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Both a static and a momentum-dependent potential are derived from one-meson-exchange Born
amplitudes, and are adjusted to fit (i) the deuteron binding energy and quadrupole moment, (ii) S, I',
and D partial waves from 25 to 310 MeV, and (iii) the binding energy and saturation property of nuclear
matter. This is possible through a different form of the central and tensor potentials which has not been
used previously to calculate problems (i), (ii), and (iii) above. We find the o meson unsuitable to describe
the two-pion-exchange region in that a potential with meson parameters common to all partial waves is
not achieved.

I. INTRODUCTION

A. Purpose

physics of the two-pion-exchange region [5(tie) ') r)
5(2ttc) ', where ttcs=0. 135 BeVj has not yet been
established.

t 4HE main purpose of this paper is to present a..nucleon-nucleon potential which describes prop-
erties of (i) the deuteron (binding energy and quad-
rupole moment), (ii) nucleon-nucleon scattering (repre-
sented by data at 25-, 50-, 95-, 150-, 210-, and 310-MeV
incident laboratory energy ), and (iii) nuclear matter,
as described by Brueckner and Masterson' (binding
energy and saturation property at internucleon separa-
tions appropriate to infinite nuclear matter) . We show

why these three problems are suitable to test the shape
of this potential in the nonrelativistic region Lhere de-

6ned for r)5(rrtc) ', where risc'=0. 938 BeVj. We
present detailed calculations giving a new functional
form of the coupled 'S~-'D~ partial-wave potentials
which enables us to achieve agreement with the ex-
perimental data of problems (i), (ii), and (iii) above.
This is done by using a momentum-dependent potential
derived from a nonrelativistic reduction of one-boson-
exchange Feynman amplitudes for nucleon-nucleon
scattering. We show that only the gross structure of
the momentum dependence need be included to obtain
this agreement by obtaining similar results with a static
potential. We further show why we are unable to obtain
a nucleon-nucleon potential which would be defined as
a Born amplitude before a partial-wave reduction is
made. That is, our potential is really a set of potentials,
each defined in a given partial wave. We present cal-
culations which strongly suggest this is because the

B.Background

In this paper, we are concerned with obtaining an
on-energy-shell nonrelativistic potential to be used in
Schrodinger and in Lippmann-Schwinger equations.
This potential contains as much meson-baryon physics
in the form of one-boson exchanges as we are capable of
introducing into detailed calculations of the three
problems (i), (ii), and. (iii) above. Important progress
has been made by Blankenbecler and Sugar, ' who have
emphasized a covariant method of reducing four-
dimensional relativistic scalar potentials and Green's
functions, as used to solve Bethe-Salpeter-type equa-
tions, to their nonrelativistic three-dimensional counter-
parts, as used to solve Lippmann-Schwinger-type equa-
tions. Their most important contribution pertinent to
this work is to give a formalism capable of including
higher-order relativistic corrections arising from nu-

cleon negative-energy states, and from kinematic mo-
mentum-dependence factors of the nonrelativistic
scattering amplitude.

Because the mathematical structure of these one-
boson-exchange potentials is rather simple, we feel it
is worthwhile to use such interactions in the coordinate
r-space Schrodinger representation. One confusion that
can arise concerns the difference between energy and
momentum dependence. In both the Born approxima-
tion and in the asymptotic, large-r region in the coordi-
nate space representation, the two are of course equiv-
alent. This was noted by Wong, who suggested that the
nucleon-nucleon potential be defined by the second-
order I'eynman amplitude for nucleon-nucleon scatter-
ing. 4 We now emphasize the difference in interpretation
of the potential in the coordinate space and in the
asymptotic momentum-space scattering formalisms;
we also spell out what we mean when we state that
problems (i), (ii), and (iii) above are solved eortsisterttly

when using these potentials in coordinate space.
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NUCLEAR FORCES AND NUCLEAR ENERGETICS ii3

For two nucleons of relative momenta k, elastically
scattering into states of relative momenta k'(k' = k"),
the (generally) nonlocal, nonrelativistic potential is de-
6ned by

and one identifies

g', '=(q'"—q") ',

V(r, r') = (2zr) ' f d'k d'k' exp(zk' r') M(k, k')

X exp( —zk r), (1.1) V, , = f d'rd'r'x;*(r') V(r, r') x,(r), (1.9)

where M(k, k') is the invariant amplitude multiplied
by m(m' + k') '~'. Application of the unitarity con-
dition to the scattering matrix, or demanding invariance
when calculating the diGerential cross section, dictates
that

)relativistic transition amplitude7: Linvariant
arnplitude7: Lnonrelativistic transition

