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Analysis of Proton Elastic Scattering Using Potentials Derived
from Nucleon-Density Distributions and

Two-Body Potentials*
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(Received 8 October 1969)

Proton elastic scattering data at 30.3 MeV are analyzed using the optical model recently developed by
Greenlees, Pyle, and Tang. The present analysis diBers from that given in the original paper in using a
model-exact treatment of the spin-orbit and isospin terms of the potential. The quality of the fits obtained
is insensitive to the detailed manner in which the potential is constructed and, in particular, to the choice of
nucleon —nucleon force parameters. These parameters are therefore taken from an analysis of low-energy
nucleon-nucleon scattering data, thus enabling the present analysis to give nuclear-neutron rms radii.
The n-p rms-radius difference is about zero for medium-weight elements and 0.1—0.2 F for heavy elements.
Evidence is presented supporting the conclusion that the volume integral and the rms radius of the real
central potential are the well-defined quantities which can be deduced from analyses of elastic proton
scattering data.

I. INTRODUCTION

N a recent paper, Greenlees, Pyle, and Tang' devel-
. . oped an optical model in which the real parts of
the potential were derived from nuclear-matter dis-
tributions and the nucleon-nucleon force. When ap-
plied to proton elastic scattering data at 14.5, 30.3,
and 40 MeV, the model was able to fit the data as
well as standard optical-model treatments, despite
having fewer adjustable parameters. One of the find-
ings of this analysis was that, although the individual
geometrical parameters could take a wide range of
values, the rms radius of the real central potential was
well defined and independent of the incident energy.
For a given range of the two-body force, values for the
nuclear rms matter radii could be obtained. These
values were greater than the corresponding rms proton
radii, derived from electron scattering and muonic
x-ray work, and implied that the nuclear-neutron rms
radii were greater than the nuclear-proton rms radii
by about 0.6 F for all nuclei considered when a Yukawa
two-body force of ms radius 2.25 F' was used.

*Work supported in part by the Atomic Energy Commission.
t Present address: Department of Physics, University of

Birmingham, England.' G. W. Greenlees, G. J. Pyle, and Y. C. Tang, Phys. Rev. 1V1,
1115 (1968).
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Although the model, as developed in Ref. 1, gives a
first-order treatment of the problem, the actual analy-
sis of data reported there involved two additional
assumptions in the calculation of the isospin and spin-
orbit terms. In the present analysis, these approxima-
tions have been removed and proton data at 30.3 MeV
analyzed using the complete model. It is found that
the neutron-proton rms-radii differences are reduced

by 0.1—0.2 F for a Yukawa two-body force of ms
radius 2.25 F'. However, the fits to the data are found
to be relatively insensitive to both the magnitude of
the isospin term and the range of the direct part of the
nucleon-nucleon force. When these quantities are chosen
to agree with a recent analysis of low-energy nucleon-
nucleon data, which used a Gaussian shape, a further
reduction is eGected in the nuclear neutron-proton rms-

radius differences to values around zero for medium-

weight elements and 0.1—0.2 F for heavy elements.
Confirmation is provided that the volume integral

and the rms radius of the real central potential are
well-defined quantities which can be extracted from
elastic scattering data as was suggested in Ref. 1 and

by Becchetti and Greenlees. ' This result is insensitive
to the detailed form of the potential used.

' F. D. Becchetti, Jr. , and G. W. Greeniees, Phys. Rev. 182~
1190 (1969).
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where S~2 is the tensor force operator. For nuclei with
total angular momentum zero, the contributions to the
real effective interaction potential Uo come from the
first, second, and last terms of Eq. (1).Hence,

where
Uo= Us+ Us+ U, (2)

Us= fb-(r)+p. (r)]N. ( I
&—ro I )«, (3)

Us=(fLP (r) P (r)]N.(Ir—roI)dr) o* (4)
4r 2e d $2(e 1) d'—" '

U..= -5-&g P~r (2m+1)! rp drp & rp dr+ '

with

d2n —2

+ d, , p. I X N&. (~)~'-+sd& lp'0'p, (5)

rp, +1-—
Vog 1

for protons,

for neutrons.

The right-hand side of Eq. (5) is an asymptotic series
and care must be taken in its summation. 4

Also,

p (r) = p (r)+p (&) (6)

where p„, p„, and p are the proton, neutron, and
matter distributions of the target nucleus.

The existence of open reaction channels is taken into
account by adding a phenomenological imaginary po-
tential to Uo, resulting in a complex potential of the
type commonly used to analyze data on the scattering
of nucleons by complex nuclei.

s S. D. Drell, Phys. Rev. 100, 97 (1955).
4 The erst term (m=1) in Eq. (5) has been derived by R. J.

Blin-Stoyle, Phil. Mag. 46, 973 (1955).

