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RKKY interaction in graphene bubbles
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By means of the Lanczos method, a numerically efficient theoretical approach, we study the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction in a graphene bubble. We find that the RKKY interaction in a
graphene bubble can be larger or smaller than the corresponding result in pristine graphene by a few orders
of magnitude, depending on the sublattice attribution and pseudomagnetic field strength where two magnetic
impurities are positioned, which is due to the sublattice polarization of the low-energy electronic states in a
strong pseudomagnetic field. If two magnetic impurities are both in the bubble region, the R−3 decay rate of the
RKKY interaction found in pristine graphene breaks down. But it recovers when one magnetic impurity is far
away from the bubble center no matter where another impurity is located. When the Fermi level deviates from
the Dirac point by carrier doping, the antiferromagnetic RKKY interaction between two magnetic impurities
located at the opposite sublattices can be inverted to be ferromagnetic by altering the bubble height properly.
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I. INTRODUCTION

Graphene is a two-dimensional topological Dirac
semimetal; hence, it possesses some novel electronic
properties [1–10], such as Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction, different from conventional two-
dimensional materials. The RKKY interaction is an indirect
exchange interaction between two magnetic impurities
mediated by the conduction electrons of the host material
such as graphene [11–13]. In charge-neutral graphene, the
RKKY interaction obeys the so-called Saremi’s rule. Namely,
it is ferromagnetic between magnetic impurities located on
the same sublattice but antiferromagnetic between impurities
located on opposite sublattices [14–16]. Furthermore, with
the increase of the distance between two magnetic impurities
R, the RKKY interaction in graphene decays as R−3, rather
than R−2 in the conventional two-dimensional materials
[16–19].

As a convenient experimental measure to modulate the
low-energy electronic properties around the Dirac point, strain
in graphene has drawn much attention in both theoretical
and experimental studies. A critical strain effect on the elec-
tron states in graphene is that it can induce a huge out-of-
plane pseudomagnetic field [20,21]. And different strain fields
may induce different pseudomagnetic fields [22,23]. Unlike
a realistic magnetic field, the so-called pseudomagnetic field
has just a sign inversion when it acts on the K and K ′
valley electrons. Experimentally, strain always exists along
with graphene bubbles where lattice deformation inevitably
appears. It was observed that bubbles form frequently when
graphene grows on and couples to the substrate. For example,
graphene nanobubbles can be observed when mechanically
exfoliated graphene is mounted on a SiO2/Si substrate and
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subjected to HF/H2O etching or irradiation by energetic
protons [24]. Recently, it became possible to control the
curvature of a spherical graphene bubble by applying an
electric field [25]. This paves the way to explore the Dirac
fermion property in the case of a strong and tunable magnetic
field. It was reported that the strength of the strain-induced
pseudomagnetic field can be greater than 300 T in a graphene
nanobubble, which results in discrete pseudo-Landau levels
in the band structure of graphene [26]. Recent theoretical
studies indicated the local density of states in a graphene
bubble exhibits a sixfold symmetry pattern, with sublattice
polarization in each sector. Electrons are well confined in
the armchair directions, while the zigzag directions allow the
flow of probability current between the inside and outside
of the strained region. In addition, because the direction of
a pseudomagnetic field switches between the inequivalent
Dirac valleys [20,27], the graphene nanobubble is considered
a device prototype to realize both the valley filtering and
valley splitting functions [28].

Owing to the presence of induced pseudomagnetic mag-
netic field, the RKKY interaction in a graphene bubble is
expected to present different behaviors in comparison with the
case in pristine graphene. On the one hand, from the aspect of
fundamental physics, whether the R−3 decay rate and Saremi’s
rule hold true for the RKKY interaction in a graphene bubble
needs to be reexamined. On the other hand, the tunable size
of the bubble provides us with the possibility to control the
RKKY interaction in a graphene bubble, which is significant
for the purposes of manipulating the spin to realize device
functions in dilute magnetic impurity-doped graphene bub-
bles. However, the theoretical study of the RKKY interaction
in a graphene bubble is very difficult because the existence of
a bubble breaks the periodicity of pristine graphene; hence,
the electronic states of such a system are hard to solve. In
this paper, we adopt the Lanczos method in real lattice space,
which has no need for artificial finite boundaries or periodic

2469-9950/2019/99(24)/245410(9) 245410-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.245410&domain=pdf&date_stamp=2019-06-17
https://doi.org/10.1103/PhysRevB.99.245410


