( 1 tI

k)(t t' k )(
s$ m m$ s$ m m mg m

m]m )~,n ~n )~m~I

(P I k)(t
r

( ] )mt+w~~+wa~~!
! 8„,„,8„,.„,./L" (2l+1) (2P+1)]—ml' sl m" —ml sl' —m"

Thus,

= —1/$2(21+1) (21'+1)$.

X(lj1j''k) = (k+/+l'+2) (J+J'—k+1)/L. (2+2) (21'+2)j—-',

= P(i+1)+t'(v+1) —k(k+1))/t 4(J+1)(v+1)g.

(3.84)

(3.85)

Hence, the contributions from particles in the closed j shells j=l+z and j'=l'+s may be treated exactly by
replacing each term in the Legendre expansion of (3.66) by

s (1—3,) VTE+-s, (1+&.) VSE s (1+3 ) VTD s (1 3,) Vso+X(le'j'k)

X L-', (1—b,) VTE+-,'(—1—3,) Vsp+-,'(—1—3,) VTo+-,'(1—3,) Vsoj. (3.86)

P (2k+1) ! ! X(jle''k) =0. (3.87)
(0 0 0)

For computational- convenience, since only the long-
range part of the second factor contributes and the spin-
unsaturated contribution is only a small part of the
total potential, it is reasonable to approximate the
force in the second term of (3.86) by a multiplicative
constant times the first term. For the case of like
particles, since Vaz is much greater than VTo beyond
1 F, the constant is approximately —2. For unlike
particles, it is necessary to compute an average over
the region from 0.75 to 2 F, with the result being —0.4.
Thus, our Anal result for the effective exchange con-
tribution is to multiply each term in the Legendre
expansion of (3.66) by

1—(0.4+1.65,)X(ljlq'k) . (3.88)

Since we have shown that (VP)s;,=0 and that the
short-range part of the exchange force is equivalent
to a short-range direct force, the additional term in
(3.86) must not contribute at short range. This fact
may be explicitly verified by noting that the kth term
in the Legendre expansion of a 8-function force is
proportional to (2k+1), and explicit evaluation yields

Vso (r) =F4'(1/r) (dp/dr) l.o; (3.89)

where Ii is a constant to be determined. This expression
may be roughly related to the usual Thomas term
(1/r) (d V/dr) by noting that the effective single-
particle potential described in the next chapter has
approximately the same shape as the density and that
in the interior of a nucleus, where the density is about
0.17 F ', the single-particle potential is roughly 50
MeV. Then, various determinations'~" of the coeK-

s2 R. J. Blin-Stoyle, Phil. Mag. 46, 973 (1955).
ss R. Scheerbaum, thesis, Cornell University (unpublishecl).
~4 I.. A. Sliv and B.A. Volchok, Zh. Eksperim. i Teor. Fiz. 36,

539 (1959) LEnglish transl. : Soviet Phys —JETP 9, 374 (1959)J.
5~A. A. Ross, H. Mark, and R. D. Lawson, Phys. Rev. 102,

1613 (1956).
'sI. I. Levintov, Zh. Eksperim. i Teor. Fiz. 30, 987 (1956)

LEnglish transl. :Soviet Phys. —JETP 3, 796 (1956)j.
'r S. Fernbach, Rev. Mod. Phys. 30, 414 (1958).
ss J. Blomqvist and S. Wahlborn, Arkiv Fysik 16, 545 (1960).
'9 A. E. S. Green, Phys. Rev. 99, 1410 (1955).

Syin-Orbit Force

The eGect of the two-body spin-orbit force is ap-
proximated by a one-body spin-orbit potential. Fol-
lowing the approach of Blin-Stoyle, 5' as recently
elaborated upon by Scheerbaum, " the first term in the
expansion of the contribution of the two-body force
from a spin-saturated core may be written
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cient of the Thomas term specify that F is approxi-
mately 6—9 MeV. F5.

For the present application we shall select F to
reproduce the correct spin-orbit splitting for the d and f
states in calcium. From the reaction data cited by Elton
and Swift, ' the d3/~-d5/2 splitting in Ca is 7.2 MeV for
protons and 6.3 MeV for neutrons. Requiring that
(3.89) reproduce the average splitting of 6.75 with our
self-consistent Ca' wave functions yields F=5.9.
Since the central force contribution to the spin-orbit
splitting of unsaturated shells is included in (3.88),
it is clear that (3.89) should only reproduce the spin-
orbit contribution of the spin-saturated core. Hence,
we should require P to reproduce the f3/2 f7/2 sp-litting

in Ca rather than in Ca' . The neutron data presented

by Elton and Swift are unfortunate in that the fz/2

level is obtained from binding energies whereas the

f3/2 level is obtained from (d, , P), so that allowing for
rearrangement energy, one may only conclude that
the spin-orbit splitting is greater than 5.5 MeV. Hence,
we shall use the stripping data of Cohen et al. ,

36 which
specifies the f3/2 f7/2 splitti-ng in Ca3' to be 6.5 Mev.
Using the self-consistent Ca' wave functions, this
splitting corresponds to F=5.8.

In order to check the consistency of adjusting the
spin-orbit force from experimental data with our use of
the effective interaction elsewhere in this calculation,
it is useful to compare the spin-orbit splitting computed
from matrix elements using the full effective interaction,
Eqs. (2.25) and (2.33), with the experimental splitting.
Considering the interaction of the f3/2 and f7/2 levels
with the Ca" core, the lowest-order contribution of the
two-body effective interaction to the single-particle

energy is

V = (2L2j+1]) 1 P (2T+1) (2J+1)

X(ahJT
~

V
~

~hsv'), (3.90)

where /3 is Ofq/2 or Of3/2 and 73 is summed over Osi/2,

Opi/2, Op3/2, Od3/2 Od3/2, and 1si/2. Using 5'co = 11.6, which
roughly reproduces the density distribution of the core
wave functions, and using the self-consistent single-
particle energies reported in Table IX in the on-energy-
shell starting energies, the potential contribution to the
f5/2 f7/2 s-pin-orbit splitting in Ca4' is 6.1 MeV. This
theoretical result from the full effective interaction is in
very good agreement with the experimental result of
6.5 MeV. Thus, using (3.89) with F=6 is not simply an
ad hoc fit to experiment, but may be viewed as a reason-
able approximation to the actual spin- orbit contribution
of the effective interaction. Since the coefFicient of the
Thomas spin-orbit potential has been shown to be
relatively constant throughout the Periodic Table, ""
and we have already demonstrated that (3.89) is
roughly equivalent to the Thomas potential, we shall
use F=6 for all nuclei.

1/r12 g (r&'/r&'+') P3 cos (u12) ~

L=O

(3.91)

It will be convenient to treat average neutron and
proton wave functions for some calculations so that
each particle with an average wave function has
effective charge —', . Then, using the statistical factors
for the average force,

Vd;, '"'= (3+3) (e/2) '/r12 ——0.3600/r12,

V o'"'= (—' —3) (e/2) 2/r12 ———0.0900/r12. (3.92)

The Coulomb interaction between a proton and an
average charge —,

' particle is twice (3.92). For the true
Coulomb force between two protons, using (3.14) and
(3.86),

Coulomb Interaction

The Coulomb interaction may be included trivially
in our treatment because of the I.egendre expansion

Va;, '"' ——(-,'+ —,') e'/r„= 1.440/r„,

V, o'"'=
(~ —3)e2/r» —— 0 720/r, 2—.for an / shell,

V,„o'"'= g L(4 —4)+ (——',—2) X(ljl'j'k) ]e'(1/r») (2~

= —0.72 g $1+2X(ljl'j'k) )(r&2/r&"+') for a j shell. (3.93)

Simpli6ed Notation

Before performing the variation of the lowest-order energy expression (E), it is desirable to streamline our
notation so that the above results of the angular-momentum reduction are implicitly included in simple notation.
Hence, we let i represent the quantum numbers I 73, lI for closed l shells, and I73, 1 j=l+1I for closed j shells. We
dehne

u, & ~&(1) = L(23+1)2]'/'8 ~' &(ri)/f(47r)'/'ri)

= [2j+1]'/28„1&~~~(ri)/L(42-)"'ri]

if i is an 1 shell

if i is a j shell (3.94)

6o L. R. P, K].t,pp @ad A. Swift, Nucl. Phys. A94, 52 (1967).
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for both neutrons and protons. Since we will consider equivalent neutrons and protons of average charge ~~ only in
closed l shells, we define

u;n (1) = [4(2l+ 1)5't R»n~(rl) /([42r5'12ri) . (3.93)

Finally, it is useful to let I representi and the charge state, E, I', or av, and to let y be 0, 1, or ~ for each charge
state, respectively. Then, we may write

E= P J ur(1) Tr(1)uI(1) dri+-', g Jf [ur2(1)ur2(2) V(rl, r2)+ur(1)uI (1)ur(2) ur (2) U(rl, r2) 5drldr2, (3.96)
I II~

where

Tr —rl (5——2/2m) [82/c3ri2 l (f+—1)/rl25rl if I is an f shell

rl—(fi2/22m) [82/alri —l(l+ 1)/rl25ri+6 (42r) (f/ri) (dp/dr) (rl)

V=Vs&2i&' ""' &(ri, r2)+V&;,«&&'~"" n i(rl, r2)+qrqr 1.44/r»

if I is a j shell,

U= Zl l [—(8„«8«l+qrqr ) 0.36r&"/r&~+'(1+2X(jle''k) )
~ (0 o 0)

+ Vx&2&&
""n'"i(r» r2) {1—(04+1.68,)X()j[j' k) I5,

(lk, un, av) ~ ik
(k)

un+ +~un (gl)

+6v""(W) /2

if I, I' are both I' or both S
if one is I' and the other is E
otherwise,

and
X(jllj''k) =0 unless I and I' arej shells,

d7] —d f],

To further simplify notation, it is convenient to define

p'( ) = 2 (u" ( ) )' p'(1, 2) = 2 u" ( ) u ( ),

Thus far, we have not explicitly written out the k+
dependence of the eRective interaction. It is most con-
venient to write

VO(rl r2) +Vl(rl r2) p (R) (3.100)

where now o.= 3 times the exponent associated with kg
in (3.24), Vl is (22m') times the density-dependent
term in (3.24), and p(R) is evaluated at the c.m.
point R = (rl+r2) /2 and corresponds to the appropriate
kr. Rather than explicitly writing n=1 for the short-

(3.97)

and similarly for neutrons and average particles,
bearing in mind that these are mutually exclusive
categories. In addition, we define

p(1) =p-(1)+p'(1)+P(1)
p(' 2) =p-(' 2)+p'(' »+p (1 2»

and
~p(1) =p"(1)—p"(1)

(3.99)

range force and o.=3 for the direct and exchange
forces, we shall carry out the general derivation with u.