IL MODEL

A. Formulation

In computing the interaction potential between an
incident nucleon and the target nucleus, it was assumed
in Ref. 1 that the effective potentials arising from target
polarization and antisymmetrization eBects are small
and can be neglected. These assumptions are probably
reasonable since the fairly strong absorptive compo-
nent in the optical potential ensures that the elastic
scattering is sensitive primarily to the surface region
where it has been shown that these eGects have small
magnitudes. '

The nucleon-nucleon potential was taken to have
the form

Np ' =Ns (rp ) +I,(rp ') Tp
' r '+ uqr (rp ')op'o;''

+ss.,(ro')oo o;~o.~;+I sr~(ro;)+N~, ~o ~;]&12

+N~. (rp;) (1/&) L(rp —r;) X (po —p;) ~ (Op+O~) ],

B.Ayplication

It is clear from Eqs. (3)-(5) that choosing specific
forms for p„, p„, Nq, N„and N~, will allow computation
of Ug, Ug, and U„. The method followed in this anal-
ysis is to assume suitable forms for p„, I&, N„and I&„
parametrize p„, and search to fit the experimental
data. The strength parameters of the folded potentials
are left adjustable to allow for small corrections due to
eBects ignored by the model.

Thus, the procedures followed in obtaining the eAec-

tive interaction potential are to

(1) assume p„has a Woods-Saxon form with param-
eters R„and u„;

(2) assume p„has a Woods-Saxon form with param-
eters E„and a~ derived from electron scattering and
muonic x-ray measurements;

(3) assume a form for Ns,

(4) assume p, (r) = —tlat(r);
(5) assume N~, has a Yukawa shape with a mean

square radius (r')&, of 0.5 F',
(6) obtain the forms of Us, Us, and U., by folding

the appropriate quantities in Eqs. (3)-(5), leaving the
coeKcients as strength parameters;

(7) introduce an imaginary potential with both sur-

face and volume components.

In Ref. 1, a value of (r')s ——2.25 F' was chosen for
the two-body force range as determined from the fits
to the proton-nucleus elastic scattering data. This value
is in reasonable agreement with values obtained from
phenomenological analyses of o.-o. scattering, and from
a phenomenological nucleon-nucleon potential used in
a number of scattering problems involving light nu-

clei, '6 and was taken as the starting value in the
present analysis.

An indication of the magnitude of i, the ratio of
the isospin to the direct part of the nucleon-nucleon
potential, can be obtained from the two-body potential
of Ref. 6, where a value of 0.48 was used.

A Yukawa form for I& with a mean square radius
of 0.5 F2 is expected to be satisfactory since the two-

body spin-orbit potential is short-ranged, with ft/Mc
equal to about 0.3 F.~

Although the values chosen for (r')q, (rs)~„and i'

are reasonable in relation to other work, it is, never-
theless, necessary to explore the sensitivity of the model
predictions and parameters to these quantities.

The interaction potential used here may be written as

U, (r) = Uo(r) —Vssjl(r)/P (0)+& (0)]}
iWr fr(r)+iWs4urttdfg—(r)/dr] V~ (r)o'1, (7)—

s S. Ali and A. R. Bodmer, Nncl. Phys. 80, 99 (1966).
I Y. C. Tang, E. Schmid, and K. Wildermuth, Phys. Rev. 131,

2631 (1963);S. Okai and S. C. Park, sMd. 145, 787 (1966);D. R.
Thompson and Y. C. Tang, sNd 159, 806 (1967). .

r R. A. Bryan and B. L. Scott, Phys. Rev. 135, B434 (1964).
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where Uo(r) is the Coulomb potential between a nu-
cleon and the appropriate Woods-Saxon charge distri-
bution determined from electron scattering and muonic
x-ray measurements.

Also,

I(r) =
I I„(r)+I„(r))+i LI„(r) I„(r)—)«„(8)
I-(r) = ff-(w)A( I w

—&
I ) dw, (9)

I.(r) =ff, (w)f~( I w
—&

I )dz, (1o)

fz(r) = s(—~~&lr~ (11)

p„(r)/p„o f (——r) = {1+expL(r—I(.'„)/a„]} ', (12)

p~(r)/p&o=fo(r) = {1+expL(r—I('.„)/a„g} ', (13)

fs(r) = {1+expI (r—Rl) /ad)}
—'. (14)

With a Yukawa form for u~, (e s"/Pr), the spin-orbit
form factor reduces to

I (r) =2' G(r, x) (p„(x)+p„(x))dx, (15)

where

(r')s= P/~) &'r') + (Z/~) (r')n+(r')s

(r') s = LE/(X —Z)j(r')„—I Z/(Ilt —Z)g (r') + (r2)q

(17)
and hence

(16)

(') L1+t o.(&—Z)/~1= & ') L1+i o.P—Z)/~3

+(r')-(&/~) (1+i«.)+(r')n(Z/~) (1 t «—) (18)

where (r')ss, (r')q, (r')„, and (r')„are the mean square
radii of the real central potential Uss(= Us+Us),
the spin- and isospin-independent part of the two-body
potential N~, the neutron distribution p„, and the proton
distribution p„, respectively.

Also,

to be 0.64 F', and assuming that the proton half-way
radius E~=E,h, a„was obtained from the relation
(r') h

——(r')„+0 64. T.hus a„=0.454 F for all A. Using
these proton parameters, the corresponding neutron
distributions which gave fits to the data were found.