ZHANG, JIANG, AND ZHENG PHYSICAL REVIEW B 99, 245410 (2019)

conditions of the system to investigate the RKKY interaction
in the graphene bubble. Therefore, it is a numerically efficient
theoretical approach. We find that in comparison with the case
in pristine graphene, the RKKY interaction in a graphene
bubble exhibits sizable variation. It can be larger or smaller
than the corresponding result in pristine graphene by a few or-
ders of magnitude, depending on the sublattice attribution and
pseudomagnetic field strength where two magnetic impurities
are positioned. This arises from the sublattice polarization
of the low-energy electronic states induced by the strong
pseudomagnetic field. If the magnetic impurities are both in
the bubble region, the R−3 decay rate breaks down. But it
recovers when one magnetic impurity is far away from the
bubble center no matter where another impurity is located in.
When the Fermi level deviates from the Dirac point by carrier
doping, the antiferromagnetic coupling between two magnetic
impurities located at opposite sublattices can be inverted to be
ferromagnetic by altering the bubble height.

This paper is organized as follows. In Sec. II, the shape
and corresponding tight-binding Hamiltonian of the graphene
bubble are introduced, and then the Lanczos method we use
to obtain the retarded Green’s function and furthermore to
calculate the RKKY interaction is presented. In Sec. III, the
numerical results of the RKKY interaction in a graphene
bubble are shown and discussed. Finally, in Sec. IV the main
results are summarized briefly.

II. METHODS

As shown in Fig. 1(a), the carbon atoms in a bubble
rise from the otherwise planar graphene lattice. Without
loss of generality, we adopt a Gaussian function z(r) =
hexp(−r2/2σ 2) to measure the out-of-plane displacement of
carbon atoms from the lattice plane of pristine graphene, with
h and σ characterizing the height and width of the bubble,
respectively [28–30]. And r =

√
x2 + y2 is the in-plane co-

ordinate of a carbon atom which is assume to be unaffected
by the presence of the bubble for simplicity. Accordingly,
the carbon-carbon bonds in the bubble region are inevitably
stretched, which could modify the hopping parameter in the
electronic tight-binding model. Within the nearest-neighbor
approximation, the tight-binding Hamiltonian of graphene
even in the presence of a bubble is formally written as

Ĥ =
∑

〈l jα,l ′ j′α′〉
tl jα,l ′ j′α′ |l jα〉〈l ′ j′α′| + H.c., (1)

where |l jα〉 stands for the atomic orbit of the π -band elec-
tron of graphene. l and j are integers, and α = A/B labels
the inequivalent carbons in the A/B sublattices. The indexes
(l jα) can fully determine the in-plane coordinate of a carbon
atom as rl jα = la1 + ja2 + τα , with a1 = a/2(−√

3, 3, 0)
and a2 = a/2(−√

3,−3, 0). As shown in Fig. 1(b), they are
the primitive lattice vectors, with a being the C-C bond
length of the pristine graphene (hereafter we set a = 1 as
the unit of length). In addition, τA = (0,−1/2, 0) and τB =
(0, 1/2, 0) identify the positions of A and B atoms in a unit
cell, respectively. Then, the z coordinate of an atom in a
Gaussian bubble is given by z(rl jα ). In the Hamiltonian the
notation 〈l jα, l ′ j′α′〉 means that the summation is restricted

FIG. 1. (a) The side view and (b) top view of a Gaussian
graphene bubble with the center at the origin of Cartesian coordi-
nates. In (b) a1 and a2 are the primitive lattice vectors of pristine
graphene. The large dashed circle denotes the contour of the half
height of the bubble (r = σ ). The spatially nonuniform pseudomag-
netic field in the bubble has threefold rotational symmetry. The six
small solid circles specify the maximal pseudomagnetic field regions,
with + and − signs denoting the pseudomagnetic field in the ±z
directions, respectively. Points A, A′, A′′, B, and B′ denote the typical
positions of the magnetic field to calculate the RKKY interactions.

within the nearest-neighbor atomic pairs, with tl jα,l ′ j′α′ being
the corresponding hopping parameter. In the presence of the
bubble, tl jα,l ′ j′α′ is a function of local bond length of the
nearest-neighbor atomic pairs

tl jα,l ′ j′α′ = texp{−3.37[|z(rl jα ) − z(rl ′ j′α′ )|2 + 1]1/2 − 1},
(2)

where t is the nearest-neighbor hopping parameter of pristine
graphene [31]. We use it as the unit of energy in the numerical
calculations.

