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Theory of the phonon side-jump contribution in anomalous Hall effect

Cong Xiao,1,* Ying Liu,2 Ming Xie,1 Shengyuan A. Yang,2 and Qian Niu1

1Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
2Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore

(Received 17 April 2019; revised manuscript received 9 June 2019; published 25 June 2019)

The role of electron-phonon scattering in finite-temperature anomalous Hall effect is still poorly understood. In
this work we present a Boltzmann theory for the side-jump contribution from electron-phonon scattering, which
is derived from the microscopic quantum mechanical theory. We show that the resulting phonon side-jump
conductivity generally approaches different limiting values in the high and low temperature limits, and hence
can exhibit strong temperature dependence in the intermediate temperature regime. Our theory is amenable to
ab initio treatment, which makes quantitative comparison between theoretical and experimental results possible.
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I. INTRODUCTION

Electron-phonon scattering plays a key role in electronic
transport in crystalline solids [1,2]. For longitudinal transport,
electron-phonon scattering limits the intrinsic mobility, and
its effect can now be well evaluated via a combination of the
first-principles band structure calculation and semiclassical
Boltzmann approach [3–10]. However, its role in the anoma-
lous Hall transport is much more subtle [11–18], and a clear
understanding has yet to be achieved.

Theoretical study of the anomalous Hall transport has been
mostly performed with static impurities [12]. In the weak
scattering regime, anomalous Hall conductivity is known
to have three important contributions arising from different
mechanisms in the semiclassical picture [19,20]: intrinsic
contribution from Berry curvatures in band structures [21,22],
side jump from electron coordinate shift during scattering
[23,24], and skew scattering from the asymmetric part of the
scattering rate [25,26]. Particularly, side jump is a very pecu-
liar contribution in that although it results from scattering, its
value is found to be independent of the impurity concentration
for static impurity scattering [12,23,27,28].

Will phonon scattering be any different? Typically, the
phonon energy scale (kBT ) is much less than the Fermi energy
εF , so the energy transfer in phonon scattering would be negli-
gible. It seems that the phonon side-jump contribution should
be similar to that of static impurities, and hence it should
be insensitive to temperature (T ) [23,29,30]. This speculation
has gained support from experiments performed at elevated
temperatures where the longitudinal resistivity shows linear
in T dependence [31–33]. Recently, researchers do realize
that the side jump from phonon and impurity scattering can
be different, thereby the change of their relative importance
with temperature can lead to T -dependent behavior [15,34].
However, the T independence of the phonon side-jump con-
tribution alone has not been doubted.

In a very recent work [35], it is realized that the phonon
side-jump contribution can indeed be T dependent. The key
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ingredient is the T -dependent phonon occupation number,
which makes the average momentum transfer, i.e., the ef-
fective range, of electron-phonon scattering T dependent.
By analogy with the recently revealed sensitivity of the
anomalous Hall conductivity to the scattering range of static
random impurities [36], one can understand qualitatively the
T dependence of phonon side jump.

However, we do not yet have a theory of phonon side
jump with quantitative predictive power, accounting for the
dynamical and inelastic nature of electron-phonon scatter-
ing. Here we develop such a theory within the semiclassical
Boltzmann framework. Surely one may choose to construct a
theory on a more fundamental level, with a fully quantum field
theoretical treatment, and there were indeed a few attempts
in the past [37,38]. Unfortunately, due to the complexity
in modeling phonon scattering, such transport theories are
extremely complicated, lacking physical transparency, and too
difficult to be combined with ab initio calculations for real
materials. In comparison, the semiclassical theory presented
here enjoys the advantages of being physically intuitive and
easily implementable with ab initio calculations. As an ap-
plication of this theory, we show that the phonon side-jump
conductivity generally saturates to two different values in low
and high temperature limits, and the strong T dependence
naturally appears in the temperature regime in-between.

Our paper is organized as follows. In Sec. II we review the
semiclassical theory for side jump from impurity scattering,
and propose the theory for phonon-induced side jump in a
heuristic way. In Sec. III we present a general argument for
the T dependence of phonon side-jump conductivity. This T
dependence is explicitly demonstrated in Sec. IV, by applying
our theory to study the concrete massive Dirac model. Finally,
in Sec. V we discuss the possible experimental scheme to con-
firm our result and conclude this work. The detailed derivation
of our theory is presented in the Appendices.

II. BOLTZMANN THEORY FOR PHONON SIDE JUMP

We start by reviewing the theory for side jump induced by
impurity scattering. The semiclassical nonequilibrium distri-
bution function f for electron wave packets in phase space is
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governed by the Boltzmann equation:

(∂t + ṙ · ∂r + k̇ · ∂k) f = Icoll[ f ]. (1)

With a uniform dc electric field and in the steady state, the
linearized equation takes the form of (set e = h̄ = 1)

E · v0
�∂ε�

f 0
� = −

∑
�′

[w�′� f�(1 − f�′ ) − (� ↔ �′)], (2a)

where the added subscript � ≡ nk labels the Bloch state,
v0

� = ∂kε� is the band velocity, f 0 is the equilibrium Fermi-
Dirac distribution function, the collision term Icoll[ f ] on the
right-hand side is explicitly written out with a scattering-out
term (� → �′) and a scattering-in term (�′ → �), and w is
the corresponding scattering rate. We may write f� = f 0

� +
δ f� = f 0

� + (−∂ε�
f 0
� )g�, where the second equality indicates

the fact that the nonequilibrium deviation should be around
the Fermi surface and g� is a smooth function of energy and
momentum. In the absence of side jump, using the principle of
detailed balance, namely, w�′� f 0

� (1 − f 0
�′ ) = w��′ f 0

�′ (1 − f 0
� ),

and keeping terms to linear order in E , one can show that
Eq. (2a) can be put into the following form for g�:

E · v0
� =

∑
�′

1 − f 0
�′

1 − f 0
�

w�′�(g� − g�′ ). (2b)

Here we emphasize that Eqs. (2a) and (2b) are valid for both
static (impurity) and dynamical (phonon) disorder. For static
impurities, the factor (1 − f 0

�′ )/(1 − f 0
� ) in Eq. (2b) (which

may be called the Pauli factor) becomes unity, and the result
reduces to the familiar one in textbooks.

Side jump refers to the coordinate shift of the electron wave
packet during scattering, for which Sinitsyn et al. have derived
a general expression [24]:

δr�′� = −δr��′ = A�′ − A� − (∂k + ∂k′ ) argV�′�, (3)

where A� = i〈u�|∂k|u�〉 is the Berry connection, |u〉 is the
periodic part of the Bloch state, and V�′� is the scattering
matrix element.

Due to this coordinate shift, the E field does a nonzero
work in scattering, which has to be accounted for in en-
ergy conservation [19]. For static impurity scattering, one
then has ε�′ = ε� + E · δr�′�. Consequently, the equilibrium
distribution no longer annihilates the collision term, because
f 0
� − f 0

�′ ≈ −∂ε�
f 0
� E · δr�′�, and from the Boltzmann equation,

this leads to an additional (anomalous) correction to the
distribution function: δ f a

� = (−∂ε�
f 0
� )ga

�, satisfying

E ·
∑
�′

w�′�δr�′� = −
∑
�′

w�′�
(
ga

� − ga
�′
)
. (4)

Thus, the out-of-equilibrium part of the distribution is

δ f� = δ f n
� + δ f a

� = (−∂ε�
f 0
�

)(
gn

� + ga
�

)
, (5)

where the terms with superscript n refer to the “normal”
contribution, satisfying Eq. (2b) without the side-jump effect.
Meanwhile, the side jump also corrects the electron velocity,
which becomes

v� = v0
� + vbc

� + v
sj
� . (6)

Here vbc
� = �� × E is the anomalous velocity induced by

Berry curvature �� = ∂k × A�, and

v
sj
� =

∑
�′

w�′�δr�′� (7)

is called the side-jump velocity. Applying the E field in the
x direction, then the intrinsic anomalous Hall current is given
by jin

AH =∑� f 0
� (vbc

� )y. The side-jump induced Hall current,
which is the focus of this paper, contains two terms to linear
order in E :

jsj
AH = jsj(1)

AH + jsj(2)
AH =

∑
�

δ f n
�

(
v

sj
�

)
y +

∑
�

δ f a
�

(
v0

�

)
y. (8)

Note that counting the order in relaxation time τ , δ f n ∼ τ ,
δ f a ∼ τ 0, v0 ∼ τ 0, and vsj ∼ τ−1, so both terms in jsj

AH are
on the order of τ 0. For static impurities, the side-jump con-
tribution is independent of the impurity density as well as the
scattering potential strength. The above semiclassical theory
was shown to be consistent with fully quantum mechanical
treatment for static impurities [20]. Particularly, the side-jump
velocity in Eq. (7) was found to correspond to the scattering-
induced band-off-diagonal elements of the out-of-equilibrium
density matrix [24,39,40].