From Eqs. (3) and (4), with I,= —mls, it follows
that

2x' x fy' 2y a 2 ('+o&

G(r, x) = — e-»I —+ —,——+-
bP br &P P' P P' (, o)»s

Jg ——AJg,

Js = (I(/ Z) iJ~ro., — (20)

a=r'+x', b =2rg.

(e—Pu t (~+&)

( P f(e o)'" wher

J)os/~ =A{1+I(Ã—Z)/~pi«. },

Js= —fUs(g) dq,

Js= —fUs(g) dg,

(21)

(22)

(23)

with
{1+expL(r —R,h) /a, ),$}

—',

a,h=0.502 F

Ea),= (1 106+1.05 X 10 '2) A'I' P.

Correcting for the finite size of the proton allows
nuclear-proton distributions to be extracted from these
charge distributions. The major e6ect of unfolding the
proton size is to reduce the falloff distance of the dis-
tribution and leave the half-way radius almost un-
changed. Taking the mean square radius of the proton

It is clear that this formulation requires a separate
numerical integration to obtain Ug, Us, and U„, and
thus a rather long computing period for each iteration.

In order to obtain nuclear-proton distributions from
nuclear-charge distributions, the following procedures
were adopted. Since charge measurements were not
available for all the nuclei studied at the time of anal-
ysis, interpolated values were taken from the work of
Acker et u/. , in which nuclear-charge distributions are
well represented. (A = 50-210) by a Woods-Saxon shape

Jss=Js+Js,

(25)

are the volume integrals of the potentials involved.
Note that Eqs. (16) to (21) are analytic and inde-

pendent of the forms of p and I and hence of the
potential forms used. In particular, these expressions
are independent of the shape of the symmetry poten-
tial Us.

IIL ANALYSIS OF DATA

The performance of the model has been tested by
analyzing proton elastic scattering data at 30.3 MeV.
The polarization data used diBer from those used in
the earlier analysis. ' Since that analysis was completed,
large-angle polarization data for ~5'i, "Ni, and '"Pb
and forward-angle data for ~'Fe have become available
at energies close to 30.3 MeV. ' The earlier polarization
data, used in Ref. 1, was for a proton energy of 29.0
MeV and presented some difficulties in analysis and

D. L. Watson, J. Lowe, J. C. Dore, R. M. Craig, and D. J.SH. A. Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A. Baugh, Nucl. Phys. A92, 193 (1967); J. Lowe (private com-
Dewitt, Nucl. Phys. 87', 1 (1966). munication).
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Fio. 1. Plot of spin-orbit potentials obtained from the first term (22=1) of Eq. (5) corresponding to a zero range for ui, and all
the terms with (r')2, =0.5 F'. The calculation was done for 3 = 58, r =-1.2 F, and a~=0.5 F, using the model developed in Ref. 1.
The potentials have been normalized at their maximum value.

interpretation. In the present analysis, only the new
polarization data' is used.

The model, as developed, has four strength param-
eters V~g, S'y, 8'g, and V„and four geometrical
parameters R„, a„, E~, and a~. These parameters were
varied using a search procedure to find a minimum in

g ) defined by

where bh„, (0,) and q,„~2(0;) are the theoretical and
experimental quantities at scattering angle 0;, respec-
tively, and g.„,„(0;) is the associated experimental error.
In the search routine used to minimize y', the model
predictions for polarization were averaged over the ex-
perimental angular acceptance before comparison was
made with the data.

Differential cross-section data on "Fe, "Ni, "Co,
"Ni) "'Sn, and "'Pb" and polarization data on 'Fe,
'Xi, "Ni, and ''Pb' were used in the analysis. The

cross-section data, in general, cover an angular range
of 4' to 160' in 2' intervals and have an accuracy of
1 to 4 jo except for a few forward and backward angles.
The polarization data spans the angular range 20' to
120' for "Fe and 100' to 160' for 5'Xi, "Ni, and '"Pb in
5' intervals with an absolute accuracy of 0.03 to 0.13.

Although it was in general possible to search on all
eight parameters simultaneously and obtain a con-

22 8 W. Ridley an.d J. F. Turner, Nucl. Phys. 58, 497 (1964).

verged minimum in y', the searches could be done
most efficiently by considering three groups of param-
eters. These grouPs were (1) Uris, Wv, Ws, R~, and
Rr , (2) Uris', Wv, Ws, a, rrr , and (3) U'ris, Wv, W8,
V„, E„, Eq, a„, al. Since the rms radii are well defined
compared to individual radii and diffuseness param-

Element (r" )i, (F') (r2) 2/2 (F)

56Pe 0
0.5

4.05
4.03

9.8
8.0

8.0
7.2

9.2
7.7

~8Ni 0
0.5

4.11
4.07

5.3 10.9
4.3 9.0

6.7

5.5

0
0.5

4.10
4.08

4.9
3.9 3.9

60Ni 0
0.5

4. 16
4.13

4.1
3.3

9.6 5.4
7.0 4.2

~0Sn 0
0.5

5.17
5.14

6 2 e ~ ~

0 0 4 ~

6.2
6.0

208pb 0
0.5

5.82
5.86

1.3 2.9
2.4

1.8
1.5

TAnrR I. Values of (r') '2 obtained from best-fit parameter
sets for the approximate spin-orbit term (I=1) and for the full
spin-orbit term with (r')2, =0.5 F'. In both cases, the matter
parametrization of Ref. 1 wss used with (r2)q =2.25 F' (Vukawa) .
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Fio 2. Plot of the direct (U@) and isosopin (Us) contributions to the real central potential (Uas) for '"Sn at 30.3 MeV using the
full model outlined in Sec. II with Yulrawa forms, (r')q=2. 25 F', (r')q, =0.5 F', and I'=0.48.

eters, searches (1) and (2) consider the two sets of
geometrical parameters separately. Also, since the cross
section is not very sensitive to the magnitude of the
spin-orbit potential V„, this parameter is not searched
upon until a reasonable optimum x' fit has been ob-
tained.

