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Generalized Variational Bounds for Multichannel Scatterings
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The variational bounds on scattering parameters are reformulated without the explicit use of multi-
channel projection operators, thus avoiding completely the difficulty of nonorthogonality in rearrange-
ment and exchange collisions. Resonance-energy calculations can be carried out using the operator which
is effectively projected on the closed channels.

I. INTRODUCTION AND SUMMARY

1HE variational bound (VB) on scattering param-.eters, as originally formulated, '
employs in an

essential way the projection operator technique of
Feshbach. ' Consequently, the difficulty of explicitly
deriving such channel projection operators for reac-
tion in which particle exchanges and rearrangements
take place severely limits the applicability of UB
method. ' There have been given several alternate
derivations' ' of VB which eliminate various practical
difficulties of carrying out actual calculations and
further clarify the basis of the theory.

In this paper, we generalize the previous result by
eliminating the multichannel projection operators E'

and Q conzp/etely, so that the method can be applied
readily to more complex scattering problems involving
exchanges and rearrangements. It is shown that the
correct asymptotic boundary conditions alone are
sugciertt to derive the bound. In this connection, the
observation of Burke and Taylors in their formulation
of UB, that the short-range correlation function need
not be orthogonalized to the open channel functions,
is most important. The generalization of UB discussed
here is equivalent to their point of view, but the
present form seems to bring out more clearly, the
bound property and the range of applicability. The
proof given here is also more direct and explicit.

The generalized UB should then be useful for many
interesting scattering systems, such as e+H above the
pickup threshold, e He and e atom scatterings, and
also std and pd scatterings. Thus, so long as the asyrnp-
totic conditions (2.2), which involve only I'; with i
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running over all the open channels, can be specified,
the result (2.23) is applicable to all possible rear-
rangement collisions, including the exchanges in case
of identical particles. For reactions involving many-
particle clusters, I'; may not be readily available. But
this problem is not directly related to the nonorthog-
onality of the rearrangement channel wave functions,
and has to be solved before the scattering problem
is considered.

Alternative procedures in which Gp need not be
explicitly evaluated have also been discussed, and
certain orthogonality properties of the operators which
appear in (2.23) brought out. Finally, a possible way
of estimating resonance energies is considered in which
the Q operator is not required.

II. GENERALIZED VARIATIONAL BOUNDS

~'=A"'(r ) ) (A"'(r..')*,

I',2= I',= I';t,

Q, =1 E,, Q;P;=0, —
(2.3)

P'r, Aj/0. (2.4)

The variational bound as originally formulated' as-
sumes an explicit form of the open channel operator
E such that'

2%=Pr@r+Ps@'s (2.5)

(2.6)

For simplicity, we consider explicitly a two-channel
problem

1+(2+c)—+2+ (1+c), (2.1)

where the particles 1 and 2 are distinguishable and c
has no internal structure, but not necessarily an in-
finite mass. This model contains all the essential
properties of more general scattering systems of in-
terest here.

The asymptotic boundary conditions on 4' are
given by

(2.2)

as the channel coordinates R;—+~, with i=1, 2, and
where
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The knowledge of P then immediately leads to its
complement Q, given by

1 P7

Q =Q=Q QP=O (2.7)

Therefore (2.11a) cal be replaced by (2.15), i.e.,

P, (H E)—(Pi@p+P2%2~) =0 (2.15')

for i=1, 2, where P does not come in. Similarly, we
have, for G",

The physical reason for the bound is essentially that
the virtual excitations have an attractive effect on scat-
terings, or, mathematically,

P, (H E)P—G~P= P,. —

Solving (2.16) explicitly, we have

(2.16)

Q(H —E)Q) 0 (2.8)
where

G =Gii +Gi2 +G.i +G2~, (2.17)

for a given total energy E. Therefore, it seems from
(2.8) that the formulation of VB requires the Q oper-
ator in an essential way. However, it is in general
extremely difFicult to construct such operators ex-

plicitly, and P, are not simply related to P due to
complicated overlaps.

The variational bound on P is given by'

G;,~=—P,G;,~P,

G "=P',IE H (H— E—) gP—(H E) }P—,]i-
Gi2 =Gii (H—E)gg, etc. ,

g;~= fP, (E—H) P,] '= P;g,~P;.