Now let us turn to phonon scattering. In the following
we present a heuristic argument for the theory. First of all,
we note that Eqs. (2a) and (3) apply for dynamical disorder
like phonons as well. Like before, the side jump leads to an
additional work done by the E field, modifying the relation
between ε� and ε�′ , with

ε̃�′ = ε� + E · δr�′� ± ωq, (9)

where the last term indicates the absorption or emission of
a phonon with mode label q. Then the linearized Boltzmann
equation becomes (details in Appendix A)

E · v0
� =

∑
�′

1 − f 0(ε�′ )

1 − f 0(ε�)
w�′�(g� − g�′ + E · δr�′�), (10)

where ε�′ = ε� ± ωq. Subtracting Eq. (2b) from Eq. (10)
shows that the anomalous correction to the distribution due
to side jump satisfies the equation

E ·
∑
�′

1 − f 0
�′

1 − f 0
�

w�′�δr�′� = −
∑
�′

1 − f 0
�′

1 − f 0
�

w�′�
(
ga

� − ga
�′
)
.

(11)
Comparing Eq. (11) with Eq. (4) suggests that the proper
definition for the phonon side-jump velocity should be

v
sj
� =

∑
�′

1 − f 0
�′

1 − f 0
�

w�′�δr�′�. (12)

The above three equations are the main results of this paper.
Here the main difference between Eqs. (11) and (12) and
Eqs. (4) and (7) is the appearance of the Pauli factor, which,
as we have discussed before, reflects the dynamical character
of phonon scattering. For static impurity scattering, the Pauli
factor becomes unity, and the theory correctly recovers the fa-
miliar one. In metals the Pauli factor is important for acoustic
phonons in the low-T regime where ωq is of the order of kBT ,
thus the electronic occupancy f 0

� and f 0
�′ differ significantly.

Whereas in semiconductor low-dimensional electron systems
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with small Fermi energy, the Pauli factor is also important for
highly inelastic optical phonons [10].

With the new definition of the side-jump velocity in
Eq. (12) and with ga

� solved from Eq. (11), the side-jump
current will still be calculated with Eq. (8). This completes
our semiclassical theory for phonon side jump.

This theory, albeit seemingly simple and intuitive, is in fact
nontrivial. Its justification requires tedious derivation from
microscopic theories of coupled electron-phonon system. We
have demonstrated that the theory can be derived from two dif-
ferent fundamental approaches: the density matrix equation of
motion approach [41] and the Lyo-Holstein’s transport theory
[38,42]. The details are relegated to Appendices C and D.

III. TEMPERATURE DEPENDENCE
OF PHONON SIDE JUMP

As we have mentioned at the beginning, for kBT 
 εF , the
common belief is that the phonon side-jump Hall conductivity
σ

sj
AH (≡ jsj

AH/Ex ) should be independent of the strength of
disorder scattering (so its value remains the same even if the
disorder density approaches zero), and hence it should have
little T dependence. As an application of our theory, we shall
see that this naive conclusion is generally incorrect in the
case where side jump arises from spin-orbit-coupled Bloch
electrons scattered off phonons.

Consider the low-T limit, which is specified by T 
 TD,
where TD is the Debye temperature (note that in this discus-
sion, εF is always assumed to be the largest energy scale). For
such a case, the scattering is dominated by long wavelength
acoustic phonons, which are short ranged in momentum
space. Hence, the coordinate shift reduces to δr�′� ≈ �� ×
(k′ − k). From Eq. (11) we find that ga

� = E · (�� × k), whose
contribution to the Hall conductivity (corresponding to jsj(2)

AH )
is σ

sj(2)
AH = −∑� (�� × k)x∂ky f 0

� . Meanwhile, straightforward

calculation of jsj(1)
AH yields σ

sj(1)
AH =∑� (�� × k)y∂kx f 0

� . Thus,
the phonon side-jump Hall conductivity in the low-T limit can
be put into a compact form of

σ
sj
AH = −

∑
�

[
(�� × k) × ∂k f 0

�

]
z
. (13)

For two-dimensional systems, the Berry curvature has only
z-component �� = 	�ẑ, so the above result can be further
simplified as

σ
sj
AH =

∑
�

	� k · ∂k f 0
� . (14)

In the high-T limit with T � TD, we find that the major
T dependence comes from the scattering rate, which can be
approximated as

w�′� ≈ 4π |〈u�′ |u�〉|2
∣∣V o

k′k

∣∣2 kBT

ωq
δ(ε� − ε�′ ). (15)

Here we have written V�′� = V o
k′k〈u�′ |u�〉, with V o

k′k the plane-
wave part of the electron-phonon scattering matrix element,
and we have used the relation that Nq � (Nq + 1) � kBT/ωq

in the high-T limit, where Nq is the Bose-Einstein distribution
for the phonon mode q. Hence in the high-T limit, we have
gn ∼ T −1, vsj ∼ T , ga ∼ T 0, and thus σ

sj
AH should saturate to

a T -independent constant value. Although we cannot write
down a compact analytical expression for this limiting value
(because of the complicated model-dependent interband scat-
tering processes), it is clear that this value should generally
be different from the low-T limit value in Eq. (14). This
analysis demonstrates that the phonon side-jump conductivity
σ

sj
AH approaches different values in the low-T and high-T

limits, therefore pronounced T dependence must exist in the
intermediate range when the two limiting values differ by a
significant amount.

IV. APPLICATION TO A MASSIVE DIRAC MODEL

In this section we illustrate the above points by a con-
crete model calculation using our theory. We take the two-
dimensional massive Dirac model

H0 = v(kxσx + kyσy) + �σz, (16)

which is considered as the minimal model for studying
anomalous Hall effect. Here v and � are model parameters,
and the σ ’s are the Pauli matrices representing the two Dirac
bands. Recalling that we work under the condition kBT 

εF , hence, to proceed analytically, we neglect the phonon
energy in the scattering, such that k = k′ for the two electronic
states before and after scattering [1]. We consider the metallic
regime εF > � with low carrier density such that the Fermi
surface is much smaller than the size of the Brillouin zone.
Thus the Umklapp process does not occur. We assume the
scattering is dominated by acoustic phonons, and the electron-
phonon coupling can be described by the deformation poten-
tials (details in Appendix B). The coordinate shift for this
model can be found as

(δrk′k)y = − �v2

2(�2 + (vk)2)3/2

(
k′

x − kx
)

|〈uk′ |uk〉|2
. (17)

And straightforward calculation (see Appendix B for details)
based on our theory leads to

σ
sj
AH = 1

4π

�

εF

[
1 −

(
�

εF

)2
]
R(εF , T ), (18)

where the temperature dependence is dumped into the factor
R defined as R ≡ τ tr/τ sj, where τ tr is the transport relaxation
time with

(τ tr )−1 =
∑

k′

1 − f 0
k′

1 − f 0
k

wk′k(1 − cos φkk′ ), (19)

τ sj is defined as

(τ sj )−1 =
∑

k′

1 − f 0
k′

1 − f 0
k

wk′k

|〈uk′ |uk〉|2 (1 − cos φkk′ ), (20)

and φkk′ is the angle between k and k′. In the low-T and high-
T limits, we have respectively

R → 1 and R → 4[1 + 3(�/εF )2]−1. (21)

This demonstrates clearly that the phonon side-jump contri-
bution approaches different values in the low-T and high-T
limits. This behavior is illustrated in Fig. 1, where the T de-
pendence in the intermediate regime is obtained by assuming
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FIG. 1. Temperature dependence of the acoustic phonon limited
side-jump Hall conductivity (in units of e2/h) in the massive Dirac
model. Inset: T -dependent longitudinal resistivity ρ shown in the
log-log plot. ρBG is a characteristic resistivity defined from the
expression of ρ [9], whose value is not important here. Here TBG

is the Bloch-Gruneisen temperature (see the text), and we have set
εF = 2�.

isotropic Debye spectrum ωq = csq (cs is the sound velocity).
The T dependence of the phonon side-jump contribution
becomes apparent when T < TBG/2. Note that in the same
regime, one can show that the phonon-limited longitudinal
resistivity also departs from the linear-T scaling (see the inset
of Fig. 1). Here TBG = 2h̄cskF /kB is the Bloch-Gruneisen
temperature, which marks the lower boundary of the high-
T equipartition regime (ρ ∼ T ) in two-dimensional metallic
systems [9].

V. DISCUSSION AND CONCLUSION

We discuss the possible experimental scheme to confirm
our result. The d-band ferromagnetic transition metals such as
Fe and Co offer suitable platforms, because their band split-
tings are much larger than room temperature, and the Curie
temperatures are much higher than TD. It follows that the
intrinsic Berry-curvature contribution to the anomalous Hall
conductivity should be T insensitive up to room temperature.
In order to observe the electron-phonon dominated behavior
at lower temperatures (where ρ deviates from the linear-in-T
scaling), one needs to work with high-purity samples (the
resistance ratio should be at least 100), which are experimen-
tally accessible [2]. The skew scattering contribution due to
non-Gaussian impurity correlations should be first subtracted
from the data. This can be done by using the recently de-
veloped thin-film approach [15,43]. In this approach one can
limit the scattering of electrons to two main sources—the
interface roughness and phonons, and achieve independent
control of each one by tuning the film thickness and the
temperature [43]. The aforementioned skew scattering Hall
conductivity in this case is given by α0ρ0/ρ

2, where ρ0 is
the residual resistivity, and α0 is a system-specific param-
eter independent of film thickness that can be determined
by tuning film thickness in the low-T regime [15]. After
subtracting the skew scattering contribution, one can verify
the T dependence of the side-jump conductivity predicted
here. Quantitatively, one can further subtract the T -insensitive
intrinsic contribution obtained from the ab initio method [22],
and then compare the remaining to the phonon side-jump

Hall conductivity yielded by the ab initio Boltzmann approach
based on our result.