For the case of interaction between like particles,
clearly the appropriate p(R) in (3.100) is the density
corresponding to the local kp for that particular kind of
particle. Because of our normalization relating k~ to p,
the appropriate p(R) for two protons is twice the local
proton density so that, in terms of the quantities
defined in (3.98) and (3.99), this density is p' (R)+
2p~(R) or, alternatively, p(R) —Ap(R). Similarly, for
neutrons we obtain p' (R)+2p+(R) or p(R)+Qp(R) .

Variation

For the interaction between unlike particles, our
parametrization of the density dependence is incapable
of treating the true dependence on both neutron and
proton density exactly. Instead, we approximate the
complicated dependence on both neutron and proton
densities by setting p(R) in (3.100) equal to the total
density. This is a reasonable approximation for the
density dependence arising from the Pauli operator
since it approximates the exclusion of two Fermi
spheres of unequal radii by that from equal Fermi
spheres which exclude the same volume. It is not
physically obvious that the density dependence
arising from self-consistent starting energies should be
accurately reproduced by this approximation, but the
detailed calculations by Siemens'0 for unequal proton
and neutron densities show that this approximation is
quite adequate.
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Thus, in general, we may write

(&)= f dri P ur(1) T'rur(1)+2 ff dri«~{[p-(1)/27[p-(2)/23

X[V»+Vi»(p»(R)+2p+(R) ) +2I Vo" +Vi""(p'"(R)+p (R)+p (R) ) I+Vo "+Vi "(p'"(R)+2P (R) ) j
+2[p-(1)/2jP(2) [Vo'"+Vi'"(p-(R)+28(R) ) +Vo""+Vi""(p"(R)+p'(R)+ p"(R) ) j
+2[p»(1)/2jp (2) [Vo»+ V&»(p»(R)+2p (R) )~+ Vo~ +VV (p»(R)+p (R)+p&(R) )~]

+p (1)p+(2)[VO ~+V& i(p (R)+2pN(R) )~j+p (1)p (2)[Vo "+V& ~(p»(R)+2p (R) )~]

+2p (1)p (2) [VP"+V@"(p»(R)+p (R)+p~(R) )~j)+exchange, (3.101)

where the exchange term is analogous to the direct term with p(1) and p(2) being replaced by p(1, 2) and V being
replaced by V. Rewriting (3.101) in terms of p and Ap, expanding (p&hp) through second order, and simplifying,

(E)= (T)+~ ff dridr2{ p(1) p(2) [Vo' +V&~ p~(R) + (a(n 1)—/4) Vi "(Qp (R) ) PN- (R)j
+p(1)hp(2) Vi»asap(R) p~'(R)+i~hp(1) &p(2) [V '"—Vo" + (Vi'"—Vi"")p (R) jI+exchange (3..102)

We now consider variation of a direct term of the
form

ff dridr2p(1) p(2) Vp (R). (3.103)

Varying u; in both p(1) and p(2) leads to the HF
contribution

2 f d'r, bu;(r, ) f d'r, p(r, )

XV(j ri —r2 ~) p (-',
~
ri+r2 ~)u;(ri). (3.104)

Introducing new variables R=r~ and r=r2 —r~, this
may be written

2 f d'Ri8u;(R) f d'rp(~ R+r ~)

XV(r) p (i R+-', r i)u;(R). (3.105)

To vary u, in p, we write (3.103) in terms of the
variables r=ri —r& and R= (ri+r2)/2. Then, (3.103)
becomes

ff d'rd'Rp(~ R+-', r ~) p(~ R——,'r ~) V(r) p (R) (3.106)

and variation of I; in p yields the rearrangement
contribution

f d'RBu;(R) f d'rp(i R+—,r i) p(i R——',r i)

XV(r) np '(R) u;(R) . (3.107)

Because of the similarity of the integrals in (3.105)
and (3.107), we approximate the rearrangement con-
tribution by n/2 times the HF contribution. This

approximation may be justified quantitatively by
considering a plane surface with the density varying
only in the s direction, and expanding the densities in
(3.105) and (3.107) in powers of s about R. For the
most significant contributions from V8, r is 0.5 F, and
for Vz;„r is roughly 1.5 F. Integrating over angles, the
terms linear in s do not contribute, and f (dQ/4~) s2=
r'/3, so that the most significant contributions from Vs
occur for s'= 0.21 and those from Vd;, occur for s'= 0.75.
The difference in values for s' roughly compensates the
fact that o.=1 for the short-range force and ~~ for the
direct force. Explicitly evaluating the error in this
approximation to the rearrangement term at the
half-density point of the one-dimensional surface,
taking dp/ds from electron scattering, we find that the
error is less than 1% of the HF contribution from the
density-independent component of the force Vp.

This approximation serves as a prototype of the
approximation we shall make in the rearrangement
contribution obtained from varying each direct term
in (3.102). To simplify notation, we shall indicate
this approximation by

ff dridrq8u;(R) p(1)p(2) Vap i(R) u;(R)

= ff du;(1)p(2) Vap (R)u;(1)dridr, . (3.108)

Then, varying I; in p', which contributes to p, but not
to Ap, we obtain

B(E)= f drilu, (1) [T;(1)+f p(2) {Vo»+[Vi»+Vi~~4(n(a —1) ) (hp(R)/p(R) )2jp (R) Idr2

+ f Ap(2) Vi' -,'n(hp(R)/p(R) )p~(R) dr2+ f p(2)-', aVi»p~(R) dr2

+ f hp(2) {Vi»i (n(n —1) (n —2) ) (Ap(R)/p(R) )p~(R)+ Vi'&i (n(n —1) ) (hp(R)/p(R) )p~(R)

+(Vi'"—Vi"")~n(hp(R)/p(R) )p (R) Idr~] (1u)+e h xncgea. (3.109)

Since p~ contributes to both p and hp, from (3.98) and (3,99), varying uP yields all the terms in (3.109) plus the
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additional terms

f drz»'(1) If p(2) Vi"-'n(~p(R)/p(R) )p (R) dro+o~p(2) I V '" V—""+(Vi'" V—"")p (R) }dro

+ I Ap(2) I Vi'"—(n(n —1) )p (R)+Vi'"—np~(R) }dr o] u(1)+e xc ban ge. (3.110)

Similarly, varying u;~, we obtain the terms in (3.109) minus the terms in (3.110).
Finally, the direct term is further simplified by defining fz as 1 for neutrons, —1 for protons, and zero for average

particles. Then, we may treat the three cases above simultaneously by multiplying (3.110) by fz, and we may
write p(2) = gz ufo(2) and Ap(2) = gz fquz (2) . Thus,

g (g) = 1' «z»z (1) [T (1)+ g 1' drouJ'(2) I Vo' + i2 ( fz fr) (V '"—Vo"")
J

+p (R)[Vz-+ onVz-+ '(fz-f~) I (Vi" Vi"—")+ Vz'"2 (n(n+ 1) )}]
+p (R) (~p(R) /p(R) )LVi"'-(n(n —1) ) (~p(R) /p(R) )+f~Vz" I on+ a (n(n —1) (n+2) & }

+f~(Vz'" Vz"")~—n+fz Vz'"-,'n] } ]uz(1) +exchange. (3.111)

Recognizing that the single term involving

!
r~p(R) '
i p(R)

is very small, we substitute

hp(R) (X—Z)

p(R) (X+Z)
'

Then, using our effective interaction, all the direct
contributions in (3.111) may be written as multiplica-
tive factors times integrals of uq'(2) times Vo' (r»),
hV""(W, r»), p (R) Vi' (r»), and

ap(R)
p (R) Vz-(r») .

p(R)
We now consider variation of an exchange term of the

form

-'0 drzd»p'(1 2) (Vo+Vz (R) ).
Variation of I; in the mixed density yields

f drz8u;(1) f drop(1, 2) (Vo+Vip (R) )u;(2). (3.113)

Since this is the major contribution of the exchange
force, and we have already noted that the exchange
interaction is stronger than the direct interaction, we
shall use the exact mixed density in (3.113).Varying
u; in p (R) in (3.112) yields

ff drzdrobu, (R)po(1, 2) zonVzp i(R)u (R). (3.114)

Since (3.114) is much smaller than (3.113), and since
Lin" has shown the Slater approximation to the mixed
density to be roughly correct, we shall use the Slater
approximation

psz. (1, 2) = (2/~') (1/r»') (sinkrr» —kyar» coskrr»),

(3.115)
where

kr ——kr (p(R) ).
Since all the angular-momentum structure of the
wave functions has been averaged in p&L, only the fj.rst
term in the Legendre expansion in V~ contributes.
Then, (3.114) has the same structure as the direct
contributions to B(E)and changing integration variables
reduces to

f d'rz» (1)on f d'ropsz, '(ro, kr (p(ri) ))Vz(ro) u;(1).
(3.116)

For the case in which p'(1, 2) in (3.112) is replaced by
hp(1, 2) p(1, 2) or hp (1, 2), it is no additional difhculty
to treat the HF contribution exactly, as above. How-
ever, since for realistic neutron excesses, Ap(1, 2) is
much smaller than p(1, 2), we shall introduce an
additional simplifying approximation in the rearrange-
ment contribution from these terms. Using the expan-
sion for spherical 8essel functions, we may write

hpsL(1, 2) =(1/x') I~kr'[1 —i'oPkrr) + ' (~krr)' ~ ~ ~ 5 kr'[1 z(o~k —r—r)' +- —-( krr)4 ~ ~ ]}. (3.117)—
Requiring that ~k&o+~k&' ——2k&' as before, we substitute k& ——kr&x —x'/k&+ 8(x') in (3.117) and obtain

Apsz, (1, 2) = [(~kro —kr') /2kpo](2/m') kr'[1 ——,
' (krr) '(~+ 8(x') )+,'o (kyar)'(g'+ 6(x') )—~ ~ ]

[hp(R) /p(R) ]psz, (1, 2) . (3.118)

From Fig. 3, the most significant contribution from V,„occurs around 0.8 F, so that for k~= 1.4 F-, this approxi-
mation underestimates Ap(1, 2) by roughly 10%. Recognizing that rearrangement terms involving hp(1, 2) or
vapo(1, 2) are smaller than (3.114) by (E Z)/(E+Z) or [—(E—Z)/(E+Z)]', and (3.114) is already small
compared with (3.112), the absolute error introduced by this approximation is negligible.
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Hence, writing the general expression for the variation of any uz in the exchange contribution to (E), using the
fq notation in (3.111),we obtain

