
PHYSICAL REVIEW C VOLUME i, NUMBER 4 A1Rii. &9~0

Nuclear Polarization in Muonic Atoms of Deformed Nuclei
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The analysis of muonic x-ray spectra in deformed nuclei was carried out in the past by diagonalizing
the electric quadrupole interaction between the spin doublets (2p3/2, 2p&&2), {3d@&, 3d3~2) and the lowest
rotational band of the nucleus. With the present experimental accuracy, this procedure is no longer adequate.
To take into account the muonic and nuclear states not included in the diagonalization, we renormalize
the electric quadrupole interaction by virtual excitations into those states. We Gnd that the renormaliza-
tion correction amounts to a few percent of the quadrupole matrix elements. This explains the systematic
tendency for the intrinsic quadrupole moments obtained from the traditional analysis to be a few percent
larger than the values deduced from Coulomb excitation experiments. We also And that the inclusion of
the renormalization corrections has a very signincant e6'ect on the parameters of the charge distribution
and the intensity ratios of the hyperfine multiplets.

1. INTRODUCTION where
IIq ——-',

eQO f(r) F2(cos@),
t 1HE electric quadrupole hyperfine spectra of muonic

atoms of deformed nuclei have been measured
accurately in the last few years. While the experi-
mental accuracy has improved to a fraction of keV at
a few MeV, the analysis of the spectra still remains the
same as that of the pioneering works of Wilets' and
Jacobsohn, 2 who diagonalized the electric quadrupole
interaction between the lowest rotational band of the
nuclei and the spin multiplets: 1s~/2, (2P~/2, 2p~/, ),
(3ds/g, 3/E3/2) (called the model space in this paper).
It is desirable to make a more careful theoretical
analysis in which the configurations of the muon and
the nucleus are no longer restricted to the model space.

Up to now all the experimental data have been
analyzed by starting from a certain charge distribution,
for example, the modified Fermi distribution

"—(1+vI'o(~')) -'
p(r', 0') =E 1+expl 41n3

& 1+0 l 2o /t

The parameters c, t, P, P' are then varied to get a best
fit to the experimental spectra. In more detail, ' the
charge density is expressed in the form

p(r' 0') =po(r')+P2(r ) I2&(0 )

where r' is the position vector for the nuclear charge
density. The Dirac equation is solved in the spherical
part pe(r') to give the muonic states in the model
space. The quadrupole part of the electrostatic inter-
action H@ is then diagonalized within the model space,

~ This work was supported by the U.S. Atomic Energy Com-
mission.

'L. Wilets, Kgl. Danske Videnskab. Selskab, Mat. -rys. Medd.
29, 3 (1954).' B.A. Jacobsohn, Phys. Rev. 90, 1637 (1954).

3 H. L. Acker, Nucl. Phys. '78, 153 (1966).
I
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The nuclear states are taken to be rotational states

l
IIV). The model space consists of states of the form

l
IE, r/lj, FM),

where Ii, 3f are the total and the s component of the
angular momentum of the muon-nucleus system.
(We will suppress the index r/ when the state

l mlj)
is one of the states 1s&/&, 2pa/2, 3d5/, , 3d3/g, ) The matrix
element of H@ has the following form:

(I,E„i,j„Fml II,
l
I,E„i,j„F~)

=n; „,A2(IgEglgj gF, I2l2 j2), (1.1)

where E&——E2, since the quantum number E is the same
within a rotational band. Also,

n' &' = (e Qp/1O) ( l~ j~ I f(r) I t~ j2) (1.2)

A;= A, (IgK, /gj gF, I2—lm j2)

= (—1) '+ '+r' rc+&'/'&5/(2jz+1) (2j2+1) (2I&+1)

F jg I, ( Ij 2 I )
X (2I2+ 1)]'/'

2 I, j2 (—K& 0 E,)
(j

l2L1+(—1)"+"j (1.3)
k--: o —:)'

The quantity n;»., remains essentially constant in the
model space. (The slight differences of the radial wave
functions of 2P~/~, 2p~/3 will cause n, „, to vary by less
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NUCLEAR POLARIZAB ILITIES IN MUONIC ATOM S 1177

than 10%%u~ within the model space. ) We have, 'used the
notations of Edmonds. 4

When the matrix (H@) is diagonalized, a complicated
spectrum results. The wave functions