(potential) amplitude7

~m '(m'+ k')"':1:m(m'+ k') "'.
These factors give rise to what is popularly called
"minimal relativity. " There are actually five such in-

dependent invariant amplitudes for elastic nucleon-
nucleon scattering4 which can be conveniently trans-
formed into coordinate-space potentials for use in
Schrodinger s equation after a partial-wave reduction'
(see NF-Sec. II and NF-Appendix B). In coordinate
space, a convenient set is Vc(central), Vr(tensor)
Vr, s(spin orbit), V, (spin spin), and V ~(spin rnomen-

tum) .
This potential is unitarized via Schrodinger s equa-

tion:
(E k'/m—)g~s(r) = f d'r'V(r, r')Pg(r'), (1.2)

where k'= —O'V„' and E is the total nonrelativistic
energy of the two nucleons. Writing E = q'/m, Eq.
(1.2) may be rewritten

(V '+q')P, (r) =m f d'r' (Vr, r')P, (r'). (1.3)

Denoting the solution to Eq. (1.3) by x,(r) when

V(r, r') =0, and denoting G&(r, r') as the Green's-
function solution to

(v '+q') G (r, r') =b(r-r'), (1.4)

G&(r, r') may be written

G,(, ') = f 'q"x' *( ') x' ( )/(q' —q"') ( . )

The I.ippmann-Schwinger integral equation may then
be written for Pz(r):

f,(r) =x,(r)+m f d'r'G'(r, r') d'r" V(r', r")p, (r").
(1.6)

Multiplying on the left-hand side of Eq. (1.6) by
f d'r"'xz *(r"')V(r, r'"), simplifying, and comparing
the result with the momentum-space equation, one
obtains

T, , = V, , + (principal value)m

Xf d'q"Vq, q gq q Tq. ,q, (1.7)
'L. lngber, Phys. Rev. 1'74, 1250 (1968), referred to as NF

in this paper.

where q' and q' are now the asymptotic momentum-
squared. and energy variables of Eq. (1.7); in Eq. (1.1),
we defined V(r, r') as the Fourier transforms with
respect to k and k' which were momentum variables.
Ke consider the following two special cases:

Case 1. If M(k, k') =Mz(k —k'), then V(r, r') =
Vz(r') 8(r' —r), and a static, local potential is obtained.

Case Z. If 3E(k, k') =Mz(k —k'; k'=k"), where Mz
is expressed as a polynomial in k', then V(r, r') =
V, (r', V, ) 8(r', —r), and a momentum-dependent local
potential is obtained.

In a previous paper by one of us, 5 calculations of
problems (ii) and (iii) above were done using mo-
mentum-dependent potentials as in case 2. To accom-
plish this, expansions of factors like m'(m' + k') ' were
carried out to order k'(m) '. The same basic potentials
for the mesons considered in NF-Appendix A (zr, 0, rz,

p, co, and y) were used here, except for the differences
to be stated.

C. Outline

The present work was initiated because of the justih-
able criticism that although NF was successful in
calculating the correct binding energy of nuclear matter,
that work did not attempt to use the deuteron problem,
(i) above, to constrain the nucleon-nucleon interaction.
In Sec. II, a description of the three physics problems
as included in these calculations is given. In Sec. III,
the details of these calculations are given, using both
the momentum-dependent potential and a static po-
tential with a similar functional form. These results are
compared to those obtained using another current
popular potential. Here it is shown how the extra bind-

ing energy in nuclear matter is achieved as a result of
a diferent ratio of the central-to-tensor potentials than
has previously been used. It is shown how this new ratio
can be maintained with a static potential, and similar
results for the binding energy of nuclear matter are
obtained. Examination of the regions of sensitivity of
the three problems (i), (ii), and (iii) above shows why
the binding energy of nuclear matter is so sensitive to
the binding energy of the deuteron. In Sec. IU, the role
of the unobserved o- meson at ~400 MeV is found
unsuitable to describe the two-pion region for which
it was created to simulate. In the conclusion in Sec. V,
we summarize the importance of recent calculations in
the two-pion region in light of these calculations.
Atomic units (S=c=1) will be used throughout this

paper, unless explicitly written otherwise.
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where j& and h& are spherical Bessel and Hankel func-
tions of order /, respectively. The quantity r( (r&) is the
lesser (greater) of r and r', y=( —oue)'Is nz=0.938
BeV/c', e= —2.22452 MeV. The function VB is the
5-state potential as published in NF, and similarly,