Following the original RKKY theory, two magnetic im-
purities, Ŝ1 and Ŝ2, settled on the lattice points (l, j, α) and
(l ′, j′, α′), respectively, can establish an indirect exchange
interaction mediated by the conduction electrons of graphene
even in the presence of a bubble,

ĤRKKY = Jα,α′ (l j, l ′ j′)Ŝ1 · Ŝ2. (3)

The RKKY interaction is defined as [16,32]

Jα,α′ (l j, l ′ j′)

= − h̄2J2

2π

∫ EF

−∞
dεIm

[
Gr

l jα,l ′ j′α′ (ε)Gr
l ′ j′α′,l jα (ε)

]
, (4)

where J denotes the exchange energy between the magnetic
impurity and the carbon atom it sits right on. EF is the
Fermi energy of the graphene bubble. In the above equation,
Gr

l jα,l ′ j′α′ is the retarded lattice Green’s function. We must

245410-2



RKKY INTERACTION IN GRAPHENE BUBBLES PHYSICAL REVIEW B 99, 245410 (2019)

point out that the RKKY interaction defined herein is only a
single-particle approximation of a many-body problem which
includes the interaction between the local magnetic moment
and conduction electrons. It is only suitable for the case of
weak coupling between the local magnetic moment and the
spin of the conduction electron. In terms of the eigenex-
pansion of the Green’s function and via a straightforward
derivation we can obtain an alternative expression of the
RKKY interaction which is helpful for us to understand the
numerical result of the RKKY interaction shown below. It is
given by

Jα,α′ (l j, l ′ j′) = h̄2J2Re[〈l jα|ψm〉〈ψm|l ′ j′α′〉
× 〈l ′ j′α′|ψn〉〈ψn|l jα〉]

×
∑
m,n

θ (EF − En)θ (Em − EF )

En − Em
, (5)

where |ψi〉 and Ei represent, respectively, the eigenstate and
the corresponding energy of graphene with a bubble, although
it is rather difficult to get the complete set of them. θ (x) is the
conventional step function. From such an expression one can
readily infer that the RKKY interaction is mainly determined
by the occupied and unoccupied states near the Fermi level.

As seen from Eq. (4), the retarded Green’s function be-
tween the two lattice points where the magnetic impurities
are positioned is the critical quantity for us to work out the
RKKY interaction. However, due to the presence of the bubble
it is a rather tough task to get such a Green’s function. In this
work we employ the Lanczos method in real space with which
we can get the numerical Green’s function [33]. The key
procedure of such a method is to find out a basis set in which
the tight-binding Hamiltonian of a graphene bubble becomes
a tridiagonal matrix. In so doing, we first choose a normalized
seed state | f0〉, then construct a new state orthogonal to | f0〉
using the following formulas:

|F1〉 = Ĥ | f0〉 − | f0〉〈 f0|Ĥ | f0〉 = Ĥ | f0〉 − a0| f0〉, (6)

| f1〉 = 1

b 1
|F1〉, (7)

where a0 = 〈 f0|Ĥ | f0〉 and b1 = 〈 f0|Ĥ | f1〉 is the normaliza-
tion coefficient of state | f1〉. Apparently, | f1〉 is orthogonal to
| f0〉. It is easy to get the recursive relation when n � 2,

|Fn〉 = Ĥ | fn−1〉 − an−1| fn−1〉 − bn−1| fn−2〉, (8)

| fn〉 = 1

b n
|Fn〉, (9)

with the recursive coefficients

an = 〈 fn|Ĥ | fn〉, (10)

bn = 〈 fn−1|Ĥ | fn〉. (11)

We can prove that every new state obtained with Eqs. (8) and
(9) is normalized and they are orthogonal to each other.

On the basis of {| f0〉, | f1〉, | f2〉, . . . } the tight-binding
Hamiltonian of the graphene bubble becomes a tridiagonal

matrix which takes the form

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 b1 0 · · ·
b1 a1 b2 · · ·

0 b2 a2
. . .

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12)

Since the retarded Green’s function matrix is defined as
Ĝr (ε) = (ε − Ĥ + iη)−1, with η being the infinitesimal, the
first diagonal element of such a Green’s function can be
written as

Gr
00(ε) = 〈 f0|Ĝr (ε)| f0〉 = D1

D
, (13)

where D is the determinant of the matrix [ε − H + iη]. Di for
i � 1 is the determinant of the matrix by taking out both the
first i rows and first i columns of [ε − H + iη]. We can expand
D by using Laplace’s theorem,

D = (ε + iη − a0)D1 − b2
1D2, (14)

so we can express Gr
00(ε) as

Gr
00(ε) = 1

ε + iη − a0 − b2
1

D2
D1

. (15)