A. Spin-Orbit Folding

The analysis of Ref. 1 used only the first term (N = 1)
of Eq. (5) in calculating the spin-orbit potential. This
corresponds to zero range for N~, and is similar to the
usual Thomas derivative term. Figure 1 compares the
spin-orbit potential obtained from the first term with
the potential obtained from the full folding including
all terms and assuming a Yukawa two-body spin-orbit
force with a mean square radius of 0.5 F'. The simi-
larity of the two curves of Fig. 1 confirms that the
first term of the series [Eq. (5)] is dominant as was
anticipated in Ref. 1. The short range of the two-body
spin-orbit force~ ensures that terms with e) 1 have a
rapid variation with ro for any reasonable form for p
and hence give only a small net contribution. The
ma3or . effect of the full folding is to extend the tail
of the distribution beyond that given by the first term.
In order to maintain the same tail with the full fold-
ing, as was obtained using only the first term, the
matter and therefore the neutron rms radii will need
to be reduced somewhat.

The changes in (r') 'i' which take place with the
full-spin-orbit folding are shown in Table I, in which
best-fit parameters were obtained using the matter
parameterization of Ref. 1 for the approximate spin-
orbit term (ri=1) and for the full spin-orbit term with
(r')~, =0.5 F'. Although the fits to the data, as meas-
ured by x', are not significantly changed, the general
result of including all the contributions to the spin-orbit
potential is to decrease (r') 'i' by about 0.03 F and
(r')„' ' by about 0.06 F.

B.Full Symmetry Folding

In Ref. 1, it was assumed that p„/p„=Z/1V for all r
giving the isospin term a volume form; this allowed
the term to be implicitly included as part of the real
central potential through an adjustment of its strength
parameter. However, the results obtained indicated
that the neutron density distributions extend beyond
the proton distributions so that, in fact, the isospin
term should be surface-peaked. This inconsistency is
removed if the isospin term is calculated from Eq. (4) .
In order to do this, the same form and range is assumed
for the two-body isospin term N, and the direct term
eq with a relative strength l (= —N, /Nq). A value for
t of 0.48 was taken as discussed in Sec. II B.The effect
of using a surface-peaked rather than a volume isospin
term may be examined by fitting the data with the
complete model, as outlined in Sec. II, for / =0 and
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FxG. 5. Variation of best-6t x' values
for elastic proton scattering data at
30.3 MeV with Yukawa two-body-force
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g=0.48.
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to a strength of 6 MeV in the usual formulation. Com-
parison of the experimental data and model predictions
are given in Figs. 3 and 4.

IV. DEPENDENCE ON NUCLEON-NUCLEON
PARAMETERS

A. Sensitivity to the Yukawa Two-Body-Force Range

In the analysis presented so far the direct part of
the nucleon-nucleon force has been taken to have a
Yukawa shape with a range of 2.25 F' as indicated
from Ref. 1. In order to explore the sensitivity of the
model predictions to this range, the analysis was re-
peated for a number of values for (rs)q between 0.1
and 6.0 F' with f=0 48 and (r')~ .——0 5 F' The param-
eters found for 'o'Pb at 30.3 MeV are given in Table
IV and plots of y' versus (r')q for all cases are given
in Fig. 5. Systematic trends in the parameters for
variations in (r')q are exhibited in Table IV; in par-
ticular, a decrease in (r')„'~' with increasing (r')q is
evident. However, the rms radius of the folded real
central potential (rs)rr8'~', is quite constant over the
region of acceptable x'. The criterion for an acceptable

fit is the same as in Ref. 1, where it was found that the
fits became visibly worse when p' increased from its
optimum value by a factor of 1.5 for medium-weight
nuclei, and by a factor of 2.0 for heavy-weight nuclei.
In Table IV, the neutron parameters are adjusting for
variations in (r')q so as to maintain the real central
potential close to the optimum shape.

In Fig. 5, it is clear that the fits to the data are not
significantly restricting the choice of (r')q value. The
situation differs from the findings of Ref. 1, where a
choice for (r')q of 2.25 F' was made" In the present
case it is not possible to draw any conclusions concern-
ing the appropriate value of (r')q.