8[o ff drzdro{po(1, 2)LVo'~+Vz'vp~(R)+4 (n(n —1) )Vz'"(Dp(R) ) p o(R))

+p(1 2)~p(1, 2) Vz'"n~p(R) p '(R)+~p'(1 2)D o'"—Vo""+(Vz'"—Vz"")p (R)3}1

= f drzouz (1) f dro g uz (1)uz (2) {Vo' + o (ft fz) (Vo "—Vo"")+p (R) } Vz' + o ( fr fz) (Vz'"—Vz"")]J
+p (R) (~p(R)/p(R) )!Vz 4 (n(n 1) ) (~p(R)/p(R) )+ (fr+fr) V& onj}uz(2)

+ f drzbuz(rz) f dropsL'(ro, 4 (p(rz) )) onp '(rz) {Vz' (ro)+-', )Vz'"(ro) —Vz""(ro) $(hp(rz)/p(rz) )'

+V, '"(r,) } (n —1)4 (n+2) (hp(rz)/p(rz) )'+fzo (n+1) (Ap(rz)/p(rz) )$}uz(rz) . (3.119)

Again approximating

!
f~p(R) '

& p(R)

hp(R) &1V Z—
p(R) &iV+Z

the terms in (3.119) involving the true mixed density
have structure analogous to (3.111), since they may
all be written as multiplicative factors times inte-
grals of uz(2) uz(2) times Vo' (rz, ro), AV""(W, rz, ro),
p (R) Vz' (rz, r,), and p (R) Lhp(R)/p(R) jVz' (rz, r2),
where the coefficients of the Legendre expension of the
potentials depend on I and J. The additional direct
term in (3.119) involving the Slater mixed density may
be written as a multiplicative factor times a function
of kr (p(rz) ).

Finally, the radial equation is obtained in the usual
way by introducing Lagrange multipliers times nor-
malization constraint terms and requiring stationarity
of (E) plus the constraint terms. We write 8(E) as

8(E)= f drz5uz(1)

X {rz{ (—5'/2m) (8'/Brz') )rz+Fz (rz) }uz(1)

+ f drzBuz(1) f droFz (rz, ro) (4~rzro) 'uz(2), (3.120)

where PzD(rz) and PP(rz, ro) are defined by (3.111)
and (3.119) and the I dependence of 5'P is due to the
starting energy dependence, and that of Fl~ is due both
to the starting energy dependence and the l, j depend-
ence of the coefficients of the Legendre expansion.
Rewriting NI in terms of El, we obtain the radial
equation,

—(5'/2m) (d'Rz/«o) j&z (rz) Rz (rz)

+ f «o&z (rz, ro)Rz(ro) =EzRz(rz). (3.121)

Starting Energy

Thus far, we have not explicitly specified the starting
energies which appear in 5 and F~ through the
hV""(W) interaction in (3.96) . The argument we have
used previously that zero potential energy for excited
states cancels the three-body contributions was moti-
vated by nuclear-rnatter results, where there is no

Coulomb interaction. Hence, the proper extension to
Gnite nuclei is to specify zero nuclear potential energy in
excited states, but to include the appropriate Coulomb
potential energy. Since the reaction matrix calculations
on which the effective interaction is based use only
kinetic energy in excited states, one obtains the correct
energy diGerence between occupied and excited states
if the Coulomb energy is removed from all proton
single-particle energies. At first this procedure seems to
treat neutrons and protons quite inconsistently since
in Pb"', for example, the single-particle energies for the
last neutron and last proton are roughly —8 MeV,
and yet the energies used in 8' are 8 and 32 MeV,
respectively. However, the apparent added attraction
of neutrons in comparison to protons is compensated
by the fact that the greater local neutron density ex-
cludes more low-lying intermediate states for neutrons
than for protons.

The second aspect of starting energy dependence
we must consider is its eGect on orthogonality of radial
functions. Orthogonality between unlike particles or
states of different / is automatic, but we must assure
that states of like particles with the same l are also
orthogonal. Writing the energy from particle I to be
used in t/t/" as el, the explicit starting energy dependence
of (3.120) may be indicated as

—(5'/2rrz) $d'Rz (rz) /drzo)

+ Z», z (rz, I oz+oz l)Rz(rz)
J

+ f dro g fz,z (rz, ro ! &z+oz l) Rz(ro) =EzRz(rl) .

(3.122)

Then the usual orthogonality argument for the radial
functions of like particles E„g and E„~becomes

f «zR- ~(rz) Z L»,-P(rz, I oz+o-~ I)J
—»,- ~'(rz, I oz+o- i I) jR-i(rz)

y f dr, dr,R„., (r,)
X Z L»,. (rz, ro, I oz+o.~l)

», ' (rz, ro, I oz+o- ~ I) jR.~(ro)

= (E„(—E„()f R„&(rz)R ((rz)drz, (3.123)
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where we have used the fact that 5~ is symmetrical in
r& and rs from (3.119) and the reality of Rs& and have
eliminated the kinetic contributions by integration by
parts. Evidently, the only way to ensure orthogonality
is to make 5'D and $~ Hermitian by requiring e„~=&„g.
We note that this argument would not work for the
orthogonality of a radial function in a spin-unsaturated
shell to one in a spin-saturated shell because of the
dependence of 5J,&~ on the j of the Ith particle if it is
spin unsaturated. However, this case never arises in
practice since the unsaturated shell always has the
highest / for a given kind of particle. Thus, the energy
to be used in the starting energy is de6ned by the fol-

omar

eP=(N +1)—' Q E„iN
nl=o

for neutrons.

(3.124)

For the case in which we have some average particles
in a given / state, all neutron and proton wave functions
of the same l must be orthogonal. Hence, for that l,

lowing average, where E~ is the average Coulomb
energy per proton:

+max

ei = (n,„+1) ' g (E„P Eo—) for protons,

'+max '+max I

Z (2&ni- —E')+ g (E;F E')+— &n" l j/(fimsx fSmin+fSmsx fSmin +fimsx fSmin ) ~

71 Rm jr' 71' Rm m

(3.125)

An alternative method of treating starting energies,
which is not used in this work, has recently been sug-
gested by Brandow, 4' in which one does not use the
same energy for all radial functions of the same 1,
but rather allows nonorthogonal radial functions and
computes observables such as the density using bi-
orthogonal complements.

The definition of starting energies in (3.124) and
(3.125), together with (3.96), (3.111), and (3.119),
completely specifies the radial equation (3.120) .
Given a set of eigenvalues and radial equations, one
may construct F and 5~ and solve for a new set of
eigenvalues and radial functions, and iterate until
self-consistency is achieved. The details of the numerical
computation are described in Appendix A.

IV. COMPARISON OF DENSITY-DEPENDENT HF
RESULTS WITH EXPERIMENT

c.m. Correction

The two main experimental quantities we wish to
compare with our calculations, the binding energy and
ground-state density distribution, both pertain to a
reference frame in which the c.m. of the nucleus is
fixed. Our density-dependent HF calculation, on the
other hand, is performed in the rest frame of the self-
consistent potential, with respect to which the c.m. is
certainly not stationary. Hence, we must consider the
relation of energy and density in the potential frame, in
which we assume 3A degrees of freedom, to the energy
and density in the c.m. frame, with 3(A —1) degrees
of freedom.

ID general, I.ipkin" has shown that the transforrna-
tion of observables from the potential frame to the
c.m. frame is not unique. However, in the simple case
of a harmonic oscillator, the various methods agree,
and may be understood most simply in terms of the

s' H. J. Lipkin, Phys. Rev. 110, 1395 (1938).

argument of Elliott and Skyrme. "This argument shows
that the product wave function of harmonic-oscillator
functions in the ground state may be rewritten so that
the c.m. motion explicitly appears as a Os wave function
in which the size parameter is (5/Affroi) "' and that the
energy from the c.m. motion is 435~. Since our calcula-
tions corroborate the validity of the harmonic-oscillator
approximation for nuclei up to and including calcium,
these c.m. corrections should be quite adequate for
these nuclei. Although the harmonic-oscillator ap-
proximation breaks down for heavy nuclei, the correc-
tions become very small for large A, so that the dis-
crepancy between the harmonic-oscillator correction
and the true correction is expected to be negligible.

Using this harmonic-oscillator c.m. correction, the
proton density in the c.m. system p, is related to
the density in the HF self-consistent potential frame
pHF~ by

ps m ~(r) = J d'r&(BV~) ' exp(rrs/B') pHF~(~ r—rr ~)

= 1' dsrr (BP~) '
exp/ (r—rr) '/B'jpHp (rr),

(4.1)

where B=b/ QA =
~

5/nroiA I"'. Since the charge den-
sity p,h(r) is the experimental observable, it is necessary
to fold the proton charge distribution with p,
Measurements of the proton form factor" " indicate
that the proton charge distribution is very accurately
represented by an exponential. However, smearing a
proton distribution with either a Gaussian or an ex-

' J. P. Elliott and T. H. R. Skyrme, Proc. Roy. Soc. (London)
A232, 561 (1955)."R.Hofstadter, F. Bumiller, and M. R. Vearian, Rev. Mod.
Phys. 30, 482 (1958).

64 F. Bumiller, M. Croissiaux, E. Dally, and R. Hofstadter,
Phys. Rev. 124, 1623 (1961).

6~ E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454
(1956).

'

«S. D. Drell, in Proceedings of the Thirteenth International
Conference on High Energy Physics, Berkeley, California, 1966
(University of California Press, Berkeley, Calif. , 1967).
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(yeH) —L(TP) 2 2 ($2/A) ]1/2 (4 3)

ponential of the proton rms radius yields very similar
results, so for the present we shall consider a Gaussian
proton distribution. Then

p,l, (r) = f dsr2(Pv~) ' expl (r—r2) 2/P2]/se P(T)

= f ds»d'rs(PV~) '(BVvr) '

Xexpf —(r—r2)'/P'+ (r2 —rl)'/B']p Hp (»)

f dsr (I P2 B2]~)—2/2

Xexpf (r rl) /(P B ) 3PHF (») (4 ~ 2)

where P = (2) '"(TP), , Thus, it is convenient to include
the c.m. correction and proton smearing simultaneously,

by defining an effective rms radius for the proton

Since for all nuclei of interest the proton radius correc-
tion is much larger than the c.m. correction, it is more
accurate to use an exponential distribution of rms radius
(I"'), , for the combined correction. The value of
(rP), ,=0.8 F is obtained from proton form factor
measurements. "" For oxygen and calcium, we use
b= 1.76 and 1.90 F, respectively, and for zirconium and
lead, the values of b are obtained from (2.30) .