Analogously, Di can be expanded by Di+1 and Di+2 as

Di = (ε + iη − ai )Di+1 − b2
i+1Di+2. (16)

Then we can get Gr
00(ε) by using the continued fraction

expansion method. In the actual calculation, we can take a
cutoff of the tridiagonal Hamiltonian matrix as long as the
retarded Green’s function is converged. Namely, a∞ and b∞
are terminated at aN and bN , respectively. Then

Gr
00(ε) = 1

ε + iη − a0 − b2
1

ε+iη−a1− b2
2

ε+iη−a2−···−b2
N−1	(ε)

, (17)

where

	(ε) =
ε − i

√
4b2

N − (η − aN )2 − aN

2b2
N

. (18)

If we construct the seed state in the manner | f0〉 =
c1|l jα〉 + c2|l ′ j′α′〉, with c1 and c2 being the arbitrary nor-
malized coefficients, the obtained Green’s function Gr

00(ε) is
associated with the ones used in Eq. (4), i.e.,

Gr
00(ε) = |c1|2Gr

l jα,l jα (ε) + |c2|2Gr
l ′ j′α′,l ′ j′α′ (ε)

+ c∗
1c2Gr

l jα,l ′ j′α′ (ε) + c1c∗
2Gr

l ′ j′α′,l jα (ε). (19)

Then, by altering the normalized coefficients and repeating
the above Lanczos procedure, we can finally obtain the
Green’s functions Gr

l jα,l ′ j′α′ (ε) and Gr
l ′ j′α′,l jα (ε) essential for

calculating the RKKY interaction by using Eq. (4). In the
numerical calculations, we set η = 0.001|t |, and we find that
the recursive number N = 3000 is sufficient to result in a
converged result.
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III. NUMERICAL RESULTS

A. Pristine graphene

By means of the theoretical method presented above, we
are now ready to calculate the RKKY interaction in graphene.
First of all, it is significant to use the Lanczos method outlined
above to study the RKKY interaction in pristine graphene.
By comparison with the relevant results in previous studies,
the validity of the Lanczos method can be checked. As a
comparative study, in addition to the Lanczos method, we
also adopt the eigenfunction expansion method to obtain the
retarded lattice Green’s function of pristine graphene, with
which the RKKY interaction of pristine graphene can then be
calculated. The main steps to get the Green’s function using
the eigenfunction expansion method are as follows. First,
the electronic eigenfunction of pristine graphene within the
tight-binding model is given by

ψ±
k (r) =

√
1

N

∑
l, j

[c±
A (k)eik·rl jA |l jA〉 + c±

B (k)eik·rl jB |l jB〉],

(20)

with the coefficient

c±
A (k) = 1 + eiaky + ei

√
3akx+aky

2(
2 + 8cos2 aky

2 + 8cos aky
2 cos

√
3akx
2

) 1
2

, (21)

c±
B (k) = ± 1√

2
, (22)

and the corresponding eigenenergies are

E±(k) = ±
(

1 + 4cos2 aky

2
+ 4cos

aky

2
cos

√
3akx

2

) 1
2

, (23)

where ± stands for the conduction band and valence band,
respectively. Then, by expanding the Green’s function Ĝr =
(ε − Ĥ + iη)−1 in the eigenrepresentation, we can readily
obtain the retarded lattice Green’s function used to calculate
RKKY interaction, which can be expressed as

Gr
l jα,l ′ j′α′ (ε) =

∑
k

[
c+
α (k)∗ c+

α′ (k) eik·(rl′ j′α′ −rl jα )

ε − E+ + iη

+ c−
α (k)∗ c−

α′ (k) eik·(rl′ j′α′ −rl jα )

ε − E− + iη

]
, (24)

where the k summation is taken over the whole Brillouin zone.
The numerical results of RKKY interaction of pristine

graphene with the lattice Green’s functions calculated by the
Lanczos and eigenfunction expansion methods are shown in
Fig. 2. We plot JAA(R) and JAB(R) as a function of R = |R|,
with R = rl jα − rl ′ j′α′ being the distance between the two
magnetic impurities. We can see that the results of the two
methods are consistent with each other without a discernible
difference in the total range of |R|. However, the computa-
tion of the lattice Green’s function using the eigenfunction
expansion method is rather time-consuming, in contrast to
the Lanczos method. This is due to the fact that a very fine
k mesh is required to get a convergent result of the lattice
Green’s function as shown in Eq. (24). From the results shown

in Fig. 2, we can see that with the increase of R, the RKKY
interaction follows a R−3 decay rate for both cases of R
going along the armchair and zigzag directions. But in zigzag
direction the RKKY interaction shows a periodic oscillation.
Moreover, the RKKY interaction of pristine graphene is fer-
romagnetic (antiferromagnetic) if the carbon atoms under two
magnetic impurities belong to the same sublattice (distinct
sublattices). All of these features of RKKY interaction of
pristine graphene which we get via the Lanczos method have
been reported in previous studies [34,35]. But an advantage of
the Lanczos method is that it can be used to study the RKKY
interaction in graphene even without the lattice periodicity,
e.g., the graphene bubble.