10 - -O.l—

FIG. 1. Contribution of each meson to the static part of the
interaction potential (BeV) versus r(BeV/Ac) ' in the 3' state.
Parameters are from the deuteron + S1+3Dj+e "static" fit.
The contribution of the mixed tensor part from p-meson exchange
is indicated by (Pips)'Is. I See NF-Eq. (2.4) for definitions oi
gpss and gpss. g
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II. DEUTERON, PHASE SHIFTS, AND NUCLEAR-
MATTER COMPUTATIONS

A. Problem (i)—Deuteron
-O, l—

I

~pl t (0 V(pl) 0002 j

As outlined in NF-Sec. V, the coupled 'S~- and 'Dj-
state wave functions were calculated by solving matrix
equations: the integral equations satisfied by I and
m. The 5 and D state radial components of the deu-

04-
CORE= 0
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10- -02-
FIG. 3. Contribution of each meson to the static part of the

interaction potential (BeV) versus r(BeV/Ac) ' in the 'So state.
Parameters from the 'So momentum-dependent fit.

0.06—

i0 (2.2a)

Vp and V~ are the tensor and D-state potentials, re-
spectively. We approximate the compact kernels of the
integrals by matrices and u(r) and w (r) by column vec-
tors u, and w„. Then Eq. (2.1) can be written

Q E„,'u„.=0 for all r

-0.06-
0.002—

and
ZV& =Z i™»r N„i,1Z (2.2b)

-0.002-

0.2-
ALL CONTR IBUTIONS

where E~ and E"are easily obtained by approximating
Eq. (2.1) as a matrix equation. This can be seen as
follows. Consider a system of P-coupled matrix equa-
tions:

-02-

FIG. 2. Contribution of each meson to the static part of the
interaction potential (BeV) versus r(BeV/A, c) ' for the tensor
part of the 'S1-'.D& system.

E
)'

(2.3)
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fz 't
z=l

&Z")

(8 b)
(24)

8»)
where Z and b are column vectors (of e vectors) of
length p —1 and b is a row vector (of m vectors) of
length p —1, all gotten from Eq. (2.3); 8 is a block
matrix (of NXN matrices) of dimension (P—1)X(P—1).
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Fro. 4. Contribution of each meson to the static part of.the inter-
action potential (BeV) versus r {BeV/Ac) ' in the 'Pp state.

Then a solution for these equations is

$1—8»—b(1—8) 'b7Z"=0

Z= (1—8) 'bZ'

where (1—8) ' is a block matrix of dimension (p—1) X
(p —1) such that

where each Z' is itself a vector of length e, gotten by
approximating the wave function Z'(r) by a set of e
discrete points, Z„'. Each entry 8'& is accordingly a finite
nXe matrix which approximates the (ij) kernel of the
coupled integral equations, as in Eq. (2.1) where p=2.
The kernel consists of the product of the Green's-func-
tion matrix and the potential matrix. Then Eq. (2.3)
can be further written

f

1.00.9 1.1 1.2

&p (FERM1Sj

FIG. 5. Full binding energy versus rp calculated using the Reid
potential.

from which the other eigenvectors included in Z may be
solved for using Eq. (2.5b). This can be done after the
determinant of the matrix of Eq. (2.5a) has been ad-
justed to be small enough so that the eigenvector Z& is
finite Lsee Eq. (2.8) 7.

Equation (2.2a) is a mathematical statement of the
eigenvalue condition necessary to solve the bound-state
deuteron problem. The r-coupling constant was varied
to satisfy (2.2a) by demanding that

(2.7)

/The coupling constants of mesons considered here are
defined in NF-Eqs. (2.1)-(2.5) in the phenomenological
I.agrangians which couple these mesons to the nu-
cleons. 7 Finite values of N,„numerically consistent, as
explained below, with larger and oner meshes were
found to be consistent with

det
l
E'(g,' at minimum determinant)

1

&10 s det
l
Er(g,' at "average" determinant) l.

(2.8)

The eigenvalue condition was satisfied for each value
of another parameter, taken to be the m-coupling con-
stant g ', which was varied between 13.5 and 15.0. In
this manner, it was possible to fit the quadrupole mo-
ment and the binding energy of the deuteron; the eigen-
functions and quadrupole moment were solved for as

(1—8) (1—8) '= I, (2.6)

where I is a block matrix of (p —1) identity matrices
along the diagonal. Sets of p-coupled inhomogeneous
eXe matrix equations similar to Eqs. (2.5) can be
solved for the p-coupled channels of the corresponding
scattering and nuclear matter problems. The momen-
tum-space equations are similarly treated.