B. Sensitivity to the Magnitude of the Isospin Term

In Sec. II, a value of /=0. 48 was chosen from pub-
lished analyses of nucleon-nucleon data. In order to
test the sensitivity of the fits to the magnitude of the

"The minima around 2.25 F' found in Ref. 1 were due in
large part to a rise in the x' values for small values of (r')s. This
rise was due to inaccuracies in the numerical integration technique
when (r')s was small. These inaccuracies have been removed in
the present work.
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TABLE III. Best-Gt parameter sets for the 30.3-MeV data using Yukawa forms with (rs )d =2.25 F, (rs )&,
=0.5 Fs, and I'= 0.48.

56Fe 5'Co
Element

"Ni

Vss (MeV)
Wv (MeV)
Wg (MeV)
rr (F)
al (F)
t/'„(Me V)
r (F)
~. (F)
(r') "' (F)
(r*)ss'I' (F)

Jss/A (MeV F')
X2

XT'

53.3/
3.-57

4.84
1.330
0.582

1611.6
1.166
0.619
4. 15
4.32

400. 6
9.1

7.2
8.5

55.07
4.18
4.01
1.355
0.526

1597.6
1.145
0.670
4.24
4.39

400. 1

4.7
8.8
5.7

53.95
3.34
4.92
1.311
0.621

1649.0
1.157
0.619
4. 18
4.35

401.6
4 ~ 7

4.7

53.81
3.55
4.78
1.318
0.605

1577.7
1.170
0.631
4.26
4.38

403.0
3.7
7.2
4 ' 6

50.96
2. 77
7.37
1.316
0.640

1705.3
1.214
0.555
5.08
5.21

398.8
2 ' 3

2.3

52.Oi

1.53
9.81
1.244
0.738

1659.1
1.212
0.529
5.90
6.01

408. 1
1.4
2.7
1.8

TABLE IV. Best-fit parameter sets found in the analysis of 30.3-MeV differential elastic scattering
data for 2'8Pb using various values of (r )q and a Yukawa form.

0.1 1.0 2.0
(r')s (F')

3.0 4.0 5.0 6.0

V» (MeV)
W (Mev)
Wg (MeV)"(F)"(F)
t/'„(F)
r, (F)

(F)
(ts)„1/2 (F)
(r')zs"' (F)
Jzs/A (MeV F')

2

XT'

51.21
94

8.84
1.243
0.742

1663.0
1.213
0.673
6.11
6.00

411.0
1.3
3.4
1.9

51.56
1.53
9.51
1.239
0.746

1676,5
1.211
0.621
6.02
6.00

409.9
1.3
2.9
1.7

51.87
1.49
9.81
1.241
0.740

1670.7
1.214
0.546
5.93
6.01

410.3
1.4
2.6
1.7

52.63
1.72
9.67
1.260
0.734

1591.6
1.202
0.489
5.81
6.00

407.9
1.6
3.1

2.0

53.45
2. 18
9.02
1.286
0.731

1506.2
1.188
0.411
5.66
5.97

403.7
1.9
3.7
2, 4

54.07
2.38
8.84
1.310
0.714

1445.5
1.177
0.330
5.54
5.96

400.5
2.3
4 9
3.0

54.33
2.48
9.06
1.320
0.686

1364.3
1.179
0.181
5.45
5.97

401.6
2.7
6.7
3.9

TABLE V. Best-6t parameter sets found in the analysis of 30.3-MeV differential elastic scattering
data for '"Sn using various values of g.

—1.0 —0.5 0.0 0.5 1.0

V» (Mev)
W (Mev)
Ws (MeV)
rl (F)
&I (F)
~.o (F)
r„(F)
a„(F)
(rs) 1/9 (F)
&r~~»«~ (F)
J»/A (MeV F')
X2

41.93
2.83
6.48
1.323
0.728

2119.2
1.648
0.122
6.31
4.83

358.4
6. 1

49.86
2.41
8.03
1.300
0.639

2205. 6
1.375
0.512
5.59
5.16

390.3
2.2

52.04
2.66
/. 63
1.313
0.636

1836.3
1.259
0.555
5.24
5.20

397.3
2.3

50.88
2.79
7.33
1.316
0.640

1700.2
1.213
0.555
5.07
5.21

398.8
2.3

48.66
2.90
7.11
1.319
0.644

1634.5
1.191
0.547
4.98
5.20

399.2
2.3



PROTON EL ASTI C SCATTERING USING POTENTIAL S 1153

58 I

Nl l50 5 MeV

FIG. 6. Variation of best-6t y' values
for ' Ni, "Sn, and "8Pb at 30.3 MeV with
l', using Yukawa forms, (r')q=2. 25 F'
and (r')r, =0.5 I'.
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surface-peaked isospin term, best-ht parameter sets
were obtained for a variety of nuclei for l values
between —1.0 and 1.0 with (r')q ——2.25 F' and (r')t, =
0 5 P' A plot of l versus x' for "Ni "'Sil alld "'Pb
at 30.3 MeV is shown in Fig. 6. The curves, typical of
all the cases investigated, indicate that any value be-
tween f= —0.5 and &=1.0 will give acceptable fits to
the data. This is in agreement with Ref. 1, where
acceptable values of l were estima, ted using Eq. (21)
and making a straight-line fit to plots of Jira/A versus
(iV—Z)/A. The detailed variation of the parameters
for '"Sn is shown in Table V. For acceptable values of
&', the neutron geometrical parameters are varying so
as to maintain (r')its'~', the rms radius of the real
central potential, essentially constant.