B. Graphene bubble

In this section we turn to consider the RKKY interaction
in a graphene bubble. Our aim is to uncover the novel fea-
tures of the RKKY interaction in graphene brought about by
the presence of a bubble. In a graphene bubble the lattice
deformation brings about a pseudomagnetic field; hence, the
RKKY interaction in it is expected to be more complicated.

To study numerically the RKKY interaction we assume
that the graphene bubble is charge neutral unless otherwise
specified. In so doing, we set the Fermi energy at the Dirac
point, i.e., EF = 0. According to the relevant literature, we
choose the size of a typical bubble to be h = 3.5 nm and σ =
5 nm [28]. In this context, the most stretched nearest-neighbor
C-C bond length around the half height (r = σ ) of the bubble
is enhanced by about 8.5%, which is far lower than the elastic
tensile limit (25%)[36]. Due to the breakdown of the lattice
translation symmetry, unlike the case in pristine graphene,
the RKKY interaction in a graphene bubble depends on not
only R but also the respective positions of the two magnetic
impurities with respect to the bubble center. Therefore, to
study the RKKY interaction in a graphene bubble, first of
all, we need to specify one magnetic impurity somewhere.
To begin with, we consider the cases in which one impurity,
say, (l jα), is fixed at (0, 0, A) or (0, 0, B), closest to the
bubble center, as shown in Fig. 1(b), while the position of
another impurity, (l ′ j′α′), is altered along the armchair line,
i.e., the y axis. Thus, the RKKY interactions for these cases
in a graphene bubble are functions of R = rαl j − rα′l ′ j′ . And
they are different from each other owing to the different posi-
tions of the fixed impurity. Below we will use the shorthand
Jα,α′ (R) for the RKKY interaction for compactness. From the
numerical results shown in Fig. 3(a) we can see that JAA(R) is
always identical to JBB(−R). Guided by the lattice schematic
shown in Fig. 1(b), we can readily understand that this is
a straightforward result of spatial inversion symmetry of a
graphene bubble.

It is evident that none of the Jαα (R)’s in the graphene
bubble shown in Fig. 3(a) show any nontrivial difference from
the one in pristine graphene in the small-R limit (R < 12a).
However, when R is in a moderate region (12a � R < 60a),
JAA(R < 0) is much larger, but JAA(R > 0) is much smaller
than its counterpart in pristine graphene. For example, as
shown in Fig. 3(a), at R = 45a the former is larger, and at R =
60a the latter is smaller than the corresponding values of the
RKKY interaction in pristine graphene by one and two orders
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FIG. 2. The RKKY interactions JAA(R) along (a) the armchair direction and (c) the zigzag direction and JAB(R) along (b) the armchair
direction and (d) the zigzag direction in pristine graphene as functions of R = |rl jα − rl ′ j′α′ |. The Lanczos method and eigenfunction expansion
method yield consistent results, and the insets are the results in main panel replotted in a larger R range in logarithmic scale in order to show
clearly the R−3 decay law in the large-R limit.

of magnitude, respectively. Note that JBB(R) just shows the
opposite result due to the inversion symmetry, as mentioned
above. Owing to such nontrivial deviations from the RKKY
interaction in pristine graphene, in the moderate-R region the
R−3 decay law breaks down for Jαα (R)’s in the graphene
bubble, although it holds true in pristine graphene [see the
inset of Fig. 3(a)]. The nontrivial differences of Jαα (R)’s in a
graphene bubble from that in pristine graphene arise from the
sublattice polarized electronic occupation of the low-energy
state around the Dirac point in the graphene bubble. It is well
known that in the presence of a uniform magnetic field the n =
0 Landau level of a K valley electron in graphene occupies
only A sublattices [37]. But this effect is fully compensated by
the same Landau level of a K ′ valley electron. However, under
a pseudomagnetic field usually brought about by a strain field,
the full sublattice polarization can be realized since the K and
K ′ valley electrons just feel opposite-oriented pseudomagnetic
fields. Owing to the lattice deformation, a graphene bubble
can also induce a pseudomagnetic field in it, although it is not
uniformly distributed in the bubble. Therefore, we speculate
that sublattice polarization of the electronic states near the
Dirac point (corresponding to the n = 0 Landau level) still
holds true in the graphene bubble. To verify this argument, we