(2.18)

(2.19)

X( lirI' ——X~+AU',

where

) =2+6'a E 'a)

hrT = 2(Q+s
~
QHP } ~ )+ (Q+t }

~' E } Q'Irt)

(2 9)

(2.10)

P;P=PP;=P;,
P,Q=O,

(2.13)

(2.14)

although P is not, in general, a simple linear com-
bination of P, . Using (2.13) and (2.14) in (2.11a),
we get for ~~ a coupled set of equations

Pi(H E)Pi@i~= Pi(H —E)P242, —(2.15a)—

P2(H E)P2+g —Pg(H —E)—P,+i . (2——.15b)

In (2.9), 'A~ is the scattering parameter corresponding
to the "static" approximation, and, in (2.10), the
vector a specifies the initial conditions, E ' is the
inverse reactance matrix, and Q%~ is a trial function
in the Q space. We also have

P(H E)~~=0 — P%'~= 4'~, (2.1—1a)

P (H E)PG~P = P, —PG~P—=G~, (2.11b—)
K' = QPH+HG~H jQ=QX'Q. (2.11c)

Possible subtraction terms in (2.10) when E lies above
a finite number of eigenstates of K' have been ne-
glected.

Now, we examine (2.10) more closely to see if P
and Q can be eliminated completely. For this purpose,
we first look at the ~"Eq. (2.11a) which gives li~.

Since the explicit form of P; is known from the bound-

ary conditions (2.2), we can write, using (2.5),
E%"=P,4'i~+ PpI 2~. — (2.12)

Ke also note that P has the important property
(Appendix B)

M= K E=H E+—(H —E)G"(H— E) —(2.21)—
is an operator in the Q space, and

Ã= (H—E)P%~

is also a function in the Q space. That is,

P;m= mP, =O, m= QxrQ,

(2.21')

P;X=0, iV= QiV. (2.22)

Therefore, we finally have the generalized variational
bound (GVB) given by

X(X~+2(X, } H E}%~)—
+(X i

II E+(H E)G~(H ——E) (
X—)

—= l~~+ mr
——Xtr, (2.23)

where %~ is given by (2.12), satisfying (2.15); G~ is
given by (2.17), satisfying (2.16); and X& is the
square-integrable trial function. In the form (2.23),
we have eliminated P an.d Q completely, and the
only knowledge of the open channels is contained
in P;. Possible modification due to the presence of
a finite number of subtraction terms can be made on
(2.23), if necessary. '

(A simple derivation of G~ is given in Appendix A.)
Using the properties (2.7), (2.13), (2.15), and (2.16),
we can immediately rewrite (2.10) in the form

~ =2(Q+ IH El~)
+ (Q4(

~

H —E+ (H E)G"(H—E) } Q%, )—

=2(x, iH —Eire )

+ (X, } H E+ (H E)—G~(H —E) } X,), —(2.20)

where I& is an arbitrary square-integrable function
which satisfies the boundary conditions at the origin,
but is rot necessarily orthogonal to P. The last equality
in (2.20) comes about essentially because M defined by
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In order to bring out more closely the effect of
nonorthogonal part of X~ on the bound property of
(2.23), we carry out explicitly the proof of the bound
using the Kohn variational principle. It has been
shown' that (2.10) is completely equivalent to the
Kohn principle

P,)=X,+ (0,
~

H E) 4—,), BP,j=0 (2.24)

and thus
FI'=0,

Therefore, if we assume that

3'.—E=M&0,
then

(2.38)

(2.39)

(2.40)

if the trial function 4, in (2.24) is of the specific
form

+,=~I'+Gr I'HQ%, +Q%,

(2.25)

The error function 0 is then given by

=G~I'HQQ+ QD.

Using the Kato identity, we have

X—Z, =(+i H E i+,)—
(2.26)

where

= (+,
~

H E[ @,)—
"=(niH-Ein).

(2.27)

(2.28)

Substitution of (2.26) into (2.27) and (2.28) gives,
after some algebra,

where
X=X +Dp' —r',

r'= (QQ i
BC' E

i QQ), —

(2.29)

(2.30)

and where we have also used

X,=»+(Qe,
~
QHF

~

m~).
Thus, we have

lI. &&~+kg' ——Xp', (2.31)

3."—E&0. (2.32)

lI, =»+AU

where Dp is given by (2.20) and

(2.35)

with
T= (0 t

H E~ 0) = ((o ) X—E
~

ca) —(236)

0,=4 4=F(X X)—=F—cu. (2.—37)—
It is clear that F of (2.34) is an operator which is
nonzero only when operated on a Q-space function,

The situation with (2.23) is little more involved;
we have, instead of (2.25),

(2.33)
where

F=1+G~F(H E). —(2.34)

LThe form (2.33) is equivalent to requiring that
F(H —E)%,=0 is solved exactly for +& in the form
f~=~t+Xi. Details are given in Sec. III.j Sub-
stitution of (2.33) into (2.24) again gives

X&»+Ari ——Xii. (2.41)

III. ITERATION PROCEDURE FOR G~

The generalized variational bound (2.23) has been
shown to be equivalent to the Kohn variational prin-
ciple (2.24) with (2.33). However, for practical pur-
poses, both procedures involve G which could be
rather involved. In Ref. 5, we have discussed an
iterative procedure of avoiding the explicit use of G~

by replacing (2.25) with an exact solution of the dif-
ferential equations

I'(H —E)P%,= FHQ@, —(3.1)

for a given Q4, . It is required that Q&i is optimized
variatioeally by minimizing the expression D~. For the
case of e H scattering, Burke and Taylor' made an
important observation that even (3.1) is unnecessarily
strong and in fact an exact solution of the equation

E(H —E)+,=0 (3.2)
9 A. K. Bhatia, A. Temkin, and J. F. Perkins, Phys. Rev. 153,

177 (1967), where references to earlier work can be found.