In conclusion, we have proposed a semiclassical Boltz-
mann theory for the phonon side-jump contribution in the
anomalous Hall effect. This intuitive theory has been derived
from microscopic quantum mechanical transport theories of
coupled electron-phonon systems. We demonstrate that the
phonon side-jump anomalous Hall conductivity can gener-
ally be temperature dependent, which disproves the previous
common belief that this contribution is T independent. The
possible experimental scheme to confirm our result has been
discussed. The proposed Boltzmann formalism can be easily
implementable with ab initio calculations, making quantita-
tive comparison between theoretical and experimental results
possible.
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APPENDIX A: HEURISTIC ARGUMENT FOR THE SIDE
JUMP IN THE BLOCH-BOLTZMANN EQUATION

In the presence of a dc weak uniform electric field E and
weak static disorder, the conventional Boltzmann equation
for charge carriers (charge e) in nonequilibrium steady state
reads [1]

eE · v0
�

(
−∂ f 0

�

∂ε�

)
=
∑
�′

(w�′� f� − w��′ f�′ ). (A1)

In the case of static disorder there is no room [39] for the
Pauli blocking factors (1 − f�′ ) and (1 − f�), which were
introduced into the collision term of the Boltzmann equation
phenomenologically by Bloch when studying phonon-limited
mobility in metals in order to ensure the equilibrium Fermi
distribution (rather than Bose or Boltzmann distributions) for
f 0
� [44]. In the case of dynamical disorder such as phonons,

the Bloch-Boltzmann equation takes the form of Eq. (2a),
where w�′� and w��′ are calculated in the quantum mechanical
perturbation theory. The collision term is considered only in
the linear response regime. To the lowest order in Born expan-
sion, the principle of microscopic detailed balance holds, as
can be directly verified for electron-phonon scattering. Thus
w��′ = w�′�eβ(ε�′ −ε� ), and the Bloch-Boltzmann equation reads

eE · v0
�

(
−∂ f 0

�

∂ε�

)
=
∑
�′

w�′�[ f�(1 − f�′ )

−eβ(ε�′ −ε� ) f�′ (1 − f�)]. (A2)

The argument about introducing the coordinate shift into
this equation is similar to that in the case of static disorder,
but is a little more involved because f�′ appears in both the
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scattering-in and scattering-out terms. In the scattering-out
term (� → �′) of Eq. (A2), the kinetic energy of an electron in
state �′ after scattering out of state � via absorbing (emitting)
a phonon is ε� ± h̄ωq + eE · δr�′�. In the scattering-in term

(�′ → �), the kinetic energy of an electron in state �′ before
scattering into state � via emitting (absorbing) a phonon
is ε� ± h̄ωq − eE · δr��′ . Thus in the linear response regime
(ε�′ = ε� ± h̄ωq), we have

∑
�′

w�′�[ f�(1 − f�′ ) − eβ(ε�′ −ε� ) f�′ (1 − f�)]

=
∑
�′

w�′�
{
[ f 0(ε�) + δ f�][1 − f 0(ε�′ + eE · δr�′�) − δ f�′] − eβ(ε�′ −ε� )[ f 0(ε�′ + eE · δr�′�) + δ f�′]

(
1 − f 0

� − δ f�
)}

=
∑
�′

w�′�{ f 0(ε�)[1 − f 0(ε�′ )] − eβ(ε�′ −ε� ) f 0(ε�′ )[1 − f 0(ε�)]} +
∑
�′

w�′�{− f 0(ε�) − eβ(ε�′ −ε� )[1 − f 0(ε�)]}∂ f 0

∂ε�′
eE · δr�′�

+
∑
�′

w�′�(δ f�[1 − f 0(ε�′ )] − f 0(ε�)δ f�′ + eβ(ε�′ −ε� ){ f 0(ε�′ )δ f� − δ f�′[1 − f 0(ε�)]}) + O(E2), (A3)

where δ f is the out-of-equilibrium distribution. On the right-hand side of the last equality the first term is zero, and other two
terms can be simplified, leading to the following modified Bloch-Boltzmann equation:

eE · v0
�

(
−∂ f 0

∂ε�

)
=
∑
�′

w�′�

[
δ f�

1 − f 0(ε�′ )

1 − f 0(ε�)
− δ f�′

f 0(ε�)

f 0(ε�′ )
− f 0(ε�)

f 0(ε�′ )

∂ f 0

∂ε�′
eE · δr�′�

]
. (A4)

By expressing δ f� = g�(− ∂ f 0

∂ε�
), we arrive at Eq. (10) in the

main text.

APPENDIX B: CALCULATION DETAILS IN THE 2D
MASSIVE DIRAC MODEL

In the two-dimensional massive Dirac model, 	k =
− �v2

2(�2+(vk)2 )3/2 is the Berry curvature in the positive band.
Thus the side-jump velocity and the anomalous distribution
are given by

v
sj
k,y = −	kkx

τ
sj
k

and ga
k = −eEx	kky

τ tr
k

τ
sj
k

. (B1)

By using the identity

1 − f 0(ε + ωq)

1 − f 0(ε)
N (ωq ) + 1 − f 0(ε − ωq)

1 − f 0(ε)
[N (ωq) + 1]

= f 0(ε − ωq) − f 0(ε + ωq)

f 0(ε)[1 − f 0(ε)]
N (ωq)[N (ωq) + 1], (B2)

the slight inelasticity of acoustic phonon scattering renders

1 − f 0
k′

1 − f 0
k

wk′k = 2π

h̄
|〈uk′ |uk〉|2

∣∣V o
k′k

∣∣2
× 2h̄ωq

kBT
Nq(Nq + 1)δ(εk − εk′ ), (B3)

where q = 2k sin 1
2φkk′ . Thus

τ tr
k

τ
sj
k

=
∫

dφkk′Wφkk′ (1 − cos φkk′ )∫
dφkk′ |〈uk′ |uk〉|2Wφkk′ (1 − cos φkk′ )

, (B4)

where

Wφkk′ = λ2kBT

(
h̄ωq

kBT

)2

Nq(Nq + 1), (B5)

and λ is the so-called electron-phonon coupling constant for
the deformation-potential treatment of the electron-phonon
coupling [9,45]: 2|V o

k′k|2/h̄ωq = λ2.
In the high-T regime W = λ2kBT is uniformly distributed

on the Fermi circle, and drops out of both the numerator and
denominator of τ tr

k /τ
sj
k , thus σ

sj
AH takes the same T -indep-

endent value similar to that due to scalar zero-range impuri-
ties. While at low temperatures the temperature dependence
of Nq influences the integrals in τ tr

k /τ
sj
k , and σ

sj
AH becomes

T dependent. In the low-T limit W/kBT is highly peaked
around φkk′ = 0 hence |〈uk′ |uk〉|2 → 1, τ tr

k /τ
sj
k → 1 and σ

sj
AH

coincides with that due to long-range scalar-impurities [46].

APPENDIX C: GENERALIZED BLOCH-BOLTZMANN
FORMALISM FROM THE DENSITY MATRIX APPROACH

To prove the validity of Eqs. (10)–(12) in the main text,
in the following two sections, we provide the microscopic
foundation for the Boltzmann formalism in weakly coupled
electron-phonon systems. First, the density-matrix equation-
of-motion approach [39,40] is applied to the many-particle
density matrix for the whole electron-phonon system [41].
The quantum Liouville equation is analyzed in the occupa-
tion number representation perturbatively with respect to the
coupling parameter. Aside from the usual assumption that the
phonon system remains approximately in thermal equilibrium
[1,42,44], a basic statistical assumption is needed, which is
analogous to the assumption of molecular chaos made in
deriving the classical Boltzmann equation from the classical
Liouville equation [47]. We also show that the side-jump con-
tribution is connected to the scattering-induced interband-
coherence responses in the microscopic transport theory, sim-
ilar to the case of static disorder [19,24]. This clearly goes
beyond the relaxation time treatment where the effect of
phonons is embodied only in an inelastic lifetime of electrons
[13].
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For discussing problems in a quantum many-particle sys-
tem, the second quantized formalism is a common starting
point. We introduce the notation Ã to denote the representation
of an operator Â in the second-quantized formalism. For a
single-particle operator, i.e., Â =∑i Âi where Âi depends
only on the dynamical variables of the ith carrier, we write
Ã =∑��′ A��′a†

�a�′ , where A��′ is the corresponding matrix
elements in the � representation, and a†

� and a� are the creation
and annihilation operators for the single-electron state |�〉.
The original version of the Kohn-Luttinger density-matrix
approach [39] rests on the existence of a single-electron
Hamiltonian which contains all the information in the case of
independent electrons interacting with static disorder. In the
case of dynamical disorder such as phonons and magnons, as
first pointed out by Argyres [41], one can apply the Kohn-
Luttinger treatment to the many-body density matrix in the
occupation number representation for the whole system. Such
a total Hamiltonian reads