plot the local density of states (LDOS) at two representative
lattice points, i.e., (11,−11, A) and (−11, 11, A). As shown in
Fig. 3(c), such lattice points are close to r ≈ ±σ , respectively,
and the pseudomagnetic field therein reaches the maximal
strength but with opposite sign. From the numerical results
shown in Fig. 3(c) we can see that around the Fermi level
the LDOS at (−11, 11, A) shows a peak, whereas that at
(11,−11, A) shows a gap. Such a result is consistent with the
above argument about the sublattice polarized occupation of
the low-energy electronic state (in the vicinity of the Dirac
point) induced by the pseudomagnetic field. In contrast, as
shown in Fig. 3(d), the LDOS spectra at lattice points near
the bubble center do not show such a feature. This is due
to the fact that the pseudomagnetic field is rather weak near
the bubble center; hence, the sublattice polarization of the
low-energy states almost disappears therein.

The argument of sublattice polarization of the low-energy
states in the strong pseudomagnetic field regions of the bubble
can qualitatively account for most features of the RKKY
interaction in a graphene bubble shown in Fig. 3(a), in com-
parison with that in pristine graphene. For example, for JAA(R)
with the fixed impurity at (0, 0, A), when another impurity
occurs in the positive (negative) strong pseudomagnetic field
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FIG. 3. The RKKY interactions (a) JAA(R) and JBB(R) and (b) JAB(R) along the armchair direction (y axis) in a graphene bubble as functions
of R = |rl jα − rl ′ j′α′ |. In these results one magnetic impurity is fixed at some typical lattice points specified in the legend. The corresponding
result of pristine graphene is also plotted for comparison. The inset replots the results in the main panel in a larger R range in logarithmic scale
in order to show clearly the recovery of the R−3 decay law in large-R limit. The LDOS spectra at representative lattice points: (c) (11, −11, A)
(dotted line) and (−11, 11, A) (solid line) and (d) (0, 0, A) (solid line) and (0, 0, B) (dashed line). In addition, the LDOS of pristine graphene
(dotted line) is plotted in (d) for comparison.

regions on the negative (positive) y axis side, the electronic
occupations of the lattice points under it are greatly enhanced
(reduced) owing to the sublattice polarization of the low-
energy states. Notice the RKKY interaction is mainly deter-
mined by the low-energy states (around the Fermi level); as a
result, it is reasonable that JAA(R < 0) [JAA(R > 0)] is much
larger (smaller) than that in pristine graphene.

In Fig. 3(a) the RKKY interaction JAA(R) for the case
of one impurity is fixed at (−11, 11, A), where the maximal
pseudomagnetic field occurs, and is plotted as a function of
R as the position of another impurity moves up along the y
axis. In comparison with the case of pristine graphene, the
electronic states around the Fermi level A-sublattice polarized
around the fixed impurity due to the pseudomagnetic field
effect. Therefore, it is reasonable that such a JAA(R) shown
in Fig. 3(a) is larger than its counterpart in pristine graphene
when R is not very large. However, with the increase of R,
the second impurity enters another maximal pseudomagnetic
field region on the positive y-axis side, where A-sublattice
occupation is almost forbidden in the electronic states around

the Fermi level due to a pseudomagnetic field orientation
opposite to that in the region where the first impurity is
pinned. As a result, JAA(R) decreases with the increase of
R. As R increases further, the second impurity exceeds the
maximal pseudomagnetic field region on the positive y-axis
side, and the suppression of A-sublattice occupation reduces
gradually. Therefore, as shown in Fig. 3(a), it is reasonable
that the corresponding JAA(R) begins to increase. Last but
not least, as the second impurity moves out of the bubble
(r > 4σ ), called the large-R region, all the RKKY interactions
Jαα (R) shown in Fig. 3(a) recover the R−3 decay rate no matter
where the first impurity settles, although the values of these
Jαα (R) in the large-R limit are different from that in pristine
graphene.