The matrices Xi and Eir of Eq. (2.2) can now be
read off from Eqs. (2.5) for the case being considered,
when p=2. As shown in NF-Eq. (5.3), a reduced
(n 1) X (n —1) ma—trix equation using the NX e entries
of the matrix in square brackets of Eq. (2.5a) allows
an easy numerical solution for the eigenvector Z~,

-17-

CK
UJ

LU

~ -18—
C)

CQ

-19—

0.9
e

l.0
o ~FERM1S

1.2

Fxo. 6. Full binding energy versus rp calculated using the
momentum-dependent potential for the 5 and 3D1 states. A static
potential {Reid) is used for the remaining states.
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described in NF-Eqs. (5.3)—(5.5). A minimum ac-
curacy of 2% of the observed. binding energy of the
deuteron was demanded and our numerical accuracy
was within this error. More accuracy just affected the
third and fourths ignificant 6gures of the parameters, '

this did not appreciably affect the phase-shift cal-
culation or the nuclear-matter calculation, which itself
has larger errors due to the approximations of Brueckner
and Masterson. 2 This is no surprise as the deuteron
binding energy is obtained as a cancellation of potential
and kinetic energy terms, each a full order of mag-
nitude larger than the resultant binding energy, as
explained in Sec. III D.

B. Problem (ii)—Scattering Phase Shifts

Data at incident laboratory energies of 25, 50, 95,
142, 210, and 310 MeV ' were used to fit the calculated
phase shifts 8. The function f minimized in the 6t was

f=g [8~(expt) —8;(calc) j'/[expt error in 8,]',
i =expt points. (2.9)

Only for numerical expediency, the constraints of the
full error matrix were not included in this fit. In Ref. 1,
note the controversy over e&, the coupling parameter
of the coupled 'S~-'D~ states. The large experimental
error in ez allows the sort of flexibility in the C/T ratio
at all energies, as discussed in Sec. III C.

C. Problem (iii)—Nuclear Matter

The same computational scheme, following Brueckner
and Masterson, 2 as that reported in NF-Sec. IV was
used here. Again, the Green's function was written as
the sum of a simple function and an integral containing
the exclusion-principle correction. This correction was
found to be necessary only for the S state. The Green's
function used was

G&(r, r') = ah&(iar&) j&(iar&)

+ (mm) ' dq"q"j &(q"r)j &(q"r')

X (Q(P, q")[&(q)—~*(q")3 '—[&(q)—q"'/(2~)7 'I.
(2.10)

Here a=[—2m'(q) j'~', where E(q) is the energy of
a nucleon within the Fermi sea of nucleons in nuclear
matter, commonly called a "hole."The quantity E*(q")
is the energy of a particle energy state outside of this
Fermi sea (i.e., q")qr, qF is the Fermi momentum
bounding the Fermi sea) . The exclusion-principle func-
tion Q(p, q") insures that the holes can scatter only
to particle states outside the Fermi 'sea. The notation
r& and r& and the functions j&, h& are as defined in Kq.
(2.1). The energy denominators in the Green's func-
tions for particles are shifted oG the energy shell. '
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TABS.x II. Nuclear-matter binding-energy data for the Reid
potential tabulated as a function of ro, the average nucleon spac-
ing. In this and the following two tables, when partial-wave
contributions are given, these are contributions to the single-
particle potential energy; the average kinetic energy 0.6qr'/
(2') is not included. The Pauli exclusion principle is included in
the S states. The partial-wave contributions are computed using
the self-consistent (hole) spectrum from the full binding cal-
culation.

Contributing partial waves (F}
Energy
(Mev)

Full binding energy 0.95
1.0
l. 12
1.25

—11.87
—12.82
—12.59
—11.18

At higher particle energies, corresponding to mo-
menta above several Fermi momenta, higher-order den-
sity effects embodied in three-particle scatterings
modify the particle-state energy spectrum. The results
of Bethe and Day'. are that these high-energy particle
states should be labeled by simple kinetic energies, and
that the states just above the Fermi sea should pre-
sumably be calculated self-consistently. Ke show in
Sec. III A Z that the contribution to the binding energy
of the two-body part of the nuclear-matter calculation
is insensitive to the energy spectrum just above the
Fermi sea. The contribution of the three-body contribu-
tion is found to be less than 1 MeV. 6 Ke have also
not included effects of three-particle potentials which
can give about 2-MeV additional binding. 7

D. Numerical Checks

The scattering 'So state was solved using the
Schrodinger differential equation as well as the
I.ippmann-Schwinger integral equation in coordinate
space. This tested the matrix inversion method. The
coupled 'S~-'D~ state code with the tensor force set
equal to zero and with the 'Sq-state potential set equal

TABLE III. Nuclear-matter binding-energy data computed
with momentum-dependent potential for the S and 'D~ states.
A static potential (Reid} is used for the remaining states. See
Table II.