H̃T = H̃e + H̃ ′ + H̃F + H̃s, (C1)

where H̃e =∑mm′ (Ĥe)mm′a†
mam′ is the electron Hamiltonian

in the absence of external electric fields and scattering, and
H̃F =∑mm′ (ĤF )mm′a†

mam′ is the external-electric-field pertur-
bation with ĤF = Ĥ1est (Ĥ1 = −eE · r̂) turned on adiabati-
cally from the remote past. The electric field is turned on much
more slowly than the scattering time (s → 0+) [39,48]. H̃s is
the Hamiltonian of the scattering system, and Ĥ ′ = λV̂ is the
interaction of electrons with the scattering system, where λ

is a dimensionless parameter used for analyzing the order in
the perturbative analysis and is set to 1 eventually. (Ĥ ′)mm′ is
still an operator in the Hilbert space of the scattering system.
In the occupation number representation {|nN〉}, H̃e|nN〉 =∑

� ε�n�|nN〉 = En|nN〉 and H̃s|nN〉 = EN |nN〉. Hereafter we
set EnN ≡ En + EN , n and N are the many-particle state in-
dices for the electron system and scattering system, respec-
tively. n̂� = a†

�a�, and its eigenvalue n� denotes the electron
number on the Bloch state marked by the index � with single-
electron eigenenergy ε�. In the linear response regime the total
many-particle density matrix reads

ρ̃T = ρ̃ + F̃ est , (C2)

where ρ̃ is the equilibrium many-particle density matrix for
the whole system, and F̃ is linear in the electric field. The
quantum Liouville equation

ih̄
∂

∂t
ρ̃T = [H̃T , ρ̃T ] (C3)

becomes ih̄sF̃ = [H̃0 + H̃s + H̃ ′, F̃ ] + [H̃1, ρ̃]. In the occu-
pation number representation {|nN〉} one has

(EnN − En′N ′ − ih̄s)F̃nN,n′N ′

=
∑
n′′N ′′

(F̃nN,n′′N ′′H̃ ′
n′′N ′′,n′N ′ − H̃ ′

nN,n′′N ′′ F̃n′′N ′′,n′N ′ ) + C̃nN,n′N ′ ,

(C4)

where C̃nN,n′N ′ ≡ [ρ̃, H̃1]nN,n′N ′ . Hereafter we sometimes use
the notation L = nN , L′ = n′N ′ to simplify expressions.

The linear response of an observable A is δA = Tr(F̃ Ã) =∑
LL′ F̃LL′ ÃL′L =∑L F̃LÃLL +∑′

LL′ F̃LL′ ÃL′L, where Tr de-
notes the trace operation in the occupation-number space, and

the notation
∑′ means that all the index equalities in the

summation are avoided. Here we first outline the main results
of the following detailed derivation. The linear response of the
velocity of electrons is

δv = Tr
(
F̃ ṽ
) =

∑
L

F̃LṽLL +
′∑

LL′
F̃LL′ ṽL′L. (C5)

To obtain F̃L and F̃LL′ in the weakly coupled system we make a
perturbative analysis of Eq. (C4) with respect to the coupling
parameter. The off-diagonal elements F̃LL′ can be expressed in
terms of the diagonal ones F̃L, resulting in an equation for F̃L.
Because by definition f 0

� =Tr(n̂�ρ̃ ) =∑L n�ρ̃L and

δ f� = Tr(n̂�F̃ ) =
∑

L

n�F̃L, (C6)

we derive the modified Bloch-Boltzmann equation (10) of the
main text based on the equation for F̃L. According to Eq. (C6)
one has ∑

L

F̃LṽLL =
∑

L

F̃L

∑
�

v0
�n� =

∑
�

δ f�v0
� . (C7)

Whereas
∑′

LL′ F̃LL′ ṽL′L is proven to yield the transport contri-
butions from the Berry-curvature anomalous velocity and the
side-jump velocity:

∑
LL′

F̃LL′ ṽL′L =
∑

�

f 0
� vbc

� +
∑

�

δ f n
�

[∑
�′

1 − f 0
�′

1 − f 0
�

w�′�δr�′�

]
,

(C8)

where δr�′� is given by Eq. (3) of the main text. We also show

that the side-jump velocity vsj
� =∑�′

1− f 0
�′

1− f 0
�

w�′�δr�′� arises

from scattering-induced interband coherence, so does the
anomalous distribution function ga

� [Eqs. (11) and (12)].

1. Perturbative analysis of the quantum Liouville equation

We split the quantum Liouville equation into diagonal and
off-diagonal parts in the |nN〉 representation:

(EnN + H̃ ′
nN − En′N ′ − H̃ ′

n′N ′ − ih̄s)F̃nN,n′N ′

=
′∑

n′′N ′′
(F̃nN,n′′N ′′H̃ ′

n′′N ′′,n′N ′ − H̃ ′
nN,n′′N ′′ F̃n′′N ′′,n′N ′ )

+ (F̃nN − F̃n′N ′ )H̃ ′
nN,n′N ′ + C̃nN,n′N ′, (C9)

for nN = n′N ′, and

−ih̄sF̃nN =
′∑

n′N ′
(F̃nN,n′N ′H̃ ′

n′N ′,nN − H̃ ′
nN,n′N ′ F̃n′N ′,nN ) + C̃nN .

(C10)

According to the spirit of the Boltzmann theory, the first-order
energy shift H̃ ′

nN is incorporated into the renormalization of
the band energy and henceforth neglected [39,40]. To solve
these two equations in the weak coupling regime we make the
standard order-by-order analysis with respect to the coupling
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parameter of the interaction with disorder:

F̃nN = F̃ (−2)
nN + F̃ (−1)

nN + F̃ (0)
nN + · · · ,

F̃nN,n′N ′ = F̃ (−1)
nN,n′N ′ + F̃ (0)

nN,n′N ′ + F̃ (1)
nN,n′N ′ + · · · , (C11)

C̃nN,n′N ′ = C̃(0)
nN,n′N ′ + C̃(1)

nN,n′N ′ + C̃(2)
nN,n′N ′ + · · · .

Hereafter the superscript (i) denotes the order in λ.
For Eq. (C9) one can obtain: in O(λ−1)

(EnN − En′N ′ − ih̄s)F̃ (−1)
nN,n′N ′ = [F̃ (−2)

nN − F̃ (−2)
n′N ′

]
H̃ ′

nN,n′N ′ ,

(C12)

in O(λ0)

[EnN − En′N ′ − ih̄s]F̃ (0)
nN,n′N ′

=
∑
n′′N ′′

′[
F̃ (−1)

nN,n′′N ′′H̃ ′
n′′N ′′,n′N ′ − H̃ ′

nN,n′′N ′′ F̃ (−1)
n′′N ′′,n′N ′

]
+ [F̃ (−1)

nN − F̃ (−1)
n′N ′

]
H̃ ′

nN,n′N ′ + C̃(0)
nN,n′N ′ , (C13)

in O(λ)

[EnN − En′N ′ − ih̄s]F̃ (1)
nN,n′N ′

=
∑
n′′N ′′

′[
F̃ (0)

nN,n′′N ′′H̃ ′
n′′N ′′,n′N ′ − H̃ ′

nN,n′′N ′′ F̃ (0)
n′′N ′′,n′N ′

]
+ [F̃ (0)

nN − F̃ (0)
n′N ′
]
H̃ ′

nN,n′N ′ + C̃(1)
nN,n′N ′ . (C14)

For Eq. (C9) one can obtain: in O(λ0)

0 =
∑
n′N ′

′[
F̃ (−1)

nN,n′N ′H̃ ′
n′N ′,nN − H̃ ′

nN,n′N ′ F̃ (−1)
n′N ′,nN

]+ C̃(0)
nN , (C15)

in O(λ)

0 =
∑
n′N ′

′[
F̃ (0)

nN,n′N ′H̃ ′
n′N ′,nN − H̃ ′

nN,n′N ′ F̃ (0)
n′N ′,nN

]+ C̃(1)
nN , (C16)

in O(λ2)

0 =
∑
n′N ′

′[
F̃ (1)

nN,n′N ′H̃ ′
n′N ′,nN − H̃ ′

nN,n′N ′ F̃ (1)
n′N ′,nN

]+ C̃(2)
nN . (C17)

For simplicity we assume the bosonic quasiparticles of the
dynamical scattering systems, e.g., phonons and/or magnons,
can be approximately thought to be in thermal equilibrium.
Although this standard assumption after Bloch [1] can only
be clearly justified at high temperatures, it was shown to work
well in many cases beyond that regime [1,9,49]. Here we
adopt it to simplify the derivation (which is still quite tedious
even after making this assumption).

The off-diagonal (with respect to L) elements F̃LL′ can be
expressed in terms of the diagonal ones F̃L, and F̃L are related
to the diagonal (in the single-electron Bloch representation)
elements of the single-electron density matrix [Eq. (C6)].
Thus the Bloch-Boltzmann theory formulated in the single-
electron Bloch representation can be derived from the micro-
scopic transport theory presented in the occupation number
representation.