We now turn to discuss the RKKY interaction in a
graphene bubble when two magnetic impurities sit on differ-
ent sublattice points along the y axis (the armchair direction).
In so doing, we consider several typical cases in which the first
impurity is fixed at (0, 0, A), (11,−11, A), and (−11, 11, A)
respectively. Then JAB(R) as a function of R is calculated
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FIG. 4. The LDOS spectra in a graphene bubble at representative lattice points along a zigzag line (a) at (1, 1, A) (solid line) and (1, 1, B)
(dashed line) and (b) at (20, 20, A) (solid line) and (20, 20, B) (dashed line). The RKKY interactions (c) JAA(R) and (d) JAB(R) along a zigzag
line in a graphene bubble as functions of R = |rl jα − rl ′ j′α′ |. The pinned positions of one magnetic impurity for these results are specified in the
legend. The inset replots the results in the main panel in a larger R range in logarithm scale in order to show clearly the recovery of oscillation
with a period of three lattice points in the large-R limit.

when the position of the second impurity varies among the
B-sublattice points along the y axis. The numerical results are
shown in Fig. 3(b). First of all, all of these results for JAB(R)
are antiferromagnetic, which indicates that the presence of a
bubble cannot alter the antiferromagnetic nature of the RKKY
interaction between the different sublattices in charge-neutral
graphene. In addition, the differences of JAB(R)’s in the
graphene bubble shown in Fig. 3(b) from the corresponding
result of the pristine graphene can also be explained by
the aforementioned argument about the pseudomagnetic-field-
induced sublattice polarization of the low-energy electronic
states. For example, as shown in Fig. 3(b), JAB(R) for the
case in which the first impurity is fixed at (−11, 11, A) is
always larger than the result of pristine graphene in the whole
R range. Such a result is attributed to the fact that both
the A-sublattice points in the pseudomagnetic field region of
the negative y-axis side and the B-sublattice points in the
pseudomagnetic field region of the positive y-axis side have
larger occupation probability in the vicinity of the Fermi level,
in comparison with the case of pristine graphene. Finally,
when the second impurity occurs outside of the bubble, all

kinds of JAB(R)’s shown in Fig. 3(b) recover the R−3 decay
rate.

Along a zigzag line across the bubble center, the pseudo-
magnetic field is very weak everywhere, which can be seen by
the calculated LDOS spectra at typical lattice points on such
a line. In Figs. 4(a) and 4(b), the LDOS spectra at (1, 1, A)
and (1, 1, B), two lattice points near the bubble center, and
at (20, 20, A) and (20, 20, B), two lattice points near the half
height of the bubble, are plotted, respectively. No notable
sublattice polarization can be observed in these LDOS spectra.
But these LDOS spectra show, indeed, appreciable differences
from that in pristine graphene, in particular, those in the
half-height region of the bubble. This reflects the fact that the
presence of a bubble can alter the low-energy electronic state
a lot. Then, we fix one magnetic impurity at (0, 0, A) to study
the RKKY interaction JAA(R) as a function of R by altering the
position of another impurity along a zigzag line. The numeri-
cal result is shown in Fig. 4(c). First, we can see that JAA(R >

0) and JAA(R < 0) are identical to each other, which is differ-
ent from the case of JAA(R) along an armchair line, as shown
in Fig. 3(a). More importantly, in comparison with the result
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of pristine graphene, JAA(R) shown in Fig. 4(c) in a graphene
bubble does not show a sizable difference by orders of mag-
nitude. This is consistent with the absence of sublattice po-
larization of the low-energy states along the zigzag line where
the pseudomagnetic field is ignorably small. In spite of the ab-
sence of a pseudomagnetic field, as shown in Fig. 4(c), JAA(R)
in a graphene bubble has notable difference from that of
pristine graphene along a zigzag line. On the one hand, it os-
cillates randomly when the two magnetic impurities are both
in the bubble region. On the other hand, as seen in the inset
of Fig. 4(a), when the second impurity is out of the bubble
(R > 154), JAA(R) oscillates with a period of three lattice
points, the same as the result in pristine graphene. However,
the former is smaller than the latter on average. This result
indicates that the RKKY interaction in a graphene bubble
cannot be completely explained in terms of the sublattice po-
larized electronic occupations under a psuedomagnetic field.
As seen from Eq. (5), the RKKY interaction is not completely
determined by the projections of the eigenstates onto the
specific lattice points. It is also associated with the quantum
coherence between the occupied and unoccupied states near
the Fermi level. We would like to emphasize that the rela-
tionship JAA(R) = JBB(−R) is still valid along the zigzag line.
Therefore, we need not show the result of JBB(−R) in the
zigzag direction any more. In addition, the numerical result
of JAB(R) along the zigzag line is shown in Fig. 4(d). We find
that JAB(R) does not show a significant difference from JAA(R)
except that it is antiferromagnetic and it oscillates in phase
with the result of pristine graphene in the large-R limit.