Binding Energy and Single-Particle Energies

The total energy in the rest frame of the self-consis-
tent potential (E) is given by (3.96), and is corrected
for c.m. motion by subtracting asti~. To relate (E) to the
single-particle eigenvalues, it is convenient to explicitly
separate the HF terms in the variation of (E) from the
rearrangement terms. Thus, varying Nz, we obtain

8(E)= f dTlBQI(T1) TNI(T1) + 2 Q f dT1 f dT2f/»(Tl) 2» (12) VII(T1)

+2 f dT1 f dT28uz(») g»'(l »+~2r2 I) uzr'(l rl ——',r2 l) (I/V/Bp) nz(»)+2 g f dT1 J dT2&»(») 2»(1)Nz(2) V»(2)

+-' f dT1 f dT2~»(») 2»(l rl+-'rs I)»(l rl —-'r2 I) &x(l rl+-'rs I) &zz(l rl —-'rs I) (~V/~/I) &r(TI). (4.4)
JK

Multiplying the resulting eigenvalue equation for Nz by 2NI(»—), integrating over rl, and summing over I, we obtain

2 g f dTINI(») (Ez+ I') Nz(») = g f dTI»(») &I2II(TI)+ 2 g ff dTldT2NI'(Tl) Nz (&2) V
I I 'IJ

+—', g ff dTldT2»(r2)»(rl)»(r2) V+ g —', ff dTldT2 g»'(l rl+-.', r2 l)III'(l rl ', r2 l—) (-IlV/Bp)NI'(Tl)
IJ JK

+ p —ff dTldT2 2» (I rl+ r2 I)» (I rl r2 I) 21zz (I rl+ r2 I) Nx (I rl r2
l ) (~V/~p) Nz (»)

where

= (E)—g ', AEI f dTI»2(-r, ) )
I

EEI= Df dTldT2 g» (l rl+ 2r2 l) III'(I »—2r2 l) (&VII1Zz) Nz (Tl)
JK

+ ff d»dT2 Z»(l »+2r2 I)»(l rl —2r2 l) ~x(l rl+2r l) ~x(l rl —2r l) (~V/~/)»'(»)]/Lf dTI»2(»)]

Then, defining Nz equal to 2 (2l+ 1), (2J+ 1), or
4(2//+1) for neutron or proton / shells, neutron or
proton j shells, or average particles, respectively, we

may write

(E)=
2 Q Nz)EI+ Tz+ AEI] (4.6)

The Ez and Tz terms in (4.6) are the usual terms
appearing in the HF expression for (E), except for the
case of j shells, in which case TJ contains the single-
particle spin-orbit potential, Eq. (3.96), in addition to
the usual kinetic energy. The ~P& terms are corrections
arising from the density-dependent theory, and since
the density dependence contributes to saturation, it is
clear that the over-all sign of AEJ must be negative.

The presence of the ~l terms resolves a troublesome
defect of the simple HF theory. In the light nuclei,

where the wave functions are quite well described by
harmonic-oscillator functions, the kinetic energy is
approximately determined by the experimental charge
radius from electron scattering. With AEz ——0, Eq.
(4.6) then provides a constraint relating single-particle
energies to the total energy. Using the single-particle
energies quoted by Elton and Swift" for the 1s&~2,

Odi/2, and Ods/& levels in Ca'o, the recent proton single-
particle energies for the Os and Op states by James
et al. ,'~ and assuming the proton —neutron energy differ-
ence for the Os and Op states is the same as for the Od

difference, one obtains (1/2A) QIEI —12.9 MeV. ——
Taking the value 5~=11.47 obtained from electron
scattering, (1/2A) gz TI=8.6 Mev. Including a cor-

VA. N. James, P. T. Andrews, P. Kirkby, and j8. G. Lowe,
Nucl. Phys. A138, 145 {1969).
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rection of —0.2 MeV for c.m. motion, Kq. (4.6) with
AEz =0 yields a binding energy per particle of 4.5 MeV
instead of 8.6. Thus, the experimental data are in-
compatible with the simple HF relation between single-
particle energies and binding energy, and require cor-
rections AEJ which average roughly —8.2 MeV. It will
be shown below that corrections of this magnitude do

result from our theory, and yield satisfactory agree-
ment with binding energies and single-particle energies.

The corrections ~& are most easily evaluated by
taking the full eigenvalue equation for N~ arising from
(3.111) and (3.119), multiplying by 2lz(ri), inte-
grating over ri, summing over I, and subtracting (E)
as given in (3.102) . In this way, one obtains

—
2 g Nz&Ez= 2 g Jf dridr2gz (ri) ~z'(r )2{p (&)[2~Vi' + & (FzFz) Vi 2 (~(&+1))]+p (+) (+p(+)/p(R) )

T 1J

X[FJV 8 (n(n —1) (~i+2) )+Fz(Vi' Vi"—")~~a]}+—', g Jj d7idr2uz'(ri) 2apsL (r2, 4(p(ri) ) )p '(ri)

X[V'+-'(V' —V"") (&p(&)/p(&) )'+V {( —1)-'( +2) (~p(~)/p(&) )'+F ( +1) (~p(&)/p(&))}j.

(4.7)

Since only the sum gz NzEz enters into the theory, the
definition of the individual AE& terms is not unique.
However, for computational purposes, removing the
sum over J from both sides of Eq. (4.7) is the most con-
venient definition since the quantities contributing to
DE& are then a subset of the quantities required for the
Ith radial equation.

The relation between the eigenvalues EJ and the
experimental removal energy is established by a simple
generalization of the Koopman theorem. Noting that
Nz(r) is normalized to Nz, the variation in (E) due to
varying Nz is obtained from (4.4) by replacing
Sizz(r, )Nz(rb) by (ziNz/Nz) i'(r, )uz(r&) . Thus, com-
paring the resulting equation with the eigenvalue
equation for Nz multiplied by Nz(ri) and integrated
over r~, one obtains

8 (E)/8Nz =Ez (4.8)

Whereas in the simple HF case (4.8) is exact for the
removal of one particle, in the density-dependent
theory, (4.8) is strictly true only for an infinitesimal
change in N~. For our purposes, the second derivative
terms are sufficiently small that we shall use (4.8) for
the removal of one particle, and thus conclude that if a
particle is removed from the Ith orbit and the wave
functions of the remaining particles are not allowed to
change, the change in energy is —Ez. Physically, the
wave functions will change somewhat to lower the
energy of the resulting system, giving rise to an addi-
tional rearrangement energy (not to be confused with
the Brueckner rearrangement energy associated with
BV/Bp). Thus, the eigenvalues of the last particles may
be compared with experimental binding energies by
the following inequality:

BE(A) BE(A 1) &
~
Ez I

—(4 9)—
In Appendix A, the computational details are dis-

cussed and the limitation on the number of radial
wave functions is explained. For 0", Ca", Ca", and
Zr', it is possible to include separate wave functions
for neutrons and protons. In the interest of economy,

it is most eKcient to perform early iterations with
average wave functions for states which are equally
occupied by neutrons and protons until self-consistency
is achieved, and then to compute the proton and neutron
wave functions due to this average nucleon distribution.
The entire set of neutron and proton wave functions
may then be used to obtain fully self-consistent neutron
and proton wave functions. One finds, even in Zr",
that there is very little change from the proton and
neutron wave functions calculated from the potential
due to the average wave functions to the fully self-
consistent proton and neutron wave functions.

Physically, the only difference in the potential
arising from orbitals with average particles and the
potential from the corresponding orbitals of neutrons
and protons is that in the former case the like and
unlike contributions are exactly superimposed, whereas
in the latter case, the two contributions are slightly
displaced due to the slightly different proton and
neutron radial functions. Considering the potential for a
proton, for example, there are slightly fewer protons
near the center than indicated by the average wave
functions and slightly more neutrons, so that the like
force contributes slightly less than in the average case,
and the unlike force contributes correspondingly more.
Since the unlike force is more attractive than the like
force, the over-all effect is to increase the attraction in
the interior, and similarly, to decrease the attraction in
the surface. Hence, in the fully self-consistent case,
the protons see a small additional potential tending to
decrease the radii of the wave functions, and by an
analogous argument, the neutron wave-function radii
become slightly larger. Thus, in the fully self-consistent
case, the additional corrections tend to reduce the
difference between proton and neutron wave functions,
but by a very small amount which is proportional to the
difference between the neutron and proton wave func-
tions in the levels which were approximated by average
particles.

For the case of Pb'0, the computer program cannot
handle the fully self-consistent case, so we have treated
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TABLE VII. Single-particle energies and binding energies for
Ca', in MeV. Single-particle energies represent barycenters for
spin-orbit doublets, and binding energies contain the c.m. correc-
tion. DDHF indicates density-dependent Hartree-Fock and ad-

justed refers to the parameters (4.10). Experimental energies are
from Refs. 60, 67, and 37.

Os Op Od 1s B.E.

HF, bare

DDHF, bare

—58.2

—43.6

—37.3 —16.5 —14.4 3.0
—25.3 —9.7 —8.0 3.2

DDHF, adjusted —46.9 —30.2 —15.2 —11.9 7.5

Expt —53~11 —37w6 —16.2 —15.7 8.55

orbitals up through the 2s levels as average particles,
and use separate neutron and proton wave functions
for the Oh level and above. Having obtained the self-
consistent average orbitals, two additional iterations
were performed in which the neutron and proton
radial functions arising from the potential due to the
self-consistent average particles below the Oh levels
and the protons and neutrons in the Oh and higher
levels were obtained. By the preceding argument, we
expect that the true self-consistent proton orbitals
below Oh will have radial functions of slightly smaller
radii and the true neutron radial functions below Oh

will have slightly larger radii. Based on the experience
with Zr" in which we could compare this approximation
with the fully self-consistent case, we expect the correc-
tions to our results to be extremely small.

The motivation for adjusting the effective interaction
to reproduce nuclear-matter properties has been dis-
cussed previously. From the structure of the exchange
contribution to the symmetry energy, we have seen that
increasing the long-range effective interaction signifi-
cantly increases the symmetry energy. For this reason
and because we feel that the long-range part of the
interaction is the most accurately determined, we shall.
set the parameter Pl. equal to unity. Then, as discussed
in connection with (3.46), using I'.~ =1 results in a
nuclear-rnatter symmetry energy which is in satisfactory
agreement with the semiempirical value. Having
specified Pl. and P'„, selecting the nuclear-matter
binding energy and saturation density uniquely
specify P'z, &.0 and Pz, &.4. Requiring nuclear-matter
binding energy of 15.68 MeV, the saturation density
is the only free parameter which is varied to fit the
experimental data, and we have previously argued that
there is no reliable theory to specify it a priori The.
optimal fit is obtained with saturation at k~ ——1.31, so
that using (3.34), the values of all the adjustable
parameters are

Ps,x.o =0.66903,

Ps,&.4
——0.83702

To obtain the appropriate binding and saturation, we
note that the short-range repulsion has been reduced
and made more density-dependent.