I v, FM) are
linear combinations of the unperturbed states in the
model space

I&K

Hes

I2K l g~jq I&Kl g&J

VXJ

and
=MiBi(IgE, lrjgFg, I;lj;F;), (1.4)

Mi= «ajar I r. I l'j'»
Bi(III' il/ JrFf I .l .

g F )= (—1) rf. +If. +J~+&f+0 Is& $r r

jf pf If '

XI:(2jx+1)(2j'+ 1) (2F~+1)7"
J" j' 1

(j
XI lsL1+(—1)"+"+'J- (1~)

&—:0!)
When the experimental spectra are analyzed by the
method sketched above, the intrinsic quadrupole
moments obtained are somewhat larger than the values
deduced from Coulomb excitation experiments, the
values of the skin thickness come out to be smaller than
would be expected and the relative intensities are not
so well reproduced by the assumption of the statistical
filling of the 4f levels. s Therefore, more nuclear and
muonic states other than those in the model space are
taken into account in the following analysis.

2. THEORY

In heavy deformed nuclei, the energy differences of
the unperturbed states in the model space, and the
electric quadrupole matrix element (Ho), are all of the
order of 50 keV, while configurations not included in
the model space are at least several MeV away. There-

4 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1960).' S.Devons and I.Duerdoth, Advan. Nucl. Phys. 2, 295 (1969).

D. Hitlin, thesis, Columbia University, 1968 (unpublished).
r C. S. Wu and L. Wilets, Ann. Rev. Nucl. Sci. 19, 527 (1969}.

I., FM)= QC(I, j.v. F)
I
Iz, t&, FM),

I,j
where the quantities C(I, j, v, F) are obtained by
diagonalization. The index v is used to specify one
particular state. The observed E and I, x-ray in-
tensities then depend upon the E1 reduced matrix
element between the initial state

I
v, , F,M, ) and the

final state
I vi, FgMg):

&~, F~IIM(«) II ', F;)= Z c*(I»~~F~)
IfjfIili

XC(I;j;v,F;) (IyEi, le g, FJ II M(E1) II I,Ki, lj;,F;),
where the reduced matrix elements between the un-
perturbed states can be written as

(I/If» lfjf Ff II M(») II I'&i, l'j', F')

I,K, I,K, r, K,

FIG. 1. Effective quadrupole matrix element.

fore, to take into account the effects of configurations
outside of the model space, it is sufficient to use per-
turbation theory. We shall basically follow the approach
of Eden and Francis. 9 Suppose the eigenvalue problen1
to be solved is (Hp+V)+=~. The unperturbed.
wave functions p; are de6ned by Hz&f;=s',p; The.
model space is spanned by P;, i=1, m. The eigen-
function in the model space is denoted by

@sr——g a;y;,
i=1

while the complete wave function is an infinite sum

4'= pa, P;.
s=l

The wave functions 0' and 4'~ are formally related by

with

where
Dsr ——1—LQsr/ (Hp —E)]VQsr,

Q~= Z le')8'I
i=m+1

The infinite-dimensional problem (H+V)%'= F% is
formally reduced to a finite-dimensional problem

Now it is clear that in order to improve the analysis
outlined in Sec. 1, we have to replace the matrix ele-

8 R. J. Eden and ¹ C. Francis, Phys. Rev. 97, 1367 (1955).
T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 1 (1966).

in the model space. We should diagonalize the model
interaction VQ~ instead of V in the finite-dimensional
model space. In calculating the transition matrix
elements between the final state 0'f and the initial
state%';, we use the following relation:

(Oy I
M (E1) I e;)= (ersrQsrt I M(E1) I nore;sr),

where Cf~, 4;~ are the eigenfunctions in the model
space. Since all the states which are not included in the
model space are very far away, it is sufficient to keep
only the first term in the iteration expansion of Q~.

17Nr=1 &Qsrl (Hp F)JV—. —
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FIG. 2. ERective E1 transition matrix element.

ments of H@ and M(81), Eqs. (1.1) and (1.4), by ef-
fective matrix elements H, ll and 3f,ll(E1) defined by
the graphs in Figs. 1 and 2, respectively.