According to the above results and discussions, it is more
interesting to explore the tunability of the RKKY interaction
in a graphene bubble by altering the bubble size or by carrier
doping. For such a purpose, we put both magnetic impurities
at the maximal pseudomagnetic field regions and choose the
lattice points under them to belong to the occupied sublattice.
Thus, owing to the sublattice polarization the correspond-
ing RKKY interaction is much larger than that in pristine
graphene. More importantly, it is sensitive to the variation
of the bubble curvature. In Fig. 5(a) we show the numerical
results of JAA(R) and |JAB(R)| varying with the bubble height
h while the bubble width is fixed at σ = 5 nm. The two
magnetic impurities are fixed at A′ = (l, j, α) = (22, 11, A)
and A′′ = (l ′, j′, α′) = (−11, 11, A) for JAA(R) and A′ =
(l, j, α) = (22, 11, A) and B′ = (l ′, j′, α′) = (11,−11, B) for
JAB(R). As shown in Fig. 1(b), all these points labeled by A′,
A′′, and B′ are in the maximal pseudomagnetic field region.
We can see that both JA′A′′ and JA′B′ increase with h by more
than two orders of magnitude as the maximal h is still a
proper value. In Fig. 5(b), we show the numerical results
of JA′A′′ (R) and |JA′B′ (R)| varying with the bubble width σ

while the bubble height is fixed at h = 3.5 nm. Note that the
coordinates of magnetic impurities vary with σ in the case
shown in Fig. 5(b). The effect of changing the width of the
bubble is similar to that of changing the height of the bubble.
As σ increases but h is fixed, the curvature of the bubble
decreases. Hence, the strength of the pseudomagnetic field
also decreases, which leads to the diminishing of the RKKY
interaction strength with the increase of σ . In addition, as
discussed above, although the antiferromagnetic coupling of
the RKKY interaction between two magnetic impurities at

FIG. 5. The RKKY interactions for the magnetic impurities fixed
at the typical lattice points A′, A′′, and B′ as labeled in Fig. 1(b).
(a) |Jαα′ (R)| versus h with σ = 5 nm; (b) |Jαα′ (R)| versus σ with
h = 3.5 nm. Note that in (b) the crystal coordinates of magnetic
impurities vary with σ as h is fixed. In the cases of (a) and (b) the
Fermi level is fixed at EF = 0, but in the case of (c) Ef = 0.04t to
account for the carrier doping.

distinct sublattice points is robust in a graphene bubble in the
charge-neutral state, if we shift the Fermi level slightly from
the Dirac point, which implies carrier doping, we can realize a
transition of such a RKKY interaction from antiferromagnetic
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to ferromagnetic coupling by altering the bubble height. Such
a numerical result is shown in Fig. 5(c), where JA′B′ is shown
as a function of h with the Fermi level pinned at EF = 0.04t .
We can see that with the increase of the bubble height, JA′B′

changes, indeed, from antiferromagnetic to ferromagnetic
coupling. Meanwhile, the coupling strength of such a RKKY
interaction increases with h considerably. These results shown
in Fig. 5 indicate that both the strength and the sign of the
RKKY interaction in a graphene bubble can be tuned more
conveniently, in contrast to the case in pristine graphene.

IV. CONCLUSIONS

In summary, by means of the Lanczos method, we have
performed numerical investigations of the RKKY interaction
in a graphene bubble. We have calculated in detail several
typical RKKY interactions in a graphene bubble by changing
the positions and the interval of two magnetic impurities along
both the armchair and zigzag directions. We have found that
the RKKY interaction in a graphene bubble can be larger
or smaller than the corresponding result in pristine graphene
by a few orders of magnitude, depending on the sublattice
attribution and pseudomagnetic field strength where two mag-
netic impurities are positioned, which is due to the sublattice

polarization of the low-energy electronic states induced by
strong pseudomagnetic field. When the magnetic impurities
are both in the bubble region, the R−3 decay rate found in pris-
tine graphene breaks down. But it recovers when one magnetic
impurity is far away from the bubble center, no matter where
another impurity is located. Furthermore, our numerical re-
sults indicate that Saremi’s rule found in pristine graphene
still holds in a charge-neutral graphene bubble. Namely, the
RKKY interaction is ferromagnetic if two magnetic impu-
rities are located on the same sublattice; otherwise, it is
antiferromagnetic. However, when the Fermi level deviates
from the Dirac point by carrier doping, the antiferromagnetic
RKKY interaction between two magnetic impurities located
on opposite sublattices can be inverted to be ferromagnetic
by altering the bubble height. In addition, the strength of the
RKKY interaction can be enhanced by more than two orders
of magnitude with the increase of the bubble height.
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