C. Gaussian Two-Body Force

The insensitivity of the predictions to the parameters
chosen for the two-body force (Secs. IV A and IV 8)
suggests that these parameters should be obtained from
the fitting of low-energy nucleon-nucleon scattering
data. It is well known that reasonable Gts to such
data can be obtained with a variety of functional
forms. The appropriate choice for the present problem
is suggested from the following considerations. In the
original formulation of the model in Ref. 1, a vari-
ational principle was used with a trial wave function
of the form

+=A(t)4(ro ~o 4) J',

where P is a normalized wave function describing the
ground state of the target nucleus, p is the scattering
function, and the short-range correlation function

f= g; i (rs,)j was taken as being unity for all
1'p' values. This assumption concerning F suggests that
potentials which vary rapidly at small distances, such
as a Vukawa, are not too appropriate in the present
context. The forms normally used in fitting low-energy
nucleon-nucleon data are the exponential, the Yukawa,
and the Gaussian. Of these, the Gaussian is most suit-
able for use here because of its relatively slow variation
at small distances.

Recently, Tang" has analyzed low-energy e-p and
p-p data using Gaussian. singlet and triplet potentials.
These potentials reproduce the experimental scatter-
ing lengths and give good agreement with the '5p
phase shifts up to energies around 100 MeV(lab) . The
volume integrals and mean square radii for the triplet
and singlet potentials were 1393 and 1025 MeV F' and
3.62 and 5.15 F', respectively. The present model uses
only a single form for the two-body potential with the
range axed and the strength adjustable so that an
appropriate mean of the Tang singlet and triplet ranges
must be chosen. This was done by taking the mean of
the two mean square radii weighted by the correspond-
ing volume integrals. This yields a mean square radius
of 4.27 F' for the Gaussian potential to be used for ud
and I, in Eqs. (3) and (4). The ratio of strengths

"Y. C. Tang (private communication).
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TABLE VI. Best-fit parameter sets for 30.3-MeV proton data using a Gaussian for Ns and (rz)q 4——27. F',
a Yuirawa for zzz, and (r')z, =0.5 F', and /=0.48.

56Fe 58Nj "Co
Element

60Ni 120Sn 208pb

~as (MeV)
W~ (MeV)
Wg (MeV)
~r (F)
&r (F)
V„(MeV)
r. (F)
a (F)
(rz) z/2 (F)
(r')zzs'z' (F)
g»yX (Mev F')
Xo'2

XZP

56.84
3.97
3.48
1.414
0.601

1406.7
1.093
0 ' 458
3.66
4.21

379.3
8, 3
9.8
8.8

57.15
4.52
3.11
1.381
0.559

1392.5
1.129
0.432
3.75
4.28

386.1
8.2

15.7
10.2

55.21
4.22
3.23
1,400
0.626

1450.1

1.143
0.378
3.72
4.26

383.5
4 0

4 0

55.32
4.38
3.26
1.381
0.621

1390.7
1.154
0.401
3.80
4.32

387.3
5.3

13.3
7.3

51.26
4. 15
4.86
1.344
0.711

1440.3
1.226
0.186
4.74
5.14

391.7
2.7

2.7

53.65
2.12
8.79
1.282
0.781

1450.6
1.173
0.383
5.57
5.92

394.9
1.4
2.7
1.8

(i = —I,/Ns) was taken as 0.48 as before, and zzz, was
left unchanged. The best-Qt parameters obtained in
this way are given in Table VI. The most significant
change noticeable in Table VI when compared to Table
IH, which corresponds to using a Vukawa with mean
square radius of 2.25 F for u~, is a reduction in magni-
tude of the neutron parameters. The visual quality of
the fits is the same in both cases.

V. RESULTS AND DISCUSSION

A. Real Central Potential

It has been shown that the quality of the fit obtained
for proton elastic scattering data at 30.3 MeV is in-
sensitive to the details of the potential used. Evidence
for this is given in Tables I and II where the effects of
removing the approximations of Ref. i are shown, in
Table IV where the effect of varying (r')z is shown,
and in Table V where the effect of varying the isospin
term is shown. The variations examined in Tables I,
II, IV, and V make considerable changes in the real

central potential shape in the surface region. However,
both the volume integral J~g and the rms radius of
the real central potential, (r')zsa't', remain relatively
constant with these changes of shape. This is illus-
trated in Tables IV and V. The constancy of J&8 and
(r')zzs't' is independent of the details of the model used
to analyze the data and a summary of values divided
by 3, obtained here and elsewhere in analyses of the
30.3-MeV data, is given in Table VII. Since the real
central potential normally used to 6t elastic data con-
tains at least three parameters and only two quantities
are well-defined by elastic scattering data, there is an
inherent ambiguity present in analyses of such data.

The above discussion applies to the analysis of data
from one element at one energy. Examination of the
variation of Jzzs a,nd (r')~8"' for a range of elements
at the same energy can, in principle, reveal further
information. In particular, an increase of the volume
integral per particle, for incident protons, would be
expected as the neutron-proton ratio of the nucleus
increases because of the stronger S-state interaction of

TABLE VII. Values of Jzzs/A and (rz)zzszzz obtained in different analyses of 30.3-MeV proton elastic scattering data.
Typical errors are ~15 MeV F' and ~0.15 F.