A. Effective Quadruyoie Interaction

It is convenient to separate the second-order graph
in Fig. 1 into two parts: (i) The nuclear intermediate

states I remain in the model space and the muonic
intermediate states

I
XLJ& are outside the model space,

and (ii) the nuclear intermediate states
I I) are outside

the model space.
When the nuclear states remain in the lowest rota-

tional band, it is straightforward to calculate the
second-order correction. Representing the correction to
the matrix elements by &Ho2), we get

&IIKI ~1ji I"~l Ho I
IK1 &LI IIId)&IKI IiILI I'~l Hol I2K1, l2j2, IM)

Ho2 =
T,S,L,J +I2Ky++l2j2 +IK1 +NL I

The angular part can be integrated first with the help of Eq. (1.1):
&~1 I f(r.) I IfNL&&IfNL I f(") I ~2&

I N +12K1++l2i2 +IK1 ENLI

where R~, R2, and R~l, are radial wave functions, and

+ l,L + l,L(I1Klil jib I2l2 j2)

(—1) '+ '(2l+1) (2J+1) (2I+1)[(2ji+1)(2j2+1) (2I1+1) (2I2+1) ]il2
I J=L—(1/2)

I ~ I 'I
~ I (I, i I)('I, i I)(j, i I)(j,

I J $ I I ( K, K, KK)(—E—K1 EK—)(——,
'

O——,')(—-' o ~)

x-',
I 1+ (—1) ""jlI1+(—1)~'+'*j (2.1)

The sum gq extends over the rotational band. The sum
over the complete set of munoic. states, both discrete
and continuous, can be carried out exactly by the
reference spectrum method. ' " Since the second-order
corrections are small, the nonrelativistic theory should
-be sufficient. That is, we calculate the correction to the
wave function

I ~NL&&&NL I f(r,) I &2)X =
N +I2K1++l2I2 +IK +XLJ

' M. Y. Chen, preceding paper Phys. Rev. C I, 1167 (1970).' M. Y. Chen, thesis, Princeton University, 1968 (unpublished) .

by solving the inhomogeneous equation

(&Ipc+A„, &IK HLp) —
I X)——g(r )

where

52 d' 52 L(L+1)
Hz,,=—,+, +V(r„),

282' de 2m'

g(r») =f(~.) I &2)

The correction to the matrix element is then obtained
by integration. If L=/2, we have to replace the ex-
pression for g(r„) by

g (")=f(r.) I ~2)—I ~2&&A I f(r) I &2&

It is necessary to do the projection, since in summing
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over Ã, I., J we have to exclude the states already in
the Inodel space. Thus the contribution to the effective
matrix element can be written in the form

P4')= Z PLrlsL,
L

PL= E("Qp)'/2o7(a(") I » (2 2)

The second-order terms in which the nucleus is
scattered into levels beyond the lowest rotational band
are much more difficult to evaluate. Ke represent the
corrections to the matrix elements by Pf(Hls), where
(Hp') is the contribution from virtual excitations of
monopole vibrations, (Hfs) is the contribution from
excitations of giant. dipole states, etc., where

Hl= —L4fre'/(2l+1) jg (r&'/r&'+') Yl(Q„;) Yl(Q„).

The sum g~; extends over the protons in the nucleus.
(The quantity gf IIl is the electrostatic interaction
between the muon and the protons. ) We note here that
if the nuclear intermediate states

~
IE) are also de-

formed, and if we can write the reduced matrix elements
(IIKf )[ Yf(ry, ) (~ IK) in the form

(IIKf )) Yl
~ )

IK) = (—1)I' K't (2If+1) (2I+1)Jj'

(If l I
xi l(xf I Ft.K,-K j x),

(—Kf Kf—K K

where
~ Xf),

~ x) are the intrinsic states of
~
IfK),

~
IK), respectively, then the angular part of (Hls) can

be integrated out first. In effect,

1,K;N, L,J
(IIKf, ltjf, FM

~
Hl

~
IK, NLJ, FM)(IK, NLJ, FM

) Hl
~

IpKf, ls js, FM)
FrfKf+Fl sj 2 FIK +NLJ

= Z ~lLVlL
L

The matrix AfL is given by (2.1) and

4~e' (X1~1( zy, (r&'/r)'+')1'l, K1 Ki X&ÃL-)(X&ÃLi zn, (r&'/r&'+')~l, K, K[xi&2)-
PLL—