We again stress the fact that (2.23) is completely
equivalent to (2.24) with (2.33) under the condition
(2.39), as was the case with (2.9) being equivalent
to (2.24) with (2.25).

The approximate positions of resonances, without
the energy-shift operator (H E)G~(H— E), is —often
estimated by the Ritz-type variational calculation' for
the operator QHQ. Obviously, such a procedure is no
longer available since Q is assumed unknown explicitly.
However, from the discussion given above, it is clear
that M= (X—E) of (2.21) should be a good operator
to use for such purpose. For E below the lowest
eigenstate of 3'., 3II is positive definite and thus es-
sentially replaces QHQ in the resonance energy cal-
culation. The resulting eigenvalues 3f„give

8P =3f„+E,
where the shift eGect is taken into account approxi-
mately so long as G~(E)~G~(GP ) and G~ is a slowly
varying function of E near E 8„@. It is important
to keep in mind that E which appears in the operator
M should all be the same in order to stay in the Q
space so that (2.22) is valid. The operator 3II should
give a better estimate of 8P than QHQ especially
when the shifts are large. However, G~ is in general
dificult to construct, although not impossible, and an
iterative method of getting G„~ without an explicit
use of G~ is considered in the next section.



VARIATIONAL BOUND S FOR MULTICHANNEL SCATTERING

is sufficient, without separating 4'& into two parts
which requires the explicit form of P and Q. Their
argument is that one car always write (3.1) from
(3.2) since P+Q=1. Of course this is a trivial point
if such P and Q are explicitly available. However,
when they are not, as in most cases of interest, then
the advantage of (3.2) over (3.1) in practical calcu-
lations is more than a simple identity as it seems.
Using (2.13), we can in fact show explicitly below
that the exact solution of a set of coupled equations

P;(H —E)%,=0, i=1, 2 (3.3)

combined with the Kohn variational principle (2.24)
is completely equivalent to (2.23). To see this, we

formally solve (3.3) as

where iNj. For each value of o, the diagonalization
of H;, has to be repeated, and (3.9) solved exactly.
The resulting parameters then are a bound as in
(2.23), essentially due to (2.38). This iteration pro-
cedure should converge for most cases. ' lt requires
some caution, however, in applying (3.9) in an ex-
tensive search for the "best" n which gives the mini-
mum Pp. Since X;& are rot preorthogonalized to the
P space, E—E„&(n) may vanish occasionally as n is
swept over a range of values. So long as such spu-
rious singular points are avoided, the procedure out-
lined above is the same as (2.23). In this connection,
we mention a procedure proposed recently by Harris, '0

precisely to overcome such singularities. The main
point is to choose

+i=pi fi+P2f'+xi, (3.4) @=1) ''') S (3.10)

N

X,= g c;X;,(u), (3.6)

where

P;f;=P;~/+(G;P+G;f) (H E)xi, i~—j (3.5)

and X& is again a square-integrable function but rot
necessarily orthogonal to both I'l and I'2. Thus, 4'&

of (3.4) is exactly the form (2.33), and the proof of
the bound is then identical to the one given in Sec. II;
we obtain the same result (2.23) as expected. In so
far as the practical procedure is concerned, (3.3)
combined with (2.24) may be much simpler than
(2.23) since we do not have to solve for G' explicitly.
We let

and writing

x,= pa„x„„ (3.11)
p=l

we obtain, for the original equation (OE)+i=0,' —

(X„, I
H E

I
Pifi)+(—X„,

I
H E

I
P2f2)=0—. (3.12)

Equation (3.12) is sufficient to estimate the scatter-
ing parameters. Of course, the bound property is lost
since Pi fi and P2f2 are not obtained exactly, i.e., the
P equations are not solved' exactly for P; f;.