TABLE VIII. Binding energies, in MeV, and rms radii, in F, for
closed-shell nuclei.

Nucleus O16 Ca4' PbR08

c.m. correction

Theoretical B.E.

Experimental B.E.

Point proton rms
radius

—6.08 —7.28 —7.30 —7.77 —7.50

—0.67 —0.21 —0.18 —0.08 —0.03

6.75 7.49 7.48 7.85 7.53

7.98 8.55 8.67 8.71 7.87

2.71 3.41 3.45 4. 18 5.37

Calculated Energies

Because several numerical simplifications in the
construction of the effective interaction have slightly
altered the saturation point of nuclear matter, the
most significant simplifications being the p density
dependence and the omission of the density dependence
of the starting energy correction, it is evidently desirable
to distinguish these e6ects from the deliberate modifica-
tions to obtain nuclear-matter binding. Hence, we shall
define the bare interaction as the interaction resulting
from setting PI.——1.0, P,~ =1.0, and requiring satura-
tion at kg=1.40 F ' and 11.0 MeV. This interaction
differs only slightly from the case in which all adjustable
parameters are set to unity, and should be regarded as
the most accurate representation of the true two-body
eGective interaction.

The effects of the rearrangement terms in the
density-dependent HF theory and of the adjustment of
the interaction using (4.10) are demonstrated for Ca'
in Table VII. For the simple HF theory, which omits
the rearrangement terms, and using the bare interaction
defined above, it is evident that the single-particle
energies are reasonable, but that the nucleus is grossly
underbound. Using the bare effective interaction, but
including the rearrangement terms of the density-
dependent theory slightly improves the binding, but
tends to increase the single-particle energies. Finally,
adjusting the interaction according to (4.10) brings the
binding energy and single-particle energies into satis-
factory agreement with experiment.

Theoretical and experimental binding energies and
rms radii using the adjusted interaction and the
density-dependent theory are presented in Table VIII
for the five closed-shell nuclei studied in this work.
The over-all binding energy agreement is quite satis-
factory, with the theory tending to slightly underbind

PI.——1.0,

P,y ——1.0.

Point neutron rms
radius

2.69 3.37 3.68 4.30 5.60
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Frc. 6. Theoretical (dashed lines) and empirical (solid lines) charge-density distributions, including proton size and c.m. motion
corrections. The empirical distributions for O', Ca 0, and Pb"8 are from Refs. 72, 69, and 73, respectively.

by at most 1.2MeV. Since the binding energy dis-
crepancy increases smoothly as one progresses to light
nuclei, it is reasonable to attribute the error to the
inaccuracy of the LDA in the surface. Quantitatively,
the relative error in the potential energy is still quite
small, since the error in binding energy per particle
should be compared with the average potential energy
which is of the order of 50 MeV.

The eigenvalues, density-dependent corrections, and

kinetic energies for each state in the five nuclei are
tabulated in Table IX. We have not attempted sys-
tematic comparison of eigenvalues with the experi-
mental single-particle energies, but the data cited in
Refs. 60, 67, and 68 have been included in Table IX,
and they generally agree with our eigenvalues within
several MeV. One should note that the average starting
energies introduced in (3.124) for purposes of orthogo-
nality have the undesirable effect of raising the energy

.2

lyl
~ld

+P +g~
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FIG. 7. Single-particle radial functions E g for protons in Pb 08.

"s E. Rost, Phys. Letters 26B, 184 (1968).
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Fro. g. Electron scattering in DWBA from the theoretical charge distribution (dashed line) and empirical distribution (solid line) for0"at 420 MeV. The experimental data and empirical distribution are from Ref. 72.

of states with high e for a given / and lowering the
energy of states with low e. The correction can be
estimated in perturbation theory by multiplying the
difference between the eigenvalue and average starting
energy by an average & for the appropriate orbital, and
is usually of the order of 1 MeV. It appears that in
general this theory is able to simultaneously produce the
correct binding energy and reasonable single-particle
energies primarily because of the sizeable density de-
pendent corrections DER indicated in Table IX.

Also tabulated in Table IX are the harmonic-oscilla-
tor expansion coeKcients for the self-consistent radial
functions. The size parameter b=Lh/mop' Ifor each
orbital is obtained by maximizing the overlap
f E„i(r)R„tH o (r) dr, and the first eight expansion co-
efFicients are calculated using this size parameter. Al-
though an expansion coeKcient greater than 0.99 does
not necessarily imply that a given radial function is
accurately approximated in detail by an harmonic-
oscillator function, it is still interesting to observe the
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Fro. 13. Electron scattering in DWBA from the theoretical charge distribution (dashed line) and empirical distribution (solid line)
for Pb~08 at 250 MeV. The experimental data and the empirical distribution are from Ref. 73, and we have used the distribution which
w'as 6t to both the 175- and 250-MeV data.

calculating the electron scattering predicted for the
theoretical distributions. In addition, one obtains
complementary information about the charge distribu-
tion from the analysis of muonic x rays, and this pro-
vides in some respects a far more sensitive test of charge
distributions.

Although ideally, it would be desirable to calculate
electron scattering using the full partial wave analysis,
such calculations would be rather lengthy for the large
number of distributions we wish to study in this work.
Hence, we have used the approximate distorted-wave
Born approximation of Yennie, Boos, and Ravenhall. ~'

In this approximation, all orders of contributions by
soft photons are approximately included by using
eikonal wave functions for the incoming and outgoing

~4 D. R. Yennie, F. L. Boos, and D. G. Ravenhall, Phys. Rev.
13'1, B882 (1965).

waves, and the single exchange of a hard photon is
included by using these wave functions in 6rst Born
approximation. Thus, the approximate scattering
amplitude is

f= (k/2w) f g&r& ltU(r)err&+&d'r. (4. 11)

Details of the calculation of electron scattering are
presented in Appendix B.

Recognizing that there exist non-negligible dis-
crepancies between the full partial-wave analysis and
the approximate distorted wave analysis of the same
charge distribution, our electron scattering results
should not be compared directly with the experimental
cross sections. The most consistent procedure would be
to shift the experimental data by the discrepancy
between the partial-wave and distorted-wave results
for the empirical distribution 6t by the experimenters,
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yielding a set of pseudo-experimental data with which
subsequent distorted-wave calculations should be com-
pared. Since one of the distorted-wave parameters is
unrealistically sensitive to density oscillations in the
interior of the nucleus, as described in Appendix B,
the parameters calculated for the empirical distribution
are used for the analysis of all other density distribu-
tions. For the results presented in this section we have
not shifted the experimental data, but rather have
plotted the distorted-wave results for the empirical
distributions as well as our theoretical distributions.
Hence, except in regions in which the partial-wave
analysis presented in the original experimental refer-
ences does not ht the data, our curves should be com-
pared with the empirical curves instead of the experi-

mental data. In regions in which the partial-wave
analysis of the empirical distributions disagrees
seriously with experiment, the discrepancy is large
compared with the error in the distorted-wave analysis,
so that comparison with the experimental data is

sufhcient.

The electron scattering results from charge distribu-
tions obtained from our density-dependent HF wave
functions are presented in Figs. 8—13. In general, one
observes that the agreement is quite satisfactory. The
750-MeV results for the calcium isotopes in Figs. 10
and 12 are especially interesting. It is clear that our
distribution is slightly in error at the second maximum
(regarding the forward peak as the 6rst maximum),
but it is far superior to the three-parameter fit at the
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0—

FIc. 15. Equivalent local single-particle proton (solid lines) and neutron (dashed lines) potentials for 0' as defined in Eq. (4.12) .

third maximum. At the third maximum the scattering
is sensitive to the interior oscillations arising from the
s-shell wave functions, and thus it appears that our
theory yields approximately the correct density oscil-
lations. In Pb"' (Fig. 13) it is also evident that our
density distribution reproduces the qualitative be-
havior of the scattering at high momentum transfer
better than the best three-parameter fit.

One of the most sensitive tests of the detailed struc-
ture of our theoretical density distributions is the
calcium isotope shift. Experimentally, the difference in
electron scattering between Ca' and Ca" may be
measured more accurately than the absolute cross
section of either isotope alone. " The experimental
differences in cross section and the difference in charge
density between the best three-parameter 6ts to the
250-MeV data are shown in Fig. 14. From the shape of
the density difference, one may deduce that (r) in-
creases from Ca" to Ca" whereas (r')'I' decreases.
The shift in muonic x rays by this change in charge
distribution agrees with the experimental x-ray meas-
urements. ' Hence, the experimental situation is quite

7' R. D. Ehrlich, D. Fryberger, D. A. Jensen, C. Nissirn-Sabat,
R. J. Powers, V. I. Yelegdi, and C. K. Hargrove, Phys. Rev.
Letters 18, 959 (1967).

consistent, and one might aspire to understand this
isotope shift in terms of our density-dependent HF
theory.

From the results shown in Fig. 14, it is clear that the
present theory cannot explain the isotope shift. Whereas
the experiments indicate that roughly as much charge
is pulled in from the tail as is pulled out from the
interior, the density-dependent HF calculation indi-
cates that the fz~& neutrons primarily pull protons out
from the interior and not in from the tail. Corrections
due to short-range correlations, the error from ap-
proximating the Od5f2 and Od3~2 orbitals by a single
average Od orbital, and the effect of changing the Ofv~s

neutron distribution by adjusting the spin-orbit
potential are discussed below in connection with
Figure 24, but are too small to account for the diBer-
ence.

The most plausible explanation of the isotope shift is
that Ca' is not a perfectly closed shell, but rather
includes non-negligible admixtures of proton states in
the 1p Of shell. Gerace and -Green" have shown that the
Ca" ground state contains a large deformed com-
ponent, due to the fact that the energy gap for the
Nilsson levels becomes small for large deformation.

r'.W. J. Gerace and A. M. Green, Nncl. Phys. A93, 110 (1967).
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The spherical average of their deformed-wave function
is calculated in Appendix C, and is shown to diRer
negligibly from the spherical case. Then, the main eRect
of their ground state is that 20% of the time, one proton
is excited into the 1p Of shell, which i-s not sufficient to
account for the isotope shift. Whereas this particular
calculation cannot explain the eRect, it is reasonable to
expect that a suKcie&tly careful calculation of the Ca'
ground state, allowing admixtures of states in the
1p Of shell, and using m-atrix elements of the effective
interaction may yield satisfactory agreement.