(21+1)' x,fv +gf —Q —grrL
(2.3)

where R~, R@L are radial rnunoic wave functions.
To summarize, the effective matrix element can be

written as

normalization of the coefficients 0.;»„or equivalently,
a renormalization of the intrinsic quadrupole moment
Qp by a factor ft, where

(H.ff) =~;„,rip+ Z PLrlsL+ Q vfL&fL. (2.4)
I LL

ft= 1+( Z PLCsL+ Q vu CfL) /~,

The quantities n, PL, VlL remain almost constant in the
model space while A2, A~L are different matrices. It is
of interest to note that the matrices A ~L can be written
as the sum of two parts:

and second, an increase of binding of all hyperfine
components by a constant amount AE, where

Z PLdsL+ Z v lLd lL

-4lI CfLI12+dlL1)

where 1 is the unit matrix, and C~L, d~L are constants
within the model space. From (2.4), we obtain the
following expression:

(Heff) (orjzj 2+ p PLC2L+ p vlLCLL) Ap
L lL

+ ( Q pLd, L+ g vlLdfL) 1. (2.5)
L LL

Therefore, the effects of the inclusion of the second-
order matrix elements are very simple: first, a re-

The intrinsic quadrupole moment determined in the
past without taking into account the above corrections
is really an effective moment Q,fr =fJQp. The calculated
values of g are of the order of 1.03—1.05, which ex-
plains the systematic

deviational'

of Qp obtained from
the earlier analysis from that calculated from Coulomb
excitation measurements. The constant term, AE 10
keV for 1s level and 2 keV for 2p level, is the usual
nuclear polarization correction, which has a very
significant effect on the parameters of the charge dis-
tribution, especially the skin thickness. ~"

"D.Hitlin et at. , following paper, Phys. Rev. C 1, 1184 (1970).
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B.Effective El Transition Matrix Elements

The corrections in the above section are second-order
corrections to the energy. In calculating the intensity
ratios of the hyperfine multiplets, we should also include
the first-order correction to the wave function. %e
calculate the five diagrams in Fig. 2, labeled 1 to 5
from left to right, to get the effective transition matrix
element M,«(E1) . Following the procedure of the
previous section, we can 6rst integrate out the angular
factors and then sum over the complete set of munoic
intermediate states by the reference spectrum method.

The results are given in the following equation:

(IfKz jf jz, Fz II M,«(E1) II I,Kz, f;j;, Fz&

=M,B,(I«K,/zj zF«, I,/ j;F,)
+ Q M»B2z+ Q MezB3z, +M4B4+M«B5)

I L

where Mz, B are given by (1.5), M2zB2z, M3zBaz,
35484, M585 are the contributions that come from
diagrams 2 to 5 in Fig. 2. The quantities Bj, 82L,
83L, 84, 85 are matrices, while 3f~, 3f2L, 3f3L, M4, M5
are constants in the model space. Also,

L+0/2)

X

If Ff jz F; jz I ( Iz I l ( I 1 I*I (j&
x I,'-L1+ (—1) 'z+ "+']

1. . »;, E K, o K,i&-K, o K,i &—; o

B»—— g (—1) "+»+ +»+-z"' zz~(2J+1)-D2I«+1) (2I,+1) (2jz+1) (2j;+1)(2Fz+1)]'~'
J=L—(1/2)

I I«(I« 2 I)(I
x llL1+ (—1)""]

I, j, (—K, o K,)(—-', O

L+0/2)

Z (—1) "+"+'+' ' "'(2I+1)
I (2Iz+1) (2I~+1) (2jz+1) (2j'+1) (2Fz+1)]"'

J'=L—(1/2)

F»z Iz (Ir»'I(jz
l2L1+ ( —1) 'z+']

I l2L1+ (-1)~'+']
2 I, J. E Kz o Kz) E—

k o 2) F, j, 1 E k 0 2)

B4——g (—1) *' &r+o~ &(2I+1)[(2I«+1) (2I,+1) (2jz+1) (2j +1) (2Fz+1)]'

&5= &4.