Contributing partial waves
rp

(F)
Energy
(MeV)

Full binding energy

Full binding energy with particle
spectrum, Z*{q)=q'/{2m)

'Sg+'D1

3S

0.90
0.94
1.00
1.12

0.87
0.90
1.0
1.12

0.94

0.94

0.94

—18.50
—18.80
—18.33
—16.72

—18.26
—18.73
—18.18
—16.09

—19.45

—19.27

—19.75

to the 'So-state potential gave the same wave functions
for the 'So state; this provided a limited check on the
coupled-equations code. In addition, the Reid soft-core
potential was used to calculate the properties of the
deuteron, the phase shifts, and the binding energy of
nuclear matter. Complete agreement was obtained be-
tween these calculations and Reid's published results.
The mesh used in all calculations with the meson-
exchange potential was determined by requiring the
associated Compton wavelength of the dominant meson,
and that of the associated Green's function of problems
(i), (ii), and (iii) above, be spanned by several points
for use with Simpson's rule. Simpson's rule was used
because of the simplicity in treating the step-function
part of the potential arising with momentum-dependent
potentials (see NF-Sec. V 3). Each calculation was
checked as to the best minimum number of mesh points
(31), and as to the smallest end point L35 Bevj(5c) j
which was necessary for the deuteron calculation.

Full binding energy with particle
spectrum, E*(g}=q'/(2~v)

0.95
1.0
1.12

—12.42
—12.84
—12.34

III. POTENTIALS

A. Momentum-Dependent and Reid Potentials

'Sl.+'D~ 0.95
1.00
1.12
1.25

0.95
1.00
1.12

—14.95
—15.24
—14.79
—13.44

—17.59
—17.43
—16.22

lS 1.0 —18.49

B. D. Day, Rev. Mod. Phys. 39, 719 (1967); R. Rajaramann
and H. A. Bethe, ibid. 39, 745 (1967); B. H. Brandow ibid. 39,
771 (1967).

7G. K. Brown and A. M. Green, in Three-Body Forces in
Nuclear Matter (to be published).

The momentum-dependent potentials used in this
work did differ slightly from the potentials used in NF.
The meson contributions were the same as in NF and
the momentum expansion and dependence were treated
exactly as outlined in NF-Sec. II, but the small-r region
within r ( 5(tnc) ' was treated differently: Examina-
tion of NF shows that delicate adjustments of the very
sensitive momentum-dependent relativistic region Lhere
defined in coordinate space as belonging to r(S(mc)
was instrumental in getting a simultaneous fit to the
scattering data in S, I', and D waves with parameters
common to all these partial waves.

' R. V. Reid, Ann. Phys. {N.Y.) 50, 411 {1968).
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TABLE IV. Nuclear-matter binding-energy data computed with
the static part of the meson-exchange potential in the 5 and
3D1 states. A static potential (Reid) is used for the remaining
states. See Table II.

Contributing partial wave
Energy
|,'Me V}

Full binding energy 0.94
1.00
1.12

—17.19
—17.50
—16.3

Full binding energy with particle
spectrum, E*(q) =q'/(2m)

0.94
1.00
1.12

—17.38
—17.40
—15.99

1.0

1.0

1.0

—15.92

—18.32

—20.36

Within this relativistic region, by virtue of solving
Schrodinger's equation, we have already professed
complete ignorance of the physics relating to processes
where r(5(mc) ' and/or where the magnitude of the
potential energy is greater than that of the kinetic
energy. If such calculations as we perform here are to
make sense, they must be independent of the structure
of the cutoffs and physics of this region. Therefore, it
was of interest to try a diferent functional form for
the potential in the relativistic region. More precisely,
if these calculations can be sensibly formulated by
nonrelativistic Schrodinger s equations, then the rel-
ativistic region should at least be shape-independent,
or at most dependent on two parameters corresponding
to the depth and range of the potential in this region.
Therefore, a Gaussian core was added of the form

ggpre exp} (s1gr) (3.1)

The rest of the potential was cut off by other Gaussians
for the static and momentum-dependent functions:

tl (static) ~ l 1—exp( —(m, r) 'j }ll (static) (3.2)

these cutoffs. The high-mass Feynman-type regulariza-
tions used to cut oG the potentials in NF-Sec. IV were
retained to prevent still persistent deep sharp dips in
the potentials due to the short range of the Gaussian
cutouts. Table I gives the final parameters necessary to
obtain the indicated fits. Notice we calculated a 4.6%
D state for the deuteron. The 5, P, and D waves were
separately fitted to give the same value of the function
f, de6ned in Eq. (2.9), as the Reid potential. s Figures
1—4 give plots of the contributions of individual mesons
to those parts of the '5~, tensor, '50, and 'Po potentials
which are expressed as (b sd—'h)/dr') in Eq. (3.4) .