2. Perturbative calculation of CLL′

Applying the Karplus-Schwinger expansion [50]

eÃ+B̃ = eÃ +
∫ 1

0
dλe(1−λ)ÃB̃eλÃ

+
∫ 1

0
dλe(1−λ)ÃB̃eλÃ

∫ λ

0
dλ′e−λ′ÃB̃eλ′Ã + · · ·

(C18)

up to the second order of B one can calculate the equilibrium
density matrix ρ̃ = Z−1eÃ+B̃ [Ã = −β(H̃e − μÑe + H̃s), B̃ =
−βH̃ ′] in weakly coupled systems. The partition function is
given by Z−1 � Z−1

0 (1 + γ ), where Z0 =∑L eAL and γ ∼
o(B2). We have (ρ̃ (0) = Z−1

0 eÃ)

C̃(0) ≡ [ρ̃ (0), H̃1] = Z−1
0 (−eE) · exp(−βH̃s)

⎡
⎣exp

⎛
⎝−β

∑
j

Ĥe( j)

⎞
⎠,
∑

i

r̂i

⎤
⎦

= (−eE) · ρ̃ (0)
∑
��′

exp(βε�)[exp(−βĤe), r̂]��′a†
�a�′

= iρ̃ (0)eE ·
(∑

��′

′
J��′ {exp[−β(ε�′ − ε�)] − 1}a†

�a�′ + (−β )
∑

�

∂ε�

∂k
n̂�

)
,

then

C̃(0)
nN,n′N ′ = ieE ·

[∑
��′

′
J��′ (e−β(ε�′ −ε� ) − 1)ρ̃ (0)

nN (a†
�a�′ )n,n′ (1 − δn,n′ ) + (−β )

∑
�

∂ε�

∂k
n�ρ̃

(0)
nN δn,n′

]
δN,N ′ . (C19)

Next we look at

C̃(1) ≡ [ρ̃ (1), H̃1] = 1

Z0

[∫ 1

0
dλe(1−λ)ÃB̃eλÃ, H̃1

]
= 1

Z0

∫ 1

0
dλ
∑
��′

⎧⎪⎪⎨
⎪⎪⎩

e(1−λ)(H̃e+H̃s )H̃ ′eλ(H̃e+H̃s )e−λA� [eλĤe , Ĥ1]��′a†
�a�′

+e(1−λ)(H̃e+H̃s )[Ĥ ′, Ĥ1]��′a†
�a�′eλ(H̃e+H̃s )

+e(1−λ)(H̃e+H̃s )e−(1−λ)A� [e(1−λ)Ĥe , Ĥ1]��′a†
�aH̃ ′eλ(H̃e+H̃s )

⎫⎪⎪⎬
⎪⎪⎭.

There are so many terms that one should have some guiding principle to simplify the analysis. According to the insight we
obtained in the discussion of static-disorder case [40], some trivial renormalization effects can be neglected and only the diagonal
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(in the Bloch representation for electrons) elements of electric-field perturbation survive in the final contribution to C̃′′
L , which

appears in the following Eq. (C34) as an anomalous driving term [39,40] . Thus, we obtain

C̃(1)
nN,n′N ′ =

∑
��′

′
ieE·[(J� − J�′ )H ′

�N,�′N ′ + iH ′
�N,�′N ′D̂ arg H ′

�N,�′N ′](a†
�a�′ )n,n′

ρ̃
(0)
n′N ′ − ρ̃

(0)
nN

En′N ′ − EnN
, (C20)

where D̂ = ∂k + ∂k′ , J� = 〈u�|∂k|u�〉 and J��′ = δkk′ 〈u�|∂k|u�′ 〉. Meanwhile the anomalous driving term that will appear in
Eq. (C34)

C̃
′′
nN =

′∑
n′N ′

[
C̃(1)

nN,n′N ′H̃
′
n′N ′,nN

d−
nN,n′N ′

− c.c.

]
(C21)

only contains nontrivial correction to the driving term of the transport equation with C̃(1)
LL′ given by Eq. (C20). One can

verify that (C̃(1)
nN,n′N ′ )

∗ = −C̃(1)
n′N ′,nN . Henceforth d±

nN,n′N ′ ≡ EnN − En′N ′ ± ih̄s. In the above derivation we used [ρ̂, r]��′ =
−i
∑

�′′ (J��′′ρ�′′�′ − ρ��′′J�′′�′ ) − iD̂ρ��′ for � = �′ and [ρ̂, r]�� = −i
∑

�′ (J��′ρ�′� − ρ��′J�′�) − i ∂
∂k ρ��.

3. Conventional Bloch-Boltzmann equation

In the zeroth order of electron-disorder interaction one has

0 = C̃(0)
L + ih̄

∑
L′

ω̃
(2)
LL′
[
F̃ (−2)

L − F̃ (−2)
L′

]
, (C22)

with ω̃
(2)
LL′ = 2π

h̄ |H̃ ′
LL′ |2δ(EnN − En′N ′ ). Then

0 =
∑
nN

n�C̃
(0)
nN + 2π i

∑
nN,n′N ′

′|H̃ ′
nN,n′N ′ |2δ(EnN − En′N ′ )(n� − n′

�)F̃ (−2)
nN , (C23)

where ∑
nN

n�C̃
(0)
nN = ieE · (−β )

∑
�′

∂ε�′

∂k′
∑
nN

n�n�′ ρ̃
(0)
nN = (−β )ieE ·

∑
�′

∂ε�′

∂k′
∑

n

n�n�′ ρ̃ (0)
n

= ieE · ∂ε�

∂k
(−β ) f 0

�

(
1 − f 0

�

) = ieE · ∂ε�

∂k
∂ f 0

�

∂ε�

= ieE · ∂ f 0
�

∂k
(C24)

and

2π i
∑

nN,n′N ′

′|H̃ ′
nN,n′N ′ |2δ(EnN − En′N ′ )(nk − n′

k )F̃ (−2)
nN

= 2π i
∑

nN,n′N ′

∑
��′

′|H ′
�N,�′N ′ |2n�(1 − n�′ )δn�−1=n′

�
δn�′ +1=n′

�′
δ(EN − EN ′ + ε� − ε�′ )(nk − n′

k )F̃ (−2)
nN

= ih̄
∑

nN,N ′

∑
�′

′[
ω2s

kN,�′N ′nk (1 − n�′ ) − ω2s
�′N,kN ′n�′ (1 − nk )

]
F̃ (−2)

nN .

In the derivation one uses

(a†
�a�′ )n,n′ (a†

k′ak )n′,n = δk�δk′�′n�(1 − n�′ )δn�−1=n′
�
δn�′ +1=n′

�′
. (C25)

Thus we obtain [41]

eE · ∂ f 0
�

h̄∂k
+
∑

nN,N ′

∑
�′

′[
ω2s

�N,�′N ′n�(1 − n�′ ) − ω2s
�′N,�N ′n�′ (1 − n�)

]
F̃ (−2)

nN = 0, (C26)

where ω2s
�N,�′N ′ = 2π

h̄ |H ′
�N,�′N ′ |2δ(EN − EN ′ + ε� − ε�′ ). Since the bosonic quasiparticles of the dynamical scattering systems (e.g.,

phonons or magnons) are assumed to remain in equilibrium, we introduce the following assumption for factorizing the entire
many-particle density matrix [41]:

F̃ (−2)
nN = P(0)

N F̃ (−2)
n , (C27)

then ∑
nN,N ′

∑
�′

′[
ω2s

�N,�′N ′n�(1 − n�′ ) − ω2s
�′N,�N ′n�′ (1 − n�)

]
F̃ (−2)

nN =
∑
�′

′∑
n

[
ω

(2)
�′�n�(1 − n�′ ) − ω

(2)
��′ n�′ (1 − n�)

]
F̃ (−2)

n ,
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where

ω
(2)
�′� ≡

∑
N,N ′

P(0)
N ω2s

�′N ′,�N = 2π

h̄

∑
N,N ′

P(0)
N |H ′

�N,�′N ′ |2δ(EN − EN ′ + ε� − ε�′ ),

ω
(2)
��′ =

∑
N,N ′

P(0)
N ω2s

�N ′,�′N = 2π

h̄

∑
N,N ′

P(0)
N |H ′

�N ′,�′N |2δ(EN ′ − EN + ε� − ε�′ ). (C28)

Now one has to introduce another basic statistical assumption, i.e.,∑
n

n�n�′ F̃ (−2)
n = [ f� f�′](−2) ≡ f 0

� f (−2)
�′ + f (−2)

� f 0
�′ , (C29)

which is analogous to the assumption of molecular chaos introduced in deriving the classical Boltzmann equation from the
classical Liouville equation (BBGKY hierarchy) [47]. Therefore, under the assumptions (C27) and (C29) one arrives at the
Boltzmann equation for f (−2)

� :

eE · ∂ f 0
�

h̄∂k
+
∑
�′

[
ω

(2)
�′�

(
f (−2)
� − [ f� f�′](−2)

)− ω
(2)
��′
(

f (−2)
�′ − [ f� f�′](−2)

)] = 0, (C30)

which is just the linearized Bloch-Boltzmann equation. Utilizing the microscopic detailed balance that can be verified directly
in the lowest order perturbation theory, one has