Let IL,~ be the operator in f(r„) is given in Sec. 1. For M3z we have

and let h (r„) be the solution of

Lz,~Ã. (r.) =a-(r.)

where

L=l;&1,
ka' = 2m, Ei„:,/P, —

a3(r.) =«.Rz(r.)f(r.) if LAITY

=«„R«(r,)f(r„) r„RI(r„)JPR«'($) f($—) d$

1f L= tj'q

lf Ly

A= 2) 3.
Then

M2, z, = (m„e'Qo/5') JGq(r„) h2(r„) dr„,
where

L= /y+1,

kP = 2m„Eg;;,/P, —
G, (r„)= r„'R, (r„)

= .'R.(.) .R (.) JPRz(~)—R,(~).«A(r~) = «~R'(r~)f(«I )
= r„R;(r„) r„R;(r„)JPR,'($)—f($) d$,

if L/l;
if L=/, if L=/g.

For 3II4 and 315, we have
if

M4 (Rf I ~4(r„) I R'&,

M =&Rzl S(„)IR,&,

G (r„)=r„'R (r„)

=r„'Rz(r„) r„R;(r„)J&'R;(&)Rz(&)d&—, if L&l;

and Rz(r„), R;(r„) are the muonic radial wave functions, where

Lz,z, =d'/dr„' L(L+1) (1/r„'—) —(2m„/P) V (r„)—k ', M3, z ——(m, e'Qo/P) JG3(r„)h, (r„)dr„

4~e' &xz I Z.; (r(/r)') 1"»(f1..) I x&&x I Z; r.;1'zo(~.;) I xz&
& (r ) =-

x Ex+El, j Elyjz

&x IZ., ( /"')I'. (~1., ) lx&&xlZ. , ,1'o(f1., ) lx&
Pg r„)=—

3 x Ex Ex Ef~;~;+«z «——



NUCLEAR POLARIZABILITIES IN MUONIC ATOMS

Thar. E I. The quantities pL, in keV.

Isotope
1$

L=2 L=1 L=O
3d

L=2 L=4

150NQ

'52Sm

162Dy

164Dy

168Er

170pr

182
184
186+7

0.289
0.310
0.331
0.342
0.338
0.324
0.258
0.239
0.236

—3.12
—4.07
—5.50

94
—6.33
—5.76
—4. 13
—3.71
—3.65

—1.69
2, 32

—3.48
—3.80
—4.18
—3.81
—2.93
—2.62
—2.57

—0.43
—0.61
—0.98
—1.07

1 ~ 23
1 ~ 13

—0.97
—0.87
—0.86

+0.05
+0.06
+0.11
+0.12
+0.14
+0.13
+0.12
+0.11
+0.11

—0.06
—0.09
—0.16
—0.18
—0.22
—0.20
—0.20
—0.17
—0.17

—0.02
—0.02
—0.04
—0.04
—0.06
—0.04
—0.05
—0.05
—0.05

The notation of the intrinsic wave functions x is the
same as in Sec. 1. The inclusion of M484 and %585 in
the M(Z1) matrix element takes into account that the
nucleus spends a fraction of the time in the excited
dipole states, which are connected to the ground state
by Ei transitions.

3. NUMERICAL RESULTS

A. Calctllatlon of Pr,

Once a defiriite charge distribution is chosen, it is
straight forward to evaluate p&. We choose a uniformly
deformed ellipsoid, ' with deformation parameter P
chosen to fit the experimental B(E2) values. The
results are listed in Table I. We note here that if
the particular subset of the corrections"in which the
nucleus remains is the ground. -state band is summed to
all orders, the result should be the same as the exact
numerical solution of the coupled Dirac equations in a
deformed electrostatic field. The numerical solution
was carried out by McKinley. " Therefore, the values

in Table I can be checked with his results to justify
our earlier argument that the third- and higher-order
terms can be neglected. He used the deformed charge
distribution of Sec. 1 with parameters c=6.94 fm,
t=2.34 fm, P=0.179, Qs

——11.0886 for "sU. The shift
in the is level energy is then —7.46 keV, whi:ch should
be compared with pz, for the 1s level. Although this
work did not consider the element "U, the same
method was used by the author previously" to calculate
Pr, for the 1s level of "U. With a uniformly deformed
elliPsoid, Rs ——7.43 fm, P =0.25, Qs ——10.554 b, the
result was —6.47 keV. When the calculation is re-
peated, with the parameters changed so as to force
Qs ——11.088 b, the shift is then —7.08 keV. This is in

good agreement with McKinley's result of —7.46 keV.