Finally, we consider a possible way of eliminating
G~ in the resonance energy calculation. If we define
I'y;&, for each X;&, by the equations

where c; are the linear parameters and o is one of
the nonlinear parameters. For a 6xed value of a,
c; can be determined from the equation

P(H E)Py; = P(H—E)X;— —

exactly such that

(3.13)

Q (H,; EX;;)c,= —Ei;—R—2', (3."/)
Pyg, —+(const),G~, (3.14)

where

H;, = (X;„HX;,), Ã;, = (X;„X,,),
Ei, (X;i, LH —E7pi fg).——

then the matrix elements needed to evaluate the
resonance energies are given by

M;, =(x'i I3I
I
x))

Sy simultaneously diagonalizing the energy matrix
and the normalization matrix, we get

LH —E7(pifi+P, f,) (3 8).-i E-E. (~)
Substitution of (3.8) into (3.3) gives the coupled
equations for Pi fi and P2f2 which are to be solved
exactly. We have explicitly included the n dependence
of E„, in (3.8). Thus, we have

p(H E)pfy~ *( )I .)( ~ I( ) pf
p=l E—E„,(a)

=(x' IH —EIX, )+(X. IH —EI py, ) (3»)
It is now a simple matter to diagonalize M;;, with
the added feature that M;; never vanishes (all the
eigenvalues are positive definite). This is perhaps an
improvement over the procedure of Ref. 8.
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APPENDIX A: STATIC GREEN'S FUNCTION PJ'

The static Green's function GP which satisfies (2.11b)
assumes the form (2.7) if there exists' an operator P
which satisfies (2.12)—(2.14). Equation (2.16) can be
written as

variational bound (2.23) are (2.13) and (2.14), and
we give here a brief discussion of their validity.

From one of the requirements that I' must satisfy
in constructing it from P, [Eq. (2.S)], we have, in
the case of two channels, for example,

Pi(H E)(G11 +G21 )

+Pi(H E) (G—12 +G22 ) = Pi) —(A1)

(P;, [4'—(P,%1+P2~2)])=0,

(P;, QC) =0,

(81)

(82)
P2(H E) (G—2F+G12')

+P2(H —E) (G21 +Gii ) = —P2) (A2)

which is simply (2.14). Now, (2.14) in turn gives

P,Q=P;(1—P) =0,
or simplywhere 6,;I' are yet undefined. Since, for example, G»p

and G2p in (A1) involve P2 on their right, we rewrite

(A1) and. (A2) in the form
(84)

Pi(H E)Gii+—Pi(II E) G21=— Pi, —

Pi(H —E)G12+Pi(H —E)G22=0,
(BS)

There are several cases for which I and I', are
explicitly available. First, we have the e H elastic
scattering in which'

P2(H —E)G22+P2(H —E)G12= —P2, (AS)

P, (H—E)G,i+P, (H—E)G,i——0. (A6)

as it should. Using the Hermiticity property (2.3), we

(A3) also have

The above separation is justified since, from (2.13),
the P2 part of P can always be incorporated in (AS)
and not in (A4), and similarly for Pi. Now (A3) is
coupled to (A6) and (AS) is coupled to (A4). The
solution is trivially obtained. to be the form (2.1S).
The step leading to (A3)—(A6) ™~A1) and. (A2)
can be shown to be correct in another way by solving

a coupled inhomogeneous equation

P(H E)Pf= P—R. —(A7)

Using the fact that

Pi+P2 P1P2 P1+P2 P2P1)

Q=1—P= Q1Q2= Q2Q1. (86)

Obviously, both (84) and (BS) are satisfied.
Second, we have the explicit I' for the e+H elastic

and pickup collisions given by Mittleman, "as derived
by the procedure worked out by Feshbach, 2

Si) (S1 XP=~.) ~(r-")+Z, g.*+Z~.")

Pf= Pifi+P2 f2,—

P1R1+P2R2 (AS)

&& (&)*do*+Z Pop), ) —, (N),*go*+go)

&& ~(p —p')+Z „, ,
— (4.*, (87)we have

P1%'f&=P'+ +Gi (H E)P24"+(Gi—i +G12 )PR

(A9)
where

[G ] 'Pi =0 [—g ]PC '=0
Qi+"Ei'Vi=0,

vi+XE2u), ——0,
On the other hamd, we formally have

(BS)
Pf= P%''+GPPR

P% =Pi~ +G» (H E)P2+-
E%'=P1%'1~+P2%'2'. —

(A10) with
with Ei=ggp*, QO=~2 = gX "Sy'Di (89)

Defining the channel operators I';, i =1, 2, as

where Pp(r) is the hydrogenic ground-state wave
function and Pp(p) is for the positronium. ni and vi
are solutions of the coupled equations

Comparing (A9) with (A10), we recover (2.17). P.=O.) &O.*, P.=~.) &~.*, (810)

APPENDIX 8: PROJECTION
OPERATORS P, AND P

The crucial properties of the projection operators
which were used in the derivation of the generalized

we can show, after some algebra using (BS)—(810),
that (84) and. (BS) are again satisfied.

"M. H. Mittleman, Ann. Phys. (N.Y.) 28, 430 (1964).