ω
(2)
�′� f 0

�

(
1 − f 0

�′
) = ω

(2)
��′ f 0

�′
(
1 − f 0

�

)
(C31)

and (δ f� ≡ f� − f 0
� )

δ f�
(
1 − f 0

�′
)+ f 0

� (−δ f�′ ) − f 0
�

(
1 − f 0

�′
)

f 0
�′
(
1 − f 0

�

) [δ f�′
(
1 − f 0

�

)+ f 0
�′ (−δ f�)

] = δ f�
1 − f 0

�′

1 − f 0
�

− δ f�′
f 0
�

f 0
�′

, (C32)

thus

eE · ∂ f 0
�

h̄∂k
+
∑
�′

ω
(2)
�′�

[
f (−2)
�

1 − f 0
�′

1 − f 0
�

− f (−2)
�′

f 0
�

f 0
�′

]
= 0, (C33)

which is just the practical form of the Bloch-Boltzmann equation, i.e., Eq. (2b) in the main text (note that ω
(2)
�′� ≡ w�′� and

f (−2)
� = δ f n

� ).
In the case of static disorder, the conventional skew scattering appears in the Boltzmann equation in the first order of disorder

potential [19]. The harmonic approximation is assumed for the scattering system, then one has ω̃
(3)
L′L = ω̃

(3)
LL′ = 0, C̃(1)

L = 0, and
C̃(0)

LL′H̃ ′
L′L = 0. Thus F̃ (−1)

L = 0 and f (−1)
� = 0. This leads to vanishing conventional skew scattering due to phonons, as pointed

out in Refs. [15,29,38] and experimentally confirmed in Refs. [11,15].

4. Anomalous distribution function

In the second order of disorder potential the transport equation for F̃ (0)
L can be decomposed into

0 = C̃′′
L + ih̄

∑
L′

ω̃
(2)
LL′
[
F̃ (0),a

L − F̃ (0),a
L′

]
(C34)

and 0 =∑L′ ω̃
(2)
LL′[F̃

(0),n
L − F̃ (0),n

L′ ] + ih̄
∑

L′ [ω̃(4)
L′LF̃ (−2)

L − ω̃
(4)
LL′ F̃

(−2)
L′ ], where F̃ (0)

L = F̃ (0),n
L + F̃ (0),a

L and C̃′′
L is given by Eq. (C21).

Here we only analyze the equation for F̃ (0),a
L , yielding the anomalous distribution that is related to the side-jump effect. F̃ (0),n

L
is related to the so-called intrinsic skew scattering, which is not likely to have an intuitive generic description in the case of
dynamical disorder [38].

Utilizing ∑
nN

nk

∑
n′N ′

′[
C̃(1)

nN,n′N ′H̃ ′
n′N ′,nN/d−

nN,n′N ′ − c.c.
] =

∑
nN,n′N ′

′
(nk − n′

k )C̃(1)
nN,n′N ′H̃ ′

n′N ′,nN/d−
nN,n′N ′

and Eq. (C25) and similar techniques to those in deriving the conventional Bloch-Boltzmann equation, we get

∑
nN

n�C̃
′′
nN = −

′∑
�′

′∑
nN,N ′

1

2
(−β )ih̄eE·[iJ�′ − iJ� + D̂ arg H ′

�N,�′N ′]ω2s
�′N ′,�N n�(1 − n�′ )ρ̃ (0)

nN

−
∑
�′

′ ′∑
nN,N ′

1

2
(−β )ih̄eE·[iJ�′ − iJ� + D̂ arg H ′

�N ′,�′N ]ω2s
�N ′,�′N n�′ (1 − n�)ρ̃ (0)

nN .
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Notice arg H ′
�N,�′N ′ = arg H ′

�N ′,�′N = arg H ′
��′ because the the quanta of the scattering system is boson, and ρ̃

(0)
nN = P(0)

N F̃ (0)
n , we

obtain ∑
nN

n�C̃
′′
nN = −1

2
(−β )ih̄eE·

∑
�′

′
δr�′�

[
ω

(2)
�′� f 0

�

(
1 − f 0

�′
)+ ω

(2)
��′ f 0

�′
(
1 − f 0

�

)]
. (C35)

By Eq. (C31) we obtain

∑
nN

n�C̃
′′
nN = −(−β )ih̄eE·

∑
�′

δr�′�ω
(2)
�′� f 0

�

(
1 − f 0

�′
) = −ih̄eE·

[∑
�′

1 − f 0
�′

1 − f 0
�

ω
(2)
�′�δr�′�

]
∂ f 0

�

∂ε�

. (C36)

Then we treat the collision term by employing the basic assumption

F̃ (0),a
nN = P(0)

N F̃ (0),a
n (C37)

and the “assumption of molecular chaos”∑
n

n�n�′ F̃ (0),a
n = [ f� f�′](0),a ≡ f (0),a

� f 0
�′ + f 0

� f (0),a
�′ , (C38)

yielding the Boltzmann equation for f (0),a
� :

0 = −eE·
[∑

�′

1 − f 0
�′

1 − f 0
�

ω
(2)
�′�δr�′�

]
∂ f 0

�

∂ε�

+
∑
�′

{
ω

(2)
�′� [ f�(1 − f�′ )](0),a − ω

(2)
��′ [ f�′ (1 − f�)](0),a}. (C39)

Utilizing Eqs. (C31) and (C32), we get

0 = −eE·
[∑

�′

1 − f 0
�′

1 − f 0
�

ω
(2)
�′�δr�′�

]
∂ f 0

�

∂ε�

+
∑
�′

ω
(2)
�′�

[
f (0),a
�

1 − f 0
�′

1 − f 0
�

− f (0),a
�′

f 0
�

f 0
�′

]
. (C40)

This is exactly the same Boltzmann equation for the anomalous distribution function f (0),a
� ≡ δ f a

� as we obtained via
phenomenological arguments in the main text.

5. Berry curvature anomalous velocity and side-jump velocity

For the observables of interest, Ã is diagonal with respect to N , hence F̃ (−1)
LL′ does not contribute to the off-diagonal response,

and the off-diagonal response
∑′

LL′ F̃LL′ ÃL′L is equal to

′∑
LL′

F̃ (0)
LL′ ÃL′L = δinA + δsjA, (C41)

where

δinA ≡
′∑

LL′
C(0)

LL′
ÃL′L

EL − EL′ − ih̄s
(C42)

is the intrinsic part, whereas

δsjA ≡
∑
LL′L′′

′
F̃ (−2)

L

[(
H̃ ′

L′L′′H̃ ′
L′′LÃLL′

d+
LL′′d+

LL′
+ c.c.

)
+ H̃ ′

LL′H̃ ′
L′′LÃL′L′′

d+
LL′′d−

LL′

]
(C43)

is the disorder-dependent part.

a. Intrinsic contribution: Electric-field induced interband coherence

Due to Eqs. (C19) and (C25), we have (ρ̃ (0)
nN = P(0)

N ρ̃ (0)
n )

δinA =
′∑

n,n′

∑
N

ieE ·
∑
��′

′
J��′ (e−β(ε�′ −ε� ) − 1)ρ̃ (0)

nN (a†
�a�′ )n,n′

Ãn′N,nN

En − En′ − ih̄s

=
′∑

n,n′
ieE ·

′∑
��′

J��′A�′�
−ρ̃ (0)

n

ε� − ε�′ − ih̄s

[
n�(1 − n�′ )δn�−1=n′

�
δn�′ +1=n′

�′
− n′

�(1 − n′
�′ )δn′

�−1=n�
δn′

�′ +1=n�′
]
,

where we used ρ̃ (0)
n [e−β(En′ −En ) − 1] = ρ̃

(0)
n′ − ρ̃ (0)

n . Notice that for fermions

n′
�(1 − n′

�′ )δn′
�−1=n�

δn′
�′+1=n�′ = (1 − n�)n�′δn′

�−1=n�
δn′

�′ +1=n�′ ,
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we get

δinA = −ieE ·
∑

n

∑
��′

′
J��′A�′�

ρ̃ (0)
n

ε� − ε�′ − ih̄s
[n�(1 − n�′ ) − n�′ (1 − n�)] =

∑
��′

′ C(0)
��′ A�′�

ε� − ε�′ − ih̄s
, (C44)

where C(0)
��′ = ieE · J��′ ( f 0

�′ − f 0
� ). This is just the intrinsic contribution δinA ≡∑� f 0

� δinA� to linear response with respect to the
uniform and time-independent electric field. Here we use v��′δkk′ = − 1

h̄ (ε� − ε�′ )J��′ for � = �′, and δinA� is just the intrinsic
correction to A� in the semiclassical Boltzmann formulation [51]. In the case of A = j = ev, δinv� = vbc

� is the Berry-curvature
anomalous velocity.

b. Side-jump velocity: Scattering-induced interband coherence

Now we analyze δsjA. Here

∑
nN,n′N ′,n′′N ′′

′
F̃ (−2)

nN

H̃ ′
nN,n′N ′H̃ ′

n′′N ′′,nN Ãn′,n′′

(EnN − En′N ′ − ih̄s)(EnN − En′′N ′′ + ih̄s)