Elem
urce J„]~(MeV F3)

c d e
(r')rzs" (F)

c d e

5'Fe
58Nj

~'Co

"Ni
120Sn

~SPb

401 401 408
400 402 408
402 403 411
403 404 413
399 397 402
408 411 411

407 379 ~ ~ ~ ~ ~ ~

406 386 409 395
409 384 411 398
409 387 413 396
399 392 406 399
402 395 411 399

4, 32 4.33 4.39 4.39 4.21
4, 39 4.40 4.46 4;43 4.28 4.38 4.35
4 35 4 35 4 39 4 42 4 26 4 37 4 36
4 ' 38 4.42 4.46 4.47 4.32 4.42 4.34
5.21 5.20 5.22 5.23 5.14 5.24 5.21
6.01 6.02 6.00 5.97 5.92 6.03 5.95

Present work using I (r2)g =2.25 F2, Y(r2)~s =0.5 F2, and $ =0.48
(Table III) .

Present work using Y (r')g =2.25 F2, Y (r') ~, =0.5 F', and g =0.
' Present workusing Y(r')d =0.1 Fm, Y(r')~, =0.5F', and /=0.48.

Present work using Y (r~ )g =4.27 F2, Y (r~)~g =0.5 F2, and g =0.48.

Present work using Gaussian (r2)g =4.27 F', Y (r2)~, —0.5 F', and
f =0.48.

f From best-fit parameters of Ref. 1.
g From best-fit parameters of Satchler, Nucl. Phys. A92, 273 (1967).
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TABLE VIII. a p-rms-radii diiferences (F) obtained in various analyses of 30.3-MeV data.

Element Ref. 1

Yukawa 2.25 F2,
&=0.48 Yukawa 4.27 P~, Gaussian 4.27 F',

(Table III) f=0.48 P =0.48 Error

56pe

58Ni

"Co
6oNj

~Sn
208pb

~ ~ ~

0.71
0.64
0.70
0.71
0.64

0.45
0.50
0.43
0.48
0.49
0.46

0.22
0.24
0.20
0.25
0.27
0.19

—0.04
0 ' 01

—0.03
0.03
0.15
0.13

&0.15
&0.18
&0.16
&0.16
&0.19
&0.25

p neo-mpared to p-p. In the present formulation this
variation with nuclei is given by Eq. (21) which, for
protons, reduces to

This equation is independent of the functional forms
of the various components of the potential and it can
be applied directly to the volume integrals found for
individual nuclei without further assumptions. How-
ever, it is clear from Table VII that Jna/2 is essen-
tially independent of 2 )or (X—Z)/2], which implies
that l is zero and that no isospin dependence of the
potential is evident. This result is clearly at variance
with results of analyses of quasi-elastic scattering to
analog states. Indeed, the present formalism has been
extended to describe such processes in (p, e) " and
(He', t) " reactions and yields values for the volume
integral of u, corresponding to a f value of about 0.4,
which is in reasonable agreement with the value of
0.48 obtained from two-body data. No explanation is
offered for the absence of an isospin dependence of the
potential in elastic scattering; it does, however, suggest
that some feature of the p-nucleus interaction is miss-
ing from the optical-model description. The isospin
dependence of the potential strength often found in
optical-model analyses is a direct consequence of the
introduction of the additional geometrical assumptions
that the radius R= roA'" and the diffuseness a= const.
This causes the volume of the potential per particle to
decrease with A and hence the strength, required for a
6t, increases to maintain the volume integral per
particle constant. "

B. Neutron-Proton Radius Di8erences

The constancy of the real central rms radius for a
wide range of values of the two-body potential param-
eters results in the values obtained for the neutron rms
radius being sensitive to the choice of these parameters
(Tables IV and V) since they are interconnected via
Eq. (18).

"C. J. Batty, E. Friedman, and G. W. Greenless, Nucl. Phys.
A127, 368 (1969).

r' F. D. Becchetti, Jr. (private communication).
'5 G. W. Greenlees, G. J. Pyle, and V. C. Tang, Phys. Letters

26B, 658 (1968).

The analysis of Ref. i using an approximate form
of the present model indicated an optimum choice for
the Yukawa two-body mean square radius of 2.25&
0.6 I"'. In the analysis with the complete model, pre-
sented here, a choice can no longer be made so the
Gaussian force (mean square radius 4.27 F') was taken.
Such a choice is in agreement with the work of Slanina
and McManus, " who have compared the nucleon-
nucleus potentials to be expected using various forms
for the two-body interaction with those obtained from
phenomenological analyses of experimental data.

The results of removing the assumptions of Ref. i
concerning the spin-orbit term and the isospin term
are shown in Tables I and II and correspond to reduc-
tions of O.i to 0.2 I' in the neutron rms radii when a
Yukawa force of mean square radius 2.25 I"" is used.
An increase in the range of the Yukawa produces
corresponding reductions in the neutron radii (Table
IV) . When the two-body-force parameters were chosen
from analyses of two-body data, a Gaussian form of
mean square radius 4.27 F' was taken (Sec. IV C).
This resulted (Table VI) in further reductions in the
neutron radii from those of Table III, where the com-
plete model was used with a Yukawa of mean square
radius 2.25 I'. Part of these reductions is due to the
increase in range and part is due to the change of shape.
The results for the neutron-proton rms-radius differ-
ences obtained with the various assumptions are given
in Table VIII.