Equivalent Local Single-Particle Potential

It is instructive to define an equivalent one-body local
potential which reproduces the eigenvalues and radial
functions of the density-dependent HF theory. Multi-
plying and dividing the exchange term of the radial
equation (3.121) by the self-consistent radial function,
we obtain the formally equivalent equation

{—(fi'/2m) Ld'/dr' —1(l+1)/r'j

+Vz~~(r) Ez j{Rr(r) =0, (4.12)—
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where

prsr (r) = pm�(r) pl(k+1)/2mr—s

+ 1 dr'rr'(», «') Rr(r')/~z(r).
For states with no nodes, Vz~~ may be compared
directly with phenomenological potentials, whereas for
the remaining states, the singularities arising from the
nodes should be ignored. Physically, it is clear from
perturbation theory that solving the Schrodinger
equation in a potential defined by smoothly joining
VzE~ in the region of singularities must give eigenvalues

and radial functions which differ negligibly. For high
angular-momentum states, since E„~(r)~r'+' at the
origin, VE~ is again badly dehned, but this is unim-

portant physically because of the dominance of the
angular-momentum barrier in this region.

The equivalent local potentials for the density-
dependent HF theory are shown in Figs. 15—21. The
most outstanding property is the significant state
dependence, arising primarily from the exchange force.
This state dependence is crucial in obtaining reasonable
density distributions as may be seen by attempting to
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construct the density by filling a harmonic-oscillator or
Woods-Saxon well. The anomalous neutron radius
obtained by Rost" in attempting to fit single-particle
energies with a state-independent potential is a further
indication of the importance of state dependence.

A second important feature of these equivalent local
potentials is that the depth of the Os state potential in
the interior is essentially the same in all nuclei, being
approximately —55 MeV for protons and —65 MeV

for neutrons. The saturation of this potential is unique
to this density-dependent theory, and is experimentally
substantiated by the Os single-particle energies of
James et al.'~

The qualitative behavior of the individual potentials
follows fairly directly from the properties of the
eQ'ective interaction. The oscillations in the neutron or
proton potentials reQect primarily the oscillations in the
total density of the protons or neutrons, respectively,
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FIG. 19. Equivalent local single-particle neutron potentials for Zr~.

since the unlike interaction is much stronger than the
like interaction. In 0" and Ca", the corresponding
neutron and proton potentials diRer by the full Coulomb
energy, whereas in the heavier nuclei, the neutron excess
contributes more attraction to the protons than to the
neutrons, so that the corresponding neutron and proton

potentials do not differ by the full Coulomb energy
until the extreme tail. Hence, in the heavy nuclei, the
proton potential has a steeper surface than the neutron
potential. Finally, one notes that the neutron or proton
potentials do not approach zero or the Coulomb poten-
tial as rapidly as the density approaches zero. Rather,
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IO

they decay to within several MeV of the appropriate
limit roughly as the density, and then fall oB very
much more slowly, due to the long range of OPEP.

Short-Range Correlation Corrections

Thus far, we have only considered the lowest-order
contribution to the density expansion, Fig. 2(A) .
%e have previously argued that the total contribution
from diagrams 8—I should be small so we shall now

concentrate our attention on diagrams J and K, which
we shall refer to as the particle and hole corrections,
respectively. Explicit calculations will be performed
only for calcium.

The contribution from the hole diagram may be
written

hp,.~.(r) = —-', P (m'm —em'
~

G/e
~

ab)
m~mn, ~S

X(ab
~

G/e ~
me —em)C *(r)4„(r), (4. 13)



J. W. NEGELE

0

-IO-

-I5—

-20—

-25—

-30—

-35—

. I3

l

�0
i /2

-50—
2
Id--—
2s-55 — Of

I p

-60—Od

-65—

r(F)

I'rG. 21. Equivalent local single-particle neutron potentials for Pb'0'.

where the factor of ~ arises because there is one equiva-
lent pair of lines and the sign is negative because the
number of closed loops plus the number of hole lines is
odd. From (2.1), it follows that (QG/e)C„„=t „, so
that it is convenient to denote QG/e=t. Noting that
a and b are summed only over intermediate states, we
may use closure by inserting the projector Q in both
matrix elements and extending the sum on a and b

over all states. Thus,

&phole(r)

= —-', Q (m'e mm'
~

(GQ/—e)(QG/s) ( mg

—em) C „(r)*C„(r)
= —Z &~'~ li'i I

~~—N~)C *(r)C (r), (4. 14)
m fmn



STRUCTURE OF FINITE NUCLEI 1315

The essential simplification which reduces (4.14) to a for Ca'
manageable form is the following approximation sug- & („) (4/4 ) g {-R s(„)/ sj
gested by BrandovP~

X f Rm'(R) /r(R, W~) dR, (4 18)
(rR

~

t'
~
nns)=f(r, R, W„„)C„(R)C' (R). (4. 15) where

The physical motivation for (4.15) is that due to the
wave function healing, the defect function is zero every-
where except in a small region of space about E., and,
in this region, it should be approximately spherically
symmetrical and represented by the nuclear-matter
defect function at the local density with the starting
energy W „.Using the definition of /r in (3.3), we obtain

s(R, W) =p(R) Lf t.*(r', R, W)

Xt (r', R, W) &~E&d'r'j(spin, isospin, average),

(4.16)

where the E dependence indicates dependence on the
local density, and (D-E) indicates direct minus
exchange. For nuclei with identical neutron and proton
wave functions, the spin and isospin average in (4.14)
is the same as in nuclear matter, so that substituting
(4.15) and (4.16) in (4.14), we obtain

Ap,.i.(r) = —4 g dsRC„.*(R)C„.(r)
riltal

XC„(R)C.a(r).(R, W), (4.17)

where W=s(~ 8 ) + ~
E ~)+(1/A)g„~ E„),mi din-

cates all the quantum numbers of state rn except spin
and isospin, and the statistical factor is 4 instead of 16
because m and m' must be in the same charge and spin
state. Rather than explicitly calculating the exchange
density, we note that in Ca', the integral over angles
yields orthogonality between all but the Os and is
states, and since the Os wave function is concentrated
in the interior where «(R) is roughly constant, the radial
integral of the Os and 1s wave functions with s(R) is
approximately zero. Thus, to a good approximation,

w-= I & I+ (1/~) Z I & I

The correction for the proton density is simply
s ~p "i.(r) .

The situation for Ca4' is more complicated, since we
should define separate functions 1 (r, R, W „)for like and
unlike particles, in exact analogy with the definition of
like and unlike forces. Then the correction to the proton
density for Ca should be

Qp«oisPros(r) —(2/4s ) P LR (r) /rsvp f R (R)
m core

X { g jR„s(R)/4~Rsf f f ..*(r', R, W„„)
A
ncore

Xg,v(r', R, W ) &~ &d'r'

+ Q LR„'(R)/4mR'j f g„*(r',R, W )
nf

Xf„„(r',R, W „)i~Kid r'JdR, (4.19)

where core refers to the Ca4' core and f refers to the f7/s
neutrons. For our rough calculation, we shall not-
evaluate f„„,but rather use f, for the fr/s level as well,
so that (4.19) reduces to (4.18) with the p appearing in
/r now being the total density including the f&/s level.
Since the unlike force contains more triplet-s and less
singlet-s components than the average force, this
approximation omits some of the tensor force contribu-
tion to t' which is described below.

The particle diagram contribution, Fig. 2(J), is

hpps, &(r) =-', g (ntn nns [ G/e )
—u'b)(a' [ r)

X (r ~ a) (ub ~ G/e
~

ntn nns), (—4.20)

where the sign is positive because there is one less
hole line than in the hole diagram. If u and u' are proton
states, it is clear that both m and e cannot be neutrons.
Then inserting Q, performing closure over a and a',
and approximating f'„by f,„, the correction to the
proton density is

~p."'"'( ) =
all n, m=prot

f (nsn [ it ~
rs)(rs [t ~

ntn —nns)d's

Z f d"4-*(-:(r+s))4.*(l(r+s) )0-(l (r+s) )4-(-:(r+s) )
all n, m= prot

Xf*Lr—s, -,'(r+s), W„„]fgr s, —',(r+s),—W„„]&~ &

g f dst12R„'(r ——',t)/4ir(r —-', t)'jpt. t.i(r——',t) f*(t, r—-', t, W )f(t, r—-',t, W„)&~E&.

mcore
(4.21)

'r B. H. Brandow, thesis, Cornell University (unpublishedl; and private communication.
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The averaged sfarting energy 8' is introduced to
simplify the final form of (4.21) and is consistent with
the approximation in (4.18) .

The diferent structure of the particle and hole
corrections is now apparent from (4.18) and (4.21).
For the hole correction, there is a certain probability
for depopulation of each wave function, given by an
average ~ for that wave function. For the particle cor-
rection, however, the distribution of extra density
depends only on the local density within the range of
the defect, function. If we ignore for the moment the
smearing in (4.21) due to the range of i, the particle
correction at a given point is roughly proportional to the
radial function times ~ at that point. Since ~ is larger
at high densities, it is evident that the hole correction
removes density uniformly from a given radial function
and this density is redistributed pref erentially at high
densities by the particle correction. The smearing in the
particle correction compensates this effect somewhat,
tending to reduce the central density and increase the
density in the tail, but the net effect of the sum

Aph, a,o"'+Apa, „oa'"' is still to slightly increase the
central density.

In order to evaluate these corrections numerically,
it is necessary to obtain an approximate function for
f(«, R, W). From the reaction matrix calculations by
Siemens, '0 it turns out that the defect function is not
very sensitive to the relative momentum, so that we

may evaluate it at an average momentum k, =0.65k'
and trivially perform the integral over relative momen-
tum. Then, using the nuclear-matter result in (3.3),
the s-wave contribution to ~ is

g, = o p (4ar/k. ~') f d«} Ixoao(4, km', «) }'
+ Ixoao(k«, k. , «) }'j. (4.22)

At kp ——1.4 F ', the singlet-s contribution to z is 0.0238
and the triplet-s contribution is 0.0955, whereas the

total g including all partial waves is 0.136. Thus, it is a
reasonable approximation to take the dependence of the
s-state contribution and enhance it by the factor
0.136/0. 119. Comparing (4.22) with (4.16), we obtain

Pf*(«, R, W) f ~E («, R, W) j(spin, isospin, average)

= (0 136/0 119)o} 4ar/(0. 65k')'j

XL I xoao (kp (R), 0.65k p (R), «) }
'

+ Ix,a'(k, (R), 0.65k, (R), «)}'$. (4.23)

The function

[Ixoa (ka;, 0.65k', «) }'+Ix,ao(kp, 0.65k«, «) }']/(0.65k~)'

is shown in Fig. 22 for kg = 1.7, kg = 1.4, and kg = 1.0 F
The peak at 0.4 F is virtually density-independent, and
has the form one expects for a simple hard core, with the
defect function being essentially go inside the core
and falling rapidly as the wave function heals outside
the core. The peak at 1.2 F is due to the tensor force in
the 'Sa state, and because of its sensitivity to Q/e,
becomes exceedingly important at low densities. Even
though the tensor force peak grow's strongly with
decreasing k~, ~ still decreases with kg because of the
factor k~' from p.