=
∑

n,n′,n′′

′∑
N,N ′

F̃ (−2)
nN

∑′
��′
∑′

kk′
∑′

j j′ H ′
�N,�′N ′H ′

k′N ′,kN A j′ j (a
†
�a�′ )n,n′ (a†

j′a j )n′,n′′ (a†
k′ak )n′′,n

(EnN − En′N ′ − ih̄s)(EnN − En′′N ′ + ih̄s)
,

since N ′ = N ′′ and then n′ = n′′ and thus j = j′. Using

(a†
�a�′ )n,n′ (a†

j′a j )n′,n′′ (a†
k′ak )n′′,n = δk′ jδ j′�′δk�n�(1 − n j )(1 − n j′ )δnk−1=n′′

k
δn j+1=n′′

j
δn′′

j′ +1=n′
j′
δn j ,n′

j
δn′′

j′ ,n j′ δn′
k ,n

′′
k

− δk j′δk′�′δ j�n j′ (1 − n�′ )n jδn j′−1=n′′
j′
δn�′ +1=n′′

�′
δn′′

j −1=n′
j
δn j′ =n′

j′
δn′

�′ =n′′
�′
δn j ,n′′

j

we get

′∑
nN,n′N ′,n′′N ′′

F̃ (−2)
nN

H̃ ′
nN,n′N ′H̃ ′

n′′N ′′,nN Ãn′,n′′

(EnN − En′N ′ − ih̄s)(EnN − En′′N ′′ + ih̄s)

=
∑

n

∑
N,N ′

F̃ (−2)
n

∑′
� j j′ P(0)

N H ′
�N, j′N ′H ′

jN ′,�N Aj′ jn�(1 − n j )(1 − n j′ )

(EN − EN ′ + ε� − ε j′ − ih̄s)(EN − EN ′ + ε� − ε j + ih̄s)

−
∑

n

∑
N,N ′

F̃ (−2)
n

∑′
� j j′ P(0)

N ′ H ′
�N, j′N ′H ′

jN ′,�N Aj′ j (1 − n�)n jn j′

(EN − EN ′ + ε� − ε j′ − ih̄s)(EN − EN ′ + ε� − ε j + ih̄s)
,

where we have applied the assumption (C27). In the case of A = v, v j′ j = 1
ih̄ r j′ j (ε j − ε j′ ) thus

′∑
nN,n′N ′,n′′N ′′

F̃ (−2)
nN

H̃ ′
nN,n′N ′H̃ ′

n′′N ′′,nN Ãn′,n′′

(EnN − En′N ′ − ih̄s)(EnN − En′′N ′′ + ih̄s)

= 2 Re
′∑

� j j′

i

h̄

∑
n

F̃ (−2)
n n�(1 − n j )

∑
N,N ′

P(0)
N

H ′
�N, jN ′r j j′H ′

j′N ′,�N

EN − EN ′ + ε� − ε j − ih̄s
− 2 Re

′∑
� j j′

i

h̄

∑
n

F̃ (−2)
n n�(1 − n j )n j′

×
∑
N,N ′

P(0)
N

H ′
�N, jN ′r j j′H ′

j′N ′,�N

EN − EN ′ + ε� − ε j − ih̄s
− 2 Re

′∑
� j j′

i

h̄

∑
n

F̃ (−2)
n (1 − n j )n�n j′

∑
N,N ′

P(0)
N

H ′
jN ′, j′N r j′�H ′

�N, jN ′

EN − EN ′ + ε� − ε j − ih̄s
.

The reason for writing the last term in this form will be clear soon. Thus we get

′∑
nN,n′N ′,n′′N ′′

F̃ (−2)
nN

H̃ ′
nN,n′N ′H̃ ′

n′′N ′′,nN Ãn′,n′′

(EnN − En′N ′ − ih̄s)(EnN − En′′N ′′ + ih̄s)

= 2 Re
′∑

� j j′

i

h̄

∑
n

F̃ (−2)
n n�(1 − n j )

∑
N,N ′

P(0)
N

H ′
�N, jN ′r j j′H ′

j′N ′,�N

EN − EN ′ + ε� − ε j − ih̄s

− 2 Re
′∑

� j j′

i

h̄

∑
n

F̃ (−2)
n n�(1 − n j )n j′

∑
N,N ′

P(0)
N

H ′
�N, jN ′[r j j′H ′

j′N ′,�N + H ′
jN ′, j′N r j′�]

EN − EN ′ + ε� − ε j − ih̄s
. (C45)
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Besides, we have

∑
nN,n′N ′,n′′N ′′

′
F̃ (−2)

nN

[
H̃ ′

n′N ′,n′′N ′′H̃ ′
n′′N ′′,nN Ãn,n′

(EnN − En′N ′ + ih̄s)(EnN − En′′N ′′ + ih̄s)
+ c.c.

]

=
∑

n

∑
N,N ′

F̃ (−2)
nN

[∑′
� j j′ H ′

jN, j′N ′H ′
j′N ′,�N A� jn�(1 − n j′ )(1 − n j )

(ε� − ε j + ih̄s)(EN − EN ′ + ε� − ε j′ + ih̄s)
+ c.c.

]

−
∑

n

∑
N,N ′

F̃ (−2)
nN

[ ∑′
� j j′ H ′

�N, j′N ′H ′
jN ′,�N Aj′ jn�(1 − n j )n j′

(ε j′ − ε j + ih̄s)(EN − EN ′ + ε� − ε j + ih̄s)
+ c.c.

]
.

In the case of A = v, v j′ j = 1
ih̄ r j′ j (ε j − ε j′ ) thus

∑
LL′L′′

′
F̃ (−2)

L

[
H̃ ′

L′L′′H̃ ′
L′′LÃLL′

(EL − EL′′ + ih̄s)(EL − EL′ + ih̄s)
+ c.c.

]

= −2 Re
′∑

� j j′

i

h̄

∑
n

F̃ (−2)
n n�(1 − n j )

∑
N,N ′

P(0)
N

H ′
�N, jN ′H ′

jN ′, j′N,r j′�

EN − EN ′ + ε� − ε j − ih̄s

+ 2 Re
′∑

� j j′

i

h̄

∑
n

F̃ (−2)
n n�(1 − n j )n j′

∑
N,N ′

P(0)
N

H ′
�N, jN ′[H ′

jN ′, j′N,r j′� + r j j′H ′
j′N ′,�N ]

EN − EN ′ + ε� − ε j − ih̄s
.

Together with Eq. (C45), we obtain (the D|H ′
jN ′,�N |2 term is neglected as trivial renormalization effect, as in Ref. [51])

′∑
LL′L′′

F̃ (−2)
L

[
H̃ ′

L′L′′H̃ ′
L′′LÃLL′

(EL − EL′′ + ih̄s)(EL − EL′ + ih̄s)
+ c.c.

]
+

′∑
LL′L′′

F̃ (−2)
L

H̃ ′
LL′H̃ ′

L′′LÃL′L′′

(EL − EL′ − ih̄s)(EL − EL′′ + ih̄s)

= −2 Re
i

h̄

∑
� j

∑
n

F̃ (−2)
n n�(1 − n j )

∑
N,N ′

P(0)
N

EN − EN ′ + ε� − ε j − ih̄s
|H ′

�N, jN ′ |2[−D arg H ′
jN ′,�N − (iJ� − iJ j )],

which is equal to

∑
� j

∑
n

F̃ (−2)
n n�(1 − n j )

∑
N,N ′

P(0)
N

2π

h̄
|H ′

�N, jN ′ |2δ(EN − EN ′ + ε� − ε j )[iJ j − iJ� − D arg H ′
j,�]

=
∑

�

f (−2)
�

[∑
�′

ω
(2)
�′�

1 − f 0
�′

1 − f 0
�

δr�′�

]
.

Here we used ω
(2)
�′� ≡∑N,N ′ P(0)

N ω2s
�′N ′,�N = 2π

h̄

∑
N,N ′ P(0)

N |H ′
�N,�′N ′ |2δ(EN − EN ′ + ε� − ε�′ ) and ω

(2)
�′� f 0

� (1 − f 0
�′ ) −

ω
(2)
��′ f 0

�′ (1 − f 0
� ) = 0.