Z. Nuclear 3fatter

The 'So, P, and D waves for this potential gave the
same contributions, within an MeV, to the nuclear-
matter binding energy as with the Reid potential. We
therefore confine most of the discussion to the coupled
'5~-'D~ state in order to further discuss differences
between this and previous nucleon-nucleon potentials.
Table II gives the results of our calculations using the
Reid potential, broken down to the '5~-'Di, 'S~ alone
(with the tensor force set equal to zero), and to the
'5O states. A static 'D3 potential, appropriately htted to
the scattering data, was supplemented when using the
Reid potential. Figure 5 gives the saturation curve
(binding energy per particle versus r, , the equilibrium
distance) for the self-consistent (particle states and
holes) nuclear-matter calculation, as outlined in NF-
Sec. III, using the Reid potential.

Table III gives the breakdown by partial wave for
the contributions to the binding energy for the mo-
mentum-dependent potential, and Fig. 6 gives the
saturation curve using the momentum-dependent po-
tential for the singlet and triplet 5 states; the Reid
potential was used for the P and D states. Figure 7
gives the saturation curve using a self-consistent energy
spectrum for the holes only in the exclusion-principle
integral in Eq. (2.10); a free kinetic-energy spectrum

tn (momentum) —+l 1—exp) —(m„r) 'j }tu (momentum) .

(3 3)

The functions 'o and g contribute to the total potential
V(total), in the form

V(total) = (ll —-' ' d/ tur'd) —(din/dr) (d/dr) tn(d'/dr') . —

(3 4)

1. Scattering arId DeuterorI, Fit
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We left some flexibility in the ranges of the cutoGs by
parametrizing m„m„and m in Eqs. (3.1)—(3.3) in
order to see how sensitive the potential would be to

Fxo. 7. Full binding energy versus ro calculated using the
momentum-dependent potential for the S and 'D1 states; a static
potential (Reid) is used for the remaining states. The particle
spectrum E*(q) is set equal to q'/2m.
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was used for the intermediate particle states. It is to
be noted that there is little diGerence in the value and
position of the binding energy at saturation between
Figs. 6 and 7, apparently contrary to Masterson, ' who
states that consistency must be included for the particle
states if saturation is to be achieved. The point is that
after a self-consistent hole spectrum giving saturation
is achieved, thee their results are insensitive to the
particle-state energy spectrum.

3. Cormporisots toit& XF
Although a large binding energy per particle in

nuclear matter was achieved in this work (—18.8 MeV)
as in NF (—14.6 MeV), rs dropped from 1.15 F in NF
to 0.95 F here. Also, decreasing the sensitivity of the
cutoffs in the relativistic region and demanding a deu-
teron 6t did shift the values of the other meson-coupling
parameters, especially that of the o meson (see NF-
Sec. II B). More will be said about this below.

2.0

~ 1.0—

0—

-1.00 0. 1

q(BeV/cI
0.2 03

Fio. 9. Central-to-tensor ratio C/T versus q. Curves are
computed from the three types of potentials, momentum-de-
pendent and static meson-exchange potential, and the Reid
potential. The nuclear-matter ratios are evaluated at the average
particle separation ro nearest the saturation point for the cor-
responding potential.

3.Static Potential

1. Scatterin red Demteror/ Fit

In Sec. III A, we modified the momentum-dependent
potential of NF to allow the nonrelativistic region to
exhibit shape independence, i.e., to depend just on the
range and depth of the potential in this region. We
tested this approach even further by investigating the
minima/ important contributions of the momentum
dependence. We examined the momentum-dependent
potential and attempted to And a static function which
would resemble the shape of the momentum-dependent
potential Fig. 8. We found that only small adjustments
of parameters were necessary to fit the deuteron and
phase-shift data even if we kept the static part of
Eq. (3.4), obtained by dropping the last two terms.
The reason for this is discussed in Sec. III 3 3. The
bottom half of Table I gives the resulting parameters
using the static potential. Again note that we also obtain
a small percent D state for the deuteron, at 5.5%.

—15

UJ

LU

~ -17

CKI

Z. Euclear Matter

We obtain the same binding energy per particle using
the static potential as with the momentum-dependent
potential. This shows that the momentum dependence
may also be treated in various phenomenological frac-
tional forms, as its major contribution is in the term
——'d'tn/dr' of Eq (3.4). In Sec. III C, we discuss why
we still get about 5 MeU more binding energy than other
investigators using other potentials have previously ob-
tained.