Rather than fitting the detailed spatial distribution
shown in Fig. 22, we approximate each peak by a
function with its strength fitted to yield the correct
contribution in nuclear matter at k~ = 1.0 and 1.4 F
Although an exponential in k~ gives a better fit at
k& ——1.7, a Gaussian interpolates roughly the same
between 1.0 and 1.4, and extrapolates to much smaller
values at low density. Thus we choose

Exoa'(k«, «) 3'+ Lxoa'(k«, «) 3'

(0.65k«)'

+11.7 exp( kzo/0 96)8(« 1—.2) (4..24)—
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1.09+11.7 exp( —ks'/0. 96) ks

2.61 1.4

(4.25)

.0 I 8—

The starting energy dependence is included by
multiplying (4.24) and (4.25) by a polynomial in W
which approximately reproduces the 8' dependence at
kg=1.36 F '. From nuclear-matter defect functions
computed at S'= 2.4, 1.69, and 0.48 F ', the ratio of the
s-state contribution to a at %=1.69 F ' to that at the
nuclear-matter value of 14'=2.4 F ' is 1.11, and at
8'=0.48 F 2, the ratio is 1.41. Hence, the contributions
in (4.24) and (4.25) are multiplied by

f(W) = 1.57—0.354W+0.0482W'. (4.26)

Using (4.25) and (4.26) in (4.18) and using the
self-consistent eigenvalues and wave functions in
Table lX, one finds that the probability for excitation
out of each of the occupied states in Ca' is 0.129, 0.135,
0.138, and 0.127 for the Os, Op, Od, and 1s states, respec-
tively, so that the weighted average is 0.135.This value
is essentially the nuclear-matter result &=0.136, in
contradiction to the qualitative argument that ~ must
be much larger in finite nuclei than in nuclear matter
because the defect function increases greatly in the
surface. The error in this argument is the fact that the
effective weighting of the defect function in (4.18) is

.Ol
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Fra. 23. Corrections to the ground-state density due to short-
range correlations. Note that the dashed line corresponds to
the negative of the hole correction.

generously dominating the increase in defect
function at small k~.

By particle conservation, the 13.5% of the particles
removed in the hole correction must be replaced by the
particle correction, which we have already noted is
slightly more concentrated in the interior. The proton
density corrections computed for Ca are shown in
Fig. 23, and it is evident that the two 13.5% corrections
largely cancel, leaving a net correction of only a few
percent. Whereas there remains considerable uncer-
tainty due to the other diagrams in Fig. 2 which have
not been evaluated, this calculation indicates that
the higher-order corrections to the density are likely to
be of the order of a few percent, which is well within the
level of theoretical ignorance concerning the saturation
density of nuclear matter.

Finally, in Fig. 24, we collect for comparison several
corrections to the Ca40 density distribution and the
diGerence between the Ca' and Ca" densities. The
error due to treating a single wave function for a
spin-orbit doublet is indicated by calculating the
difference between the density from the proper combi-
nation of Od;/2 and Od3/2 wave functions calculated from
the potential produced by the self-consi. .tent wave
functions and the density from the single Od wave func-
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tion, and is seen to be negligible. The error' arising
from deformed admixtures, calculated in Appendix C,
is somewhat smaller than the short-range correlation
correction discussed above, and is of the opposite sign.
With the approximation of replacing the unlike defect
function by the average defect function, the Ca"
proton short-range correlation correction may easily be
computed, and the difference between the Ca" and Ca"
corrections is shown in Fig. 24. Comparison with the
discrepancy in Fig. 14 indicates that even allowing for
generous errors, the difference in correlation corrections
does not significantly affect the isotope shift. To test
the sensitivity of the isotope shift to the arbitrariness of
our spin-orbit potential, we increased the strength so as
to lower the f&~2 neutron eigenvalue by 5.3 MeV,
thereby decreasing the tail of the neutron wave function
and pulling the protons inward in Ca". The negligible
effect in the desired direction shown in Fig. 24 indicates
that the isotope shift is insensitive to quite significant
changes in the strength of the one-body spin-orbit
potential.

DISCUSSION

We have shown that the fundamental, features of the
structure of finite nuclei may be understood in terms of a
simple density-dependent HF theory. The essential
simplification in this theory is the fact that the reaction
matrix in all finite nuclei may be approximated by a
density-dependent and energy-dependent interaction
obtained from nuclear-matter theory. With slight
additional approximation, the effective interaction may
be cast into the form of direct and exchange interactions
suitable for calculations in position space.

Even without adjusting the bare effective inter-
action, we have shown in Fig. 4 and Table VII that the
density and energies for Ca' are reasonably close to
experiment, and certainly superior to any previous
calculations with realistic forces. The two salient fea-
tures of the rearrangement terms in the density-
dependent theory are the reduction in central density
and the modification of the HF relation between single-

particle energies and the binding energy.
Although the adjustment of the effective interaction

to reproduce nuclear-matter binding energy cannot be
rigorously justified, we feel that it is the most sensible

way to span the void between present nuclear-matter
theory and the ultimate theory which includes the
density dependence of higher-order diagrams. Our
adjustable parameters are constrained by the binding
energy and symmetry energy of nuclear matter, with
the result that essentially only the short-range repulsion
may be adjusted. Varying the one free variable, the
saturation density. of nuclear matter, results in an
optimal fit to experimental data with kg=1.31, cor-
responding to a reduction in strength and an increase in
the density dependence of the short-range repulsion.
The fact that the adjusted interaction, fzt to nuclear-
matter properties, simultaneously produces the correct
densities, single-particle energies, and binding energies

throughout the Periodic Table is a significant result,
and lends credibility to the adjustment of the effective
interaction.
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APPENDIX A: COMPUTATIONAL DETAILS OF
DENSITY-DEPENDENT HF CALCULATION

The basic equation to be solved for each radial func-
tion is
-', (d'idr') R(r) = (rD(r) —E)R(r)

+ f dr'F~(r, r')R(r'), (A1)

where Fn and P~ are speci6ed by (3.96), (3.111),and
(3.119). Given a set of eigenvalues and radial functions,
we shall refer to a major iteration as the construction of
O'D and S~ and the solution of (A1) for a new set of
eigenvalues and radial functions. The solution of (A1)
will itself involve an iterative process, and we shall
refer to successive solutions of this equation as minor
iterations.

In order to treat all nuclei through Pb
y

the radial
equation is solved out to 10 F. The short-range con-
tribution to Pn(rz) may be written as

OO 1

dr2 dgp((rz +rz —2rzr&g)'I )V(r2)r,
0 -1

and similarly for the density-dependent term. The
integrals over x and r2 are performed using Simpson's
rule with step sizes of 0.1 and 0.05 F, respectively.
For given rz and rz, contributions to & (rz) and P (rz, r~)
from Vq;„V, and V""(W) all involve integrals of the
form

j(g) dg, I(g) = V((rz'+r2 2rzr2g)'I')—
&& [a+bf(z2[rz +rz +2rzrzg7zt ) ]Pz(g). (A2)

Although F~(rz, r,) varies so rapidly that it must be
defined in 0.1-F steps to perform the integral

f P (rz, r~)R(r2)drz, (A3)



STRUCTURE OF FINITE NUCLEI 1319

the resulting function of r1 is sufficiently smooth that it
may be defined in steps of 0.2 F.Due to the range of the
potential, we perform the integral (A3) using Simpson's
rule with mesh sizes 0.1 F for 0&

I ri r—~ &1.8, 0.2 F
for 1.8&

I
ri r2—I

&3.0, and 0.4 F for 3.0& ri r2 —I
& 10,

so that utilizing the symmetry in ri and r2, 5' (ri, r2) is
calculated at 2316 points. Because of the rapid variation
of V for x near —1 when r1 and r& are large and nearly
equal and because Legendre polynomials up through
P&2 are needed for Pb"', (A2) is evaluated in the form

where

m in [1,x(0.45)]

max [-1,x(1.45)]
I(x)dx+

m in [1,x (1.45) ] I(x) dx, (A4)

With the appropriate choice of A, the strength of
K(r, r') is sufficiently weak that a given error in the
solution for the (E 1) th minor ite—ration R~~ '&

induces a smaller error in R(~). The inhomogeneous
equation for E(~) is

d'R (r)/dr'= (F(r) —2E)R ( ) +H( ),

x(r) = (ri'+rp' —r')/(2rir2).

The integrals in (A4) are evaluated by 16-point and
12-point Gaussian quadrature, respectively, and the
potentials are interpolated from the values in Table IV
by 4-point interpolation. The Legendre polynomials
up to twice the maximum / are obtained most eKciently
by the recursion formula. Finally, since the same
integrals (A2) are required in SzD and Sz~ for each
radial equation, it is evidently most efficient to con-
struct and store Fz and S~~ for all orbitals at once.
Since Fzo(r, ) is evaluated at 50 equally spaced values
of ri and Pz (ri, r~) is evaluated at 2316 points, the
available storage allows a maximum of 16 different
orbitals.

In order to solve (A1) by inserting an approximate
radial function in the nonlocal term, solving the
resulting inhomogeneous equation, and iterating, we
decrease the over-all strength of the kernel by adding
and subtracting a 8-function term. Thus, we rewrite
(A1) as

(d'/dr') R(r) = (F(r) —2E)R(r)

+ f dr'K(r, r')R(r'), (AS)
where

K(r, r') = 2ps(r, r') —8(r—r') G(r),

G(r) =A f 25~(r, r')dr',

P(r) =2So(r)+G(r)

general solution with proper behavior at the origin is
R„i(r) = o&R„&(r)+C(o&R„&(r)—i»R„&(r) ), and C is
speci&ed by requiring that R„i' (10)/R„i (10)=—(2E) '&'.

Since (A6) is inhornogeneous, the normalization of
R(~) is not arbitrary, but is dependent on the value of E.
Since E.( ') used in H is normalized to unity, E must
be varied until E(~) is also normalized to unity. Minor
iterations are continued until E(+) becomes self-
consistent.