Summarizing, in the case of A = v we get

δsjv =
∑
��′

′
[ f�(1 − f�′ )](−2)ω

(2)
�′�δr�′� =

∑
�

f (−2)
�

[∑
�′

1 − f 0
�′

1 − f 0
�

ω
(2)
�′�δr�′�

]
, (C46)

where we have used Eqs. (C28) and (C31) as well as the two statistical assumptions (C27) and (C29), and applied the techniques
used in Appendix A of Ref. [51]. This result confirms our heuristic argument on the “proper definition” of the semiclassical

side-jump velocity vsj
� =∑�′

1− f 0
�′

1− f 0
�

ω
(2)
�′�δr�′� in the case of dynamical disorder in the main text (note that ω

(2)
�′� ≡ w�′� and f (−2)

� =
δ f n

� ).
Similar to the case of static disorder, the interband-coherence nature of vsj

� and thus that of the anomalous distribution function
ga

� are not quite obvious when vsj
� is expressed in terms of δr�′� [40,51]. Therefore, in the following we provide some more

information about scattering-induced interband-coherence response δsjA when A is not necessarily the current [40,51]. In the
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following derivation the interband-coherence nature of vsj
� is apparent. In general cases of A, we have

′∑
nN,n′N ′,n′′N ′′

F̃ (−2)
nN

H̃ ′
nN,n′N ′H̃ ′

n′′N ′′,nN Ãn′,n′′

(EnN − En′N ′ − ih̄s)(EnN − En′′N ′′ + ih̄s)

= 2 Re
′∑

� j j′

∑
n

∑
N,N ′

F̃ (−2)
nN n�(1 − n j )

H ′
�N, jN ′Aj j′H ′

j′N ′,�N

ε j − ε j′

1

EN − EN ′ + ε� − ε j − ih̄s

− 2 Re
′∑

� j j′

∑
n

∑
N,N ′

F̃ (−2)
nN n�(1 − n j )n j′

H ′
�N, jN ′Aj j′H ′

j′N ′,�N

ε j − ε j′

1

EN − EN ′ + ε� − ε j − ih̄s

+ 2 Re
′∑

� j j′

∑
n

∑
N,N ′

F̃ (−2)
nN (1 − n j )n�n j′

H ′
�N, jN ′H ′

jN ′, j′N Aj′�

ε� − ε j′

1

EN − EN ′ + ε� − ε j − ih̄s

and
′∑

nN,n′N ′,n′′N ′′
F̃ (−2)

nN

[
H̃ ′

n′N ′,n′′N ′′H̃ ′
n′′N ′′,nN Ãn,n′

(EnN − En′N ′ + ih̄s)(EnN − En′′N ′′ + ih̄s)
+ c.c.

]

= 2 Re
′∑

� j j′

∑
n

∑
N,N ′

F̃ (−2)
nN n�(1 − n j )(1 − n j′ )

H ′
�N, jN ′H ′

jN ′, j′N Aj′�

(ε� − ε j′ − ih̄s)(EN − EN ′ + ε� − ε j − ih̄s)

− 2 Re
′∑

� j j′

∑
n

∑
N,N ′

F̃ (−2)
nN

H ′
�N, jN ′Aj j′H ′

j′N ′,�N n�(1 − n j )n j′

(ε j′ − ε j − ih̄s)(EN − EN ′ + ε� − ε j − ih̄s)
,

thus by some permutation of indices we get

δsjA = 2 Re
′∑

� j j′

∑
n

∑
N,N ′

F̃ (−2)
nN n�(1 − n j )

1

EN − EN ′ + ε� − ε j − ih̄s
H ′

�N, jN ′

[
Aj j′H ′

j′N ′,�N

ε j − ε j′
+ H ′

jN ′, j′N Aj′�

ε� − ε j′

]

= 2 Re
′∑

��′ j′
f (−2)
�

[(
1 − f 0

�′
)∑

N,N ′
P(0)

N + f 0
�′
∑
N,N ′

P(0)
N ′

]
H ′

�N,�′N ′

EN − EN ′ + ε� − ε�′ − ih̄s

[
H ′

�′N ′, j′N Aj′�

ε� − ε j′
− A�′ j′H ′

j′N ′,�N

ε j′ − ε�′

]
, (C47)

i.e., δsjA =∑� f (−2)
� δsjA� with

δsjA� = 2 Re
′∑

�′ j′

[(
1 − f 0

�′
)∑

N,N ′
P(0)

N + f 0
�′
∑
N,N ′

P(0)
N ′

]
H ′

�N,�′N ′

EN − EN ′ + ε� − ε�′ − ih̄s

[
H ′

�′N ′, j′N Aj′�

ε� − ε j′
− A�′ j′H ′

j′N ′,�N

ε j′ − ε�′

]
. (C48)

From the interband matrix elements Aj j′ and Aj′� (the momenta of the two states denoted by the subscripts are equal) one can
see that the interband coherence plays a role in both terms.

For static impurities, the state of the scattering system remains unchanged thus N = N ′, and∑
N,N ′

P(0)
N H ′

�N,�′N ′H ′
�′N ′, j′N =

∑
N

P(0)
N H ′

�N,�′N H ′
�′N, j′N = 〈H ′

��′H ′
�′ j′ 〉 (C49)

is just the average over the disorder configurations. Therefore, after some algebra we obtain

δsjA =
∑

�

f (−2)
�

⎡
⎣ ∑

�′,�′′ =�′

〈H ′
��′H ′

�′′�〉A�′�′′

(ε� − ε�′ − ih̄s)(ε� − ε�′′ + ih̄s)
+ 2 Re

∑
�′ =�,�′′

〈H ′
�′�′′H ′

�′′�〉A��′

(ε� − ε�′ + ih̄s)(ε� − ε�′′ + ih̄s)

⎤
⎦, (C50)

which just reproduces the result obtained in the single-particle T -matrix formalism in the case of static disorder [40,51].

APPENDIX D: GENERALIZED BLOCH-BOLTZMANN
FORMALISM FROM THE LYO-HOLSTEIN

TRANSPORT THEORY

The Lyo-Holstein theory [38,42] takes into account the
many-body effects in weakly coupled electron-phonon sys-
tems. Lyo [38] split the electron coordinate operator into intra-

cell and intercell parts and considered separately the resulting
four components of the velocity-velocity correlation function.
The theory thus contains some nongauge-invariant quantities
which are difficult to interpret. Partly because of these compli-
cations, the theory has not found wide applications. The main
theoretical results of Lyo are his Eqs. (3.39) and (3.43). The
latter representing the crossed part of intrinsic skew scattering
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appears in the third Born order and is too complicated to be
applicable in practice. We focus on Lyo’s Eq. (3.39), which
contains the contents of Lyo’s Eqs. (3.25)– (3.27), (3.37), and
(3.38). We show that, Lyo’s Eq. (3.39) includes the intrinsic
and side-jump anomalous Hall conductivities. The proof of
the equivalence are outlined as the following four steps:

(I) Lyo’s transport equation (3.27) is our Eq. (2b) in
the main text for gn

�, i.e., the conventional Bloch-Boltzmann
equation.

(II) The opposite of the anomalous velocity defined by
Lyo’s Eq. (3.26) is the last term of our side-jump velocity:

vsj,Lyo
� =

∑
�′

w�′�
1 − f 0

�′

1 − f 0
�

(−D̂ argV�′�). (D1)

Here w�′� is the electron-phonon scattering rate taking the
same form as the lowest-Born-order expression in the density
matrix approach, but with all the quantities renormalized
by many-body effects (RPA-type renormalizations). For ex-
ample, w

(2)
�′� is proportional to |V��′ |2 with the renormalized

electron-phonon coupling V��′ . But Lyo’s anomalous velocity
is not gauge invariant (under the gauge transformation |u�〉 →
eiθ� |u�〉).

(III) Lyo’s transport equation (3.37) corresponds to our
Eq. (11) in the main text for the anomalous distribution
function ga

�, but has a different form

eE · vsj,Lyo
� = −

∑
�′

w�′�
1 − f 0

�′

1 − f 0
�

(
ga,Lyo

� − ga,Lyo
�′

)
, (D2)

because Lyo defined his transport function as

ga,Lyo
� = ga

� − eE · A�, (D3)

with A� the Berry connection. The so-defined transport func-
tion is not gauge invariant and not a real distribution function.

(IV) Combining (I)–(III) we recognize that Lyo’s
Eqs. (3.25) and (3.38), whose sum gives his (3.39), take the

following form in our notations:

( je)Lyo-sj(1)
y = e

∑
�

(
−∂ f 0

�

∂ε�

)
gn

�

(
vsj,Lyo

�

)
y
, (D4)

( je)Lyo-sj(2)
y = e

∑
�

(
−∂ f 0

�

∂ε�

)
ga,Lyo

�

(
v0

�

)
y
. (D5)

Both of them are gauge dependent. But we show that the sum
of them is gauge invariant. In fact we show

( je)sj(1)
y = ( je)Lyo-sj(1)

y − e2Ex

∑
�

(
−∂ f 0

�

∂ε�

)
(A�)y

(
v0

�

)
x (D6)

and

( je)sj(2)
y = ( je)Lyo-sj(2)

y + e2Ex

∑
�

(
−∂ f 0

�

∂ε�

)
(A�)x

(
v0

�

)
y
,

(D7)
thus

( je)Lyo-sj(1)
y + ( je)Lyo-sj(2)

y = ( je)sj(1)
y + ( je)sj(2)

y + ( je)in
y .

(D8)

As an example we provide the derivation of Eq. (D6):

( je)sj(1)
y − ( je)Lyo-sj(1)

y

= e
∑
�,�′

(
−∂ f 0

∂ε�

)
gn

�w�′�
1 − f 0(ε�′ )

1 − f 0(ε�)
[−(A�)y]

+ e
∑
�,�′

δ f�′w��′
1 − f 0(ε�)

1 − f 0(ε�′ )
(A�)y

= e
∑

�

(
−∂ f 0

∂ε�

)
(A�)y

∑
�′

w�′�
1 − f 0(ε�′ )

1 − f 0(ε�)

[
gn

�′ − gn
�

]

= −e2Ex

∑
�

(
−∂ f 0

∂ε�

)
(A�)y

(
v0

�

)
x,

where the interchange of � and �′ is used in the first step and
the conventional Bloch-Boltzmann equation of the main text
is used in the last step.
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