3. Seesilieity of MorrIemturjs DePeederrce

There exists some change in the parameters obtained
with the static potential versus those obtained with
the momentum-dependent potential. Also, the shape
of the saturation curve (compressibility) of the nuclear-
matter calculation is obviously different. It is easy to
understand why the saturation properties show the
largest sensitivity to the momentum dependence: The
operator d/dr' in the potential of the deuteron, Eq. (2.1),
enters similarly in the nuclear-matter problem. The
principal difference in the nuclear-matter equation
)see NF-Eq. (4.6)j is that the first matrix factor of
Eq. (2.1) now contains the Green's function as de-
scribed by Eq. (2.10) . Integration by parts allows us to
write Eq. (2.1) so that the (d/dr') operators, as in
Eq. (3.4), all operate on the Green's functions. Then
it is straightforward to see that

d/dr'~crgdG~(r, r') /dr'$/G~(r, r'),

09 1.0 I. 1

ro(FERMlS)

1.2

Pro. 8. Pull binding energy versus ro calculated using the
static part of the meson-exchange potential in the 8 and 3D~ states.
A static potential (Reid) is used for the remaining states.

K. S. Masterson, Jr., Ph. D. thesis, University of California
at".San Diego, 1963 (unpublished) .

where cr=(2mE(q)g'Is, as in Eq. (2.6). The quantity
Z(q) varies with the value of the Fermi momentum

q~ and gives rise to the density dependence which makes
the saturation properties of, nuclear matter more sensi-
tive to the momentum-dependent potentials, as com-
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pared to the static potentials. The similarities between
the two potentials arise from the fact that terms intro-
duced by expressions similar to Eq. (3.5) involve a
[in Eq. (2.6)], p [in Eq. (2.1)], or It [Eq. (1.5)7,
which are all &m in these calculations. In Sec. IV, we
also discuss the importance of the two-pion-exchange
region to the nucleon-nucleon interaction. We feel that
conclusions about the calculations presented here com-
paring our static and momentum-dependent potentials
are not complete until the physics as discussed in Sec. IV
is included in these types of calculations and analyses.

C. Central-to-Tensor Ratio

The 5-MeV extra binding in the coupled 'S~-3D~

partial waves from these momentum-dependent and
static potentials derived from meson-exchange am-

plitudes, as compared to the Reid and previous phe-
nomenological potentials, can best be understood by
comparing the diagonal to off-diagonal matrix elements.
That the ratio of these matrix elements has not been
accurately pinned down by the experimental data has
been noted for some time, and this effect on the nuclear-
matter binding energy was noticed by Brueckner and
Masterson. ' It appears that recent data at 24- and 25-
MeV incident laboratory scattering energies do more
accurately contain this parameter. These newer data
were not known at the time these calculations were
performed. Of course, the nuclear-matter binding energy
is also a number derived from experiments and this
number should also be fitted by a nucleon-nucleon inter-
action.

The coupled equations in the n channel for the scat-
tering problem may be formally written, similar to
Eq. (2.1) for the deuteron,

(u I (jo) (jotEp 0 )
(qr) '

I I
=

I I+mq r" «'
I

E) E0) E0 j )
(V, V) (u)

1(Vr') ', (36)
IV. V)E, )

dependent, and the static potentials for both the scatter-
ing and the nuclear-matter problems. Note that for
each potential, the slope of C/T is about the same for
the scattering and nuclear-matter problems. This is
so because the inhomogeneous terms, Bessel functions,
of the integral equations and the Bessel functions that
enter into the calculation of the nuclear-matter matrix
elements, as written in NF-Eq. (4.7), have the same
momentum variable q' as in the scattering case. On the
other hand, the conjugate variable of the nuclear-matter
Green's function in Eq. (2.10), cP, is relatively con-
stant over this same range and therefore does not affect
the ratio C/T as much as the Bessel functions. This is
true for various values of ro for each potential, as can
be seen in Fig. 10 on which is plotted the C/T ratio for
various values of ro for the momentum-dependent po-
tential.

At low energies, for the potentials we use here, the
plots in Fig. 9 are a result of

C/T = (+ large)/(+ small). (3.8)

However, for previous potentials, as the Reid potential,
the C/T ratio at low energies is a result of

C/T= (+ small)/( —large). (3.9)

K
r, -. O.~F

2.0—

Note that the sum of C+ T in Eq. (3.7) enters into the
calculation of the nuclear-bar 'S~ eigenphase shift, and
the phase shift has been fitted equally well for both C/T
ratios of Eqs. (3.8) and (3.9). This can be further
understood by comparing the actual potentials used by
Reid to our static potential which gives essentially the
same results as our momentum-dependent one. The
Reid central and tensor potentials are given in Figs.
11(a) and 11(b). The Reid potential shows a smaller

where j& and e& are spherical Bessel and Neumann func-
tions of order /, and the indices and arguments are now
obvious enough to be suppressed for clarity. The n-state
phase shift is the sum of two matrix elements which we
denote by C and T:

La)

1.0
CDI—

I

UJ

( jo, Vsu)+(jo Vr'w) =C+T, (3 7)
0—

respectively. The quantities C and T are, of course, func-
tions of energy, labeled by q'/m as in Eq. (1.2) for the
scattering problem, or by p2( —q~=nze)/nz as in Eq.
(2.1) for the deuteron problem, or by n'(q')/nz as in
Eq. (2.10) for the nuclear-matter problem. Figure 9
gives the ratio of C/T for the Reid, the momentum-

I I

O. l 0.2
q(Bett/c)

0.3

FIG. 10. Nuclear-matter central-to-tensor ratio C/ T versus q
computed with the momentum-dependent potential at various ro.
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central force than Fig. 1 shows for the static potential;
it also shows a larger tensor force than Fig. 2 shows for
the static potential.

A possible reason only one type of functional form
of central and tensor potential has persisted for over
25 yr ' is that ever since the use of one-pion-exchange
potentials for the Large-r part of the nucleon-nucleon
interaction, the tensor force has been cut off at about
0.4—0.5 F, allowing it to diverge towards the origin as

r ' until being cut off. It would be practically im-
possible for a local-search computer program to go from
one region of C/T as calculated previously, to another
as we calculate, without going through a region of
enormous values of the function f in Eq. (2.9). Better
data of ~~ at 25 MeV' will put further restrictions on
the C/T ratios which can be allowed for a nucleon-
nucleon potential.

D. Overview of Potential and Connection of Deuteron
and Nucleon-Matter Binding Energies

IOq
RELATI V I ST I C

REGION

NUCLEAR MATTER

ca 5-

) SCATTERING

BINDING ENERGY
OF DEUTERON

l I'{8eV/$c),
20

QUADRUPOLE
MOMENT

FIG. 12. Display of the general regions of sensitivity of nuclear
properties to the nuclear potential in coordinate space. The
qualitative shape of the static part of the S-state potential is
shown. The coordinate r is given in units of (BeV/Ac), where
the conversion factor from fermis to (BeV/hc} ' is 1 F=5.0686
(BeV/Ac) '.
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Examination of the associated Compton wavelengths
of the Green's functions used in nuclear matter $cr in
Eq. (2.10)), the scattering problem $q in Eq. (1.2) ),
and for the deuteron Lp of Eq. (2.1)j reveals the regions
of sensitivity of these various physics problems. This is
illustrated in Fig. 12. It is clear that a nucleon-nucleon
potential is dined throughout the nonrelativistic re-
gion only if it is capable of being in agreement with the
experimental data of these three physics problems.
The utility of this point of view is that we are able to
interpret simply the observation that the binding energy
of nuclear matter is very sensitive to the quadrupole
moment of the deuteron.

The quadrupole moment of the deuteron is sensitive

to the bulk cancellation of the repulsive and attractive
parts of the potential as this affects the normalization
of the deuteron wave functions, which effects the
asymptotic wave functions past the range of the po-
tential, which gives the major contribution to the
quadrupole moment. However, in also fitting the bind-
ing energy of the deuteron, this net potential of about
—20 MeV is determined and further added to the
similarly large kinetic energy to give the net value of
—2.22452 MeV.

The cancellation of the repulsive and attractive parts
of the potential is most directly influenced in the region
where the potential changes sign. This is precisely the
region most sensitive to the nuclear-rnatter calculation.
Further, the nuclear-matter calculation is also similar
to the deuteron-binding-energy calculation in that the
nuclear-matter binding energy is itself a number de-
termined by a delicate cancellation of two large num-
bers, the sum of the average kinetic and potential
energies.

IV. d MESON

l'(BeV/%c j
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FIG. 11. (a) Plot of the 'S1 Reid potential versus r. (b} Plot of the
Reid tensor potential versus r.

' H. A. Bethe, Phys. Rev. 57, 260 (1940).

If the physics of the one-meson-exchange amplitudes
provided a complete description of the nonrelativistic
nucleon-nucleon interaction, then one wouM expect
that all three of the above physics problems would be
described by a potential containing the masses and cou-
pling constants of the meson-nucleon system, inde-
pendemt of partial wave, and. within reasonable experi-
mental errors. Table I definitely shows this is not true.

We tentatively afFix "blame" for this condition on the
0- meson which we feel does not adequately describe the
physics of the two-pion-exchange region of this inter-
action. Indeed, even with the increased sensitivity
achieved with the low mass of the 0 meson, one cannot