B. Calcu1ation of y~g

In the Paper I,""it is found that the closure ap-
proximation, with an exact handling of the muonic
energy denominator, gives reliable results for the

l.5

0.5

)= I L= 2

1=2 L=O

2
50

t

60
t

70 80

FIG. 3. The quantity
l Z &~'y&, & l in keV for fs level. All values
of yg, g are negative.

"J.M. McKinley, Phys. Rev. (to be published).

0=
t

50
I

60 70 80 90

FIG. 4. The quantities l y&z, l in keV for 2p states. All values of
y~z, are negative.
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TABLE II. Parameters used in calculating y~L, . TABLE IV. The quantities 3f for d-p transitions.

Average nuclear
Oscillator excitation energy
strength l =0 l =1 l &2

M'22

(fm)
M20

(fm)
&88
(fm)

3f81 M4 +%5
(fm) (fm)

50
56
64
66
70
82

70
82
92

100
106
126

7.8
7.5
7.1
6.9
6.7
6.4

30.0 16.2
30.0 15.5
30.0 14.9
30.0 14.6
30.0 14.3
30.0 14.0

15.0
15.0
15.0
15.0
15.0
15.0

150Nd

152$m

162Dy

164Dy

168Fr

170Er

182W

184
186W

—0.25 0.23
—0.25 0.26
—0, 32 0.32
—0.34 0.33
—0.30 0.35
—0.33 0.33
—0.24 0.29
—0.23 0.27
—0.25 0.27

—0.19 1.63
—0.22 1.81
—0.26 2.01
—0.27 2.10
—0.28 2.10
—0.27 2.02
—0.24 1.56
—0.22 1.47
—0.22 1.47

0.08
0.08
0.11
0.11
0.12
0.12
0.14
0.14
0.14

The average nuclear excitation energies used in the closure approxi-
mation. All the energies are in Mev. The harmonic-oscillator levels filled
in succession are Ogg/2, 1.d&/2, Og7/2, 2si/~, 1da/2, O~n/2.

spherical nuclei. As described in the paper, the giant
dipole states are the most important intermediate
states. The nuclear polarization depends only on the
energy and the dipole strength of the states. So long
as the energy and the dipole strength are correct, the
detailed structure of those states is not very important.
Since the energy of giant dipole states is known experi-
mentally, and the summed dipole strength is determined
by EZ/A (with a correction which comes from the
exchange potential), the methods developed in Refs.
10 and 11 for spherical nuclei can also be applied here to
calculate y~l. . The results are plotted in Figs. 3 and 4.
For the is level, all the matrices 3~1. are unit matrices,
and all y~g for l=0, 1, 2, 3, 4 are added together and
plotted on Fig. 3 against Z. For the 2p states, the
various 7&L, are plotted separately on Fig 4. The six
points with which the curves are plotted are calculated
with harmonic-oscillator states. The parameters are
listed in Table II. The calculation does take into
account the more important factors; however, the
detailed structure of the excited states of each indi-
vidual nucleus has not been taken into consideration.
The uncertainty in the calculation of p&1. should be
~30%%uo.

C. Calculation of M, r, , Maz, , M4+M5

The calculation of the quantities &21,, M31, is similar
to the calculation of Pl, (Sec. 3A) and the calculation
of M4+M5 similar to that of y~r, (Sec. 3B) . The results
are given in Tables III and IV for the E and L x-rays,
respectively. Their inQuence on the relative intensities
is appreciable. As an example, the relative intensities
of E and L x-rays of ' 'K with and without the cor-
rection are listed in Table V.