The calculations reported in this work were per-
formed on the IBM 360/65 in Fortran G. Computing
times per major iteration ranged from 3.7 min for 0"
with 4 orbitals to 32.0 min for Pb"' with 14 orbitals.

4n. p(r) r'dr = 1. (B1)

Throughout this Appendix, distances are measured in
F, and energies and momenta are in F '.

The eikonal wave functions depend on four principal
parameters, the local wave number k', an expansion
coeKcient of the potential a, the curvature of the dis-
torted waves b, and a correction to the curvature t",.
For a charge distribution which has zero slope at the
origin, the potential may be expanded as follows:

V(l&,) = —4n.y X ' p(r) r2drj p(r) rdr

0
p() -p( )-' '+", ( )

where y =Z/137. 0388. The local wave number is
related to the incident energy k, using (B2),

k'=k —V(0) =k+47ry rp(r) dr. (B3)

The expansion coefficient u is obtained from the
quadratic term in (B2), and is defined as

a =4s.yp(0) (k')-'/3.

The curvature parameters for the distorted waves are

APPENDIX B: ELECTRON SCATTERING IN
DISTORTED-WAVE BORN

APPROXIMATION

Electron scattering from a charge distribution is
calculated using what is referred to as approximation J
by Yennie, Boos, and Ravenhall. 74 The charge distribu-
tion is normalized such that

H(r) = f dr'2P~(r, r')Ri~ '&(r') G(r)Ri~ "(—r).
(A6)

4iry 1 1

8k' k k' p(r) dr,

This equation is integrated outward from the origin in
double precision using Runge-Kutta integration with a
step size of 0.04 F and using 4-point interpolation for
F and H. Starting one solution o&R„&(r) as ar'+' at the
origin and a second solution &2&R„i(r) as br'+' the

(B5)

Defining q' as 2k' sin(8/2) and K' as 2k' cos(8/2),
where 8 is the scattering angle, the full formula for the
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scattering amplitude is

where

"~( )G()f=, «pf2i5(O) j ~

— 4s. cos-', 0 e'xrgr,
(q')' C'(r)

1+3bq'r+ a (q" 2k"—) r' ,'cq'—K—"r'
Gr =

1 &—( 'k"-'q—"-)r'+b( 2k—"+='q's) r/q'+i(k" @—")K"(rs/q') '

C(r) = 1—a(-'k's —rq") rs —bK's(r/q') +gK'4 (rs/2q')

x (r) = q'r —aLq'(k's/2) —(q's/12) jr' sbKI—sr + ', cK'4r4—.

The differential cross section is do./dQ=
~ f ~' so ths, t

the phase factor e"8& & does not contribute.
Several practical considerations arise when using

(86) for numerical calculations. The parameter a
gives the proper quadratic term near the center of the
charge distribution, but the greatest accuracy is
desired in the surface region. Higher-order terms in the
expansion may be effectively included by varying a to
give the parabola which yields the best fit in the
surface. As it stands, the expression for c in (BS) is
unrealistically sensitive to oscillations in the central
density which must occur due to s-state orbitals. Since
it is physically clear that the distortion must be
specified by rather low Fourier components of the
charge distribution, we calculate c using the empirical
parabolic Fermi distribution for the appropriate
nucleus. The integration is cut off at small r to eliminate
the singularity at r =0 due to the fact that the empirical
distributions have a small but finite slope at the
origin, whereas the true distribution must have zero
slope.

The radial integration in fmust be cut off at large r to
eliminate zeros in the denominator of G(r) and in

C(r). It is clear that zeroes occur in both Functions
since they are cubic and r goes From —m to +m.
Physically, of course, this indicates that the expansion
of the distorted waves breaks down at some radius,
and it is evident that this radius decreases at small
scattering angles since the cubic terms vary as 1/q'.
The zeroes themselves are of no practical concern since
in the energy and angular ranges of interest in this work
they are more than 5 F beyond the surface, but one
can see that the approximation becomes rather in-
accurate at small scattering angles by comparing our
results with the exact partial-wave analysis in Refs.
69 and 72—73. In practice, the calculations are quite
insensitive to the cutoff, with Pb yielding essentially
identical results for cutoffs of 10 and 12 F.

The numerical computations were performed using a
somewhat modified version of a computer code written
by Lin, to whom the author is indebted for the use of
this program.

APPENDIX C: DEFORMED ADMIXTURES IN Cg4

It has been shown by Brown and Green"' and by
Gerace and. Green~' that significant admixtures of

"G.E. Brown and A. M. Green, Nncl. Phys. VS, 401 (1966l.

deformed states are present in the ground states of O"
and Ca . Whereas it is not entirely clear how to
correctly treat a deformed spin-zero ground state, ~~"
the adiabatic approximation of Bohr and Mottelson"'
and the method of projected Slater determinants"
indicate that only the spherical average of the deformed
state is relevant to electron scattering. Thus, in this
Appendix, the quantitative effect of the deformed
admixture on the spherical average of the ground-state
density distribution of Ca" is evaluated and shown to be
negligible. The analogous analysis of 0" yields similar
results.

In treating the 20% deformed admixture in Ca, it is
useful to consider two separate effects on the spherically
averaged charge density. One effect is that one proton is
removed from the Od shell and distributed in the
1p, Of shell, and the second eFFect is that even with this
proton in the Od shell, the spherical average of the
deformed ground state is slightly different from the
spherically symmetric ground state. Actually, there is a
slight error in superimposing these two effects, since the
discrepancy between the spherically symmetric and
spherically averaged wave functions will be slightly
diiFerent for the Od and 1p or Of wave Functions, but
since only one proton is involved, this error is quite
negligible.

For harmonic-oscillator functions, the discrepancy
between the spherically symmetric density and the
spherical average of the deformed density is quite
different from that in the case of distributions with a
sharp surface. The spherical average of an oblate
spheroid with a sharp surface is a spherical distribution
with a diffuse surface, which is qualitatively quite
different, whereas the spherical average of an aniso-
tropic harmonic-oscillator density distribution is very
similar to an isotropic harmonic-oscillator density
distribution.

We now consider an anisotropic harmonic oscillator
such that

%~=MS=M(1+ 3e) &

u, = (v (1——;e). (C1)
A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.

Selskab, Mat. -rys. Medd. 2'7, No. 16 (1953).
B. W. Downs, D. G. Ravenhall, and- D. R. Yennie, Phys.

Rev. 106, 1285 (1957).' F. Villars, in&~E'roceedings of the International School of Physics
"Enrico Fermi, " Course XXXVJ (Acaden ic Press Inc. , New
York, 1966).

8' R. E. Peierls and D. J.Thouless, Nucl. Phys. 38, 154 (1962).
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In this notation, the deformation considered by Gerace
and Green"' corresponds to 2=+0.2. Filling the
Cartesian harmonic-oscillator states for protons in
Ca", we obtain

p,- = (2/~'") L(1+os) (1+os) (1—oe) 3"2

Xexp[ —(g2/b 2+y2/b 2/s2/b 2)j
XI l+2(~2/b. 2+&2/b. 2+s2/b. 2)'j (C2)

Substituting (C1) in (C2), changing to spherical
coordinates, and angle averaging, we obtain

pprot= (42r) f pprotdf)

=22r ots(1+-o,e) (1—-2s)'t2

X expt —r'lb'(1+-', c—c cos'()) j
X tt +2(r4/ 'b—) (1+—e—e cos20) 2)d coso. (C3)

Equation (C3) may be cast into a form convenient for
comparison with spherical harmonic-oscillator densities
by expanding the quantities of order e out of the
exponential and integrating. Retaining terms of order
e', we obtain

pnr. t ——22r-st 2)1—
—o,2'$ exp (—r'/b')

X l3+2~/b'+xf (r'/b')" 'x(r'/b') "—+x'x(r'lb') "j
(C4)

Recognizing 2sr ot2(2+2r4/b') as the Cato ground state
in a spherical basis, it is evident that (C4) represents
the removal of e'/6 or 0.67% of the protons from the

spherical ground state and redistribution of them in
higher states. One may verify that the normalization
of (C4) is correct to order e2.

To simplify the inclusion of the single proton in an
excited Nilsson state, it is most convenient to rewrite
(C4) in terms of spherical harmonic-oscillator radial
functions E„,(r). Clearly, there is no unique way of
doing so, but the following form has the advantage of a
small number of radial functions with roughly com-
parable coeScients.

p ot, =p+ (22rr ) 5 geo~op 2& +oP—Be +o2

o 22+102+ 2 22+122+ e esp 27 (C5)

where p, is the density of the Ca" ground state for a
spherical harmonic oscillator. Using Nilsson's tabulated
wave functions, "removing a single proton from orbit 8
and placing it in orbit 14 with &=0.2 corresponds to a
change in density of

b = (22rr2) 'L —0.5Ro22+0.3795Epo2+0.1205Rusj. (C6)

Thus, using (C5) and (C6) and including the fact that
the probability for deformation is 200ro, the total
density correction from the deformed admixture is

AP = (102rr2) 1L—0.0067Roo2 —0.0200Ep12 —0.5833go22

—0.0067k 2+037952 2+0.12058112+0.02678 '
+0.0900Eptsj. (C7)

This correction is extremely small and is graphed
in Fig. 24.

"S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 29, No. 16 {1955).
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The dynamics of nuclear distortion is studied for two spherical nuclei under the influence of their mutual
Coulomb interactions. Both the quadrupole and the octupole degrees of freedom are considered. Realistic
stiffness and effective-mass parameters are employed. It is found that the energy needed to bring the two
nuclei into contact increases as a result of the distortions. However, in the most favorable case, the increase
is only a few percent. This is much smaller than previous estimates using either the liquid-drop model or the
adiabatic model.

I. INTRODUCTION

PREVIOUS estimates of the increase in the
Coulomb-barrier height were obtained by studying

the dynamics of distortion using the liquid-drop
model, ' or by using an adiabatic model with realistic

~ Present address: Atomic Energy of Canada Limited, Chalk
River, Ont. , Canada.

f Research sponsored in part by The U.S. Atomic Energy
Commission under contract with Union Carbide Corporation.

' R. Beringer, Phys. Rev. Letters 18, 1006 (1967).
2 J. Maly and R. Nix, J. Phys. Soc. Japan Suppl. 24, 678

(1968).

stiffness parameters. ' A very large increase in the
Coulomb-barrier height was obtained. The use of
liquid-drop parameters to describe the vibrational
properties of a nucleus is inappropriate, however, as
they do not reproduce the experimental excitation
energies and the transition rates for the first-quadrupole
vibrational state. On the other hand, the distortion
estimated by considering the deformation potential
alone, as done in Ref. 3, would be correct only if the

C. Y. Wong, Phys. Letters 26B, 120 (1968).