The results of Table VIII indicate that using a
Yukawa form for Ns (columns 2, 3, and 4) yields e-p
radius differences which are about equal for all the
nuclei studied (2 = 56 to 208) . Using a Gaussian form,
however (column 5), yields differences which increase
from around zero for medium-weight nuclei to a value
of O. i—0.2 F for heavy nuclei. This latter trend is more
in line with physical expectations than the results ob-
tained with the Yukawa form and reinforces the argu-
ments made in Sec. IV C that the Gaussian is a more
appropriate form to use in the present model. These
results for the rr-p rms-radius differences using the
Gaussian form are in agreement with other estimates

"D. Slanina and H. McManus, Nucl. Phys. A116, 271 (1968).
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obtained using Coulomb energy differences'~ and pion
scattering data, " but significantly less than estimates
obtained from fitting bound-state energy levels in a
single-particle potential. "

The relative success of the present model in repre-
senting elastic scattering data suggests that a first-order

~7 J.A. Nolen, Jr., J.P. SchiKer, and N. Williams, Phys. Letters
2'7B, 1 (1968); E. Friedman and B. Mandelbaum Nucl. Phys.
A135, 472 (1969);F. D. Becchetti, Jr. (private communication);
H. A. Bethe and P. J. Siemens, Phys. Letters 27B, 569 (1968)."E.H. Auerbach, H. M. Qureshi, and M. M. Sternheim, Phys.
Rev. Letters 21, 162 (1968).' E. Rost, Phys. Letters 263, 184 (1968);L. R. B.Elton, ibid.
268, 689 (1968); C. J. Batty and G. W. Greenlees, Nucl. Phys. ,
A133, 673 (1969).

treatment is a good approximation and that the effects
of antisymmetrization and core polarization are corn-
paratively small at 30 MeV. It should be pointed out,
however, that the elastic data analyzed included very
few polarization measurements and that the two-body-
force form used had only a single range and did not
differentiate between singlet and triplet interactions.
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The four-particle —four-hole state in "0and the corresponding states in the even-even, 3l=Z nuclei of the
2s-1d shell have been investigated in the framework of the Hartree-Fock approximation, Detailed cal-
culations were performed in each case to determine the most stable Hartree-Pock solution. By assuming
a simple model, the excitation energies of the band heads were calculated showing that '4Mg is the last
nucleus where a state analogous to the four-particle —four-hole state in "0might be observed. Energy levels
have been calculated in "0, '0Ne, and ' Mg using a basis of good angular-momentum states. A comparison
between the predicted and the observed energy spectrum has been shown. In "0, calculations have been
performed both with phenomenological and realistic interactions and the results have been compared.
The accuracy of the projected angular-momentum states from the twelve-particle —four-hole solution in
"Mg has been estimated and shows that the projected states in this case are close to the eigenstates. We
have demonstrated that one of two 0+ states observed around 7 MeV in ' Ne is an eight-particle —four-
hole state.

I. INTRODUCTION

r lHK analysis of the experimental results of Carter..et al. ' suggests that many of the low-lying positive-
parity excited states in "0may be approximately fitted
into rotational bands. This identification is further sup-
ported by large E2 transitions encountered, "e.g.,

B(E2) 2,+—+Os+) =40e'f'

B(E2, 4+q~2+t) = (11'/&10) esf4

Although the rotational features in "0 are not as strik-

t Work performed under the auspices of the U.S. Atomic
Energy Commission.

'E. B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev.
133B, 1421 (1964); 133B, 1.434 (1964).

'S. Gorodetzky, P. Mennarth, W. Benenson, P. Chevallier,
and F. Scheibling, J. Phys. 24, 887 (1963).' J.D. Larson and R. H. Spear, Nucl. Phys. 56, 497 (1964).

ing as in the case of heavy deformed nuclei of the rare-
earth region, the interpretation of its experimental data
in terms of a rotating deformed intrinsic state is very
tempting.

During the last decade the Hartree-Fock (HF)
method has been successfully applied to calculate in-
trinsic states of the deformed nuclei in the 2s-1d shell. 4

The application of this method to calculate intrinsic
states in "0 therefore seems desirable. A number of
HF calculations has already been performed" in "0,
and an analysis of the results of these calculations
leads to the important conclusion that the intrinsic
state of the rotati'onal band starting at 6.0S MeV is

'G. Ripka, Advan. Phys. 1, 183 (1968), and all references
mentioned therein.' W. H. Bassichis and G. Ripka, Phys. Letters IS, 320 (1965).

G. J. Stephenson, Jr., and M. K. Banerjee, Phys. Letters 24B,
209 (1966);M. K. Banerjee, C.A. Levinson, and G.J.Stephenson,
Jr., Phys. Rev. 178, 1709 (1969).