4. CONCLUSION

The method developed above is quite suitable for
practical analysis of experimental spectra, as it only
consumes a negligible amount of computer time.
The corrections calculated in the previous section
have been applied to the analysis of the muonic dynamic
E2 hyperfine spectra measured by the Columbia
group. The details of the analysis are in Paper III."
We note here that without the renormalization cor-
rections, the quadrupole moments obtained are always
a few percent larger than the Coulomb excitation
measurements. To reduce the quadrupole moment in
muonic determination, one attempt was made to
introduce a fourth parameter P' in the charge distribu-

TABLE III. The quantities M for p-s transition. TABLE V. Relative intensities of E and L x rays of ' 'W.

3f21

(fm)
3I82

(fm)
3E4+%5

(im)
Experimentai

Energy
(MeV) Intensity

Energy
(MeV)

Calculated
Intensity

With Without
correction correction

150Nd

'52Sm

162Dy

164Dy

168Fr
170Er

182W

184W

186W

—0.28
—0.31
—0.34
—0.35
—0.34
—0.33
—0.25
—0.23
—0.23

—0.26
—0.29
—0.34
—0.36
—0.37
—0.35
—0.29
—0.28
—0.28

0.33
0.36
0.47
0.47
0.48
0.48
0.60
0.60
0.60

5.19613
5 ' 22796
5.29586
5.31970
5.41934
2.05036
2. 17357
2.21369

0.169
0.310
0.076
0.160
0.285
0.419
0.240
0.341

5.19633
5.22763
5.29640
5.3195i
5.41958
2.05031
2. 17350
2.21368

0.176
0.314
0.082
0.144
0.283
0.404
0.233
0.362

0.186
0.322
0.084
0.143
0.265
0.388
0.248
0.363
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TABLE VI. Inhuence of nuclear polarization on the parameters of the charge distribution.

Isotope Qp C.E.'
(b)

Without nuclear polarization

P P
(fm)

Qo
(b)

With nuclear polarizationb
C t P Qp

(fm) (fm) (b)

"0Nd
'"Sm
162Dy

164DV

168Er

170Er

182W

184W

186W

5.17~0.12b

5.85%0.15
7.12&0.15
7.50&0.20
7.66&0.15
7.45&0.13
6.58&0.06
6.21&0.06
5.93&0.05

6.08 1.68 0.274
6.09 1.77 0.302
6.26 1.59 0.337
6.34 1.30 0.329
6.34 1.51 0.354
6.41 1.27 0.341
6.47 1.85 0.272
6.49 1.84 0.269
6.55 1.75 0.243

—0.0
—0.22
—0.28
—0.12
—0.92
—0.87
—0.51
—0.78
—0.54

5.27
5.85
7.38
7.53
7.77
7.80
6.57
6.19
6.01

5.87
5.90
6.01
6.11
6.17
6.27
6.41
6.42
6.46

2.34
2.36
2.40
2.19
2.18
1.94
2.12
2.17
2. 10

0.278
0.296
0.338
0.334
0.333
0.326
0.248
0.237
0.222

5.15
5.78
7.36
7.42
7.77
7.75
6.57
6.27
5.90

~ Measured by Coulomb excitation experiments. P' set equal to 0.

tion. ' However, with the renormalization corrections
the agreement with Coulomb excitation measurements
is greatly improved and no introduction of the param-
eter P' is needed. The corrections also have a profound
inhuence on the parameters of the charge distribu-
tion. " The results are listed in Table VI. Without
the corrections the values of the skin thickness t are
unreasonably small, 1.6 fm; with the corrections the
values of I, increase to 2.2 fm. Finally, the relative
intensities of the hyperfine multiplets are calculated
from the assumption that the 4f levels are statistically
populated. This assumption is not expected to be ex-
actly true; therefore, it is no great surprise that the
g' of the relative intensities are not nearly as good as
the x' of the energies. However, when the intensity
correction of Sec. 2B is applied, in at least half of the
elements, especially the heavier ones, the intensity p'
does improve signihcantly. The element '"W in Table
V is a good example.

To summarize, with the ever improving experi-
mental accuracy, the theoretical analysis of data
should also improve. As shown above, reliable values
of the quadrupole moment and skin thickness can be
obtained only if the higher-order nuclear polarization
effect has been taken into account.
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