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Molecular spintronics using single-molecule magnets under irradiation
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We theoretically investigate a single-molecule magnet (SMM) grafted to a quantum dot in contact with
metallic leads and interacting with a resonant electromagnetic radiation. We explore both the explicit time-
dependent behavior and the steady-state current-voltage characteristics of the device when the source lead is
ferromagnetic. At zero-bias voltage, a net current is pumped through the device with the source spin current
being reversed and amplified in the drain lead; this effect also persists for nonzero bias. We explain this effect
in terms of spin transitions in the nanomagnet induced by the resonant radiation followed by their subsequent
relaxation via spin-asymmetric charge-transfer processes. We demonstrate that the same effects are recovered in
the time-averaged current when the device interacts with pulsed resonant radiation. Moreover, within the pulsed
irradiation regime, appropriate choices of pulse length and wait times are shown here to allow the detection of
coherent Rabi oscillations of the SMM spin states, via time-averaged spin current measurements.
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I. INTRODUCTION

Single-molecule magnets (SMMs) are magnetically
anisotropic inorganic complexes with large spin moments
that display a slow relaxation of the magnetization below a
given blocking temperature [1]. When grafted to graphene
quantum point contacts or carbon nanotubes, single-molecule
magnets have been shown to impart highly anisotropic
magnetoconductance hysteresis fingerprints on local electric
currents, providing compelling evidence for the existence
of an exchange interaction between the giant spin of the
SMM and the spin of conduction electrons of the carbon
nanostructure [2,3] or phthalocyaninato quantum dots in the
case of TbPc2 break junction devices [4,5]. SMMs have been
studied in the context of molecular spintronics [6] and show
potential as molecular memory units [7] and spin valves
[3,8] that may eventually form the foundations of complex
spintronic technologies or even more ambitiously, quantum
computers.

Recent spin-polarized scanning tunneling microscopy
(STM) studies of quantum magnets on surfaces have demon-
strated that polarized spin currents can influence and even
flip the nanomagnet’s spin moment via a spin-transfer torque
effect [9,10]. This effect could be used to read or write bits
of information to single nanomagnets in spintronics devices.
A crucial challenge in the development of molecular quantum
spintronics consists of injecting a spin current into a SMM-
based device. To date, a spintronics experiment with this
format has not yet been realized. A feasible strategy to achieve
coupling between a spin current and the quantum spin states of
a single-molecule magnet is to graft SMMs onto the surface
of a graphene quantum point contact since (i) efficient spin
injection in graphene has already been achieved [11,12] and
(ii) coupling between SMMs and a graphene quantum dot
device has been demonstrated [2].
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In this paper we propose and theoretically study a molecu-
lar spintronics setup based on a SMM device under resonant
irradiation. The aim is to perturb the populations of SMM spin
states by inducing simple coherent spin dynamics behavior in
the SMM and assess its influence on the spin current flowing
through a device via the aforementioned exchange interaction,
so that the spin current effectively measures the dynamics
of the SMM spin states under irradiation. In SMM-based
transport experiments, a sweeping magnetic field is often used
in this spirit to probe the incoherent dynamics related to the
slow relaxation of the nanomagnet [2,3,13] but here, by using
resonant electromagnetic radiation, we are able to study also
the coherent oscillatory dynamics of the magnetic subsystem
and its interplay with the dissipative dynamics of the leads.

While the spectroscopy of nanomagnets in the bulk phase is
relatively commonplace, addressing single (or few) molecules
in a spintronic device with radiation is not at all trivial.
Recently, STM tips have been employed in this vein to in-
duce atomically localized time-dependent modulations to the
crystal field of magnetic atoms adsorbed to a MgO/Ag(001)
substrate [14]. Another approach to achieve coherent transi-
tions within a SMM device was demonstrated by Thiele et al.
[5] whereby the nuclear spin states of a single TbPc2 molecule
in a molecular break junction were coupled to resonant mi-
crowave signals via the hyperfine Stark effect. While the
experimental details of inducing resonant coherent transitions
in a nanomagnet spintronics device are intricate and system
specific, a radiation-magnetic dipole coupling is archetypal of
more general coupling schemes (discussed in Appendix A)
that may be utilized in an experimental nanomagnet spintron-
ics setup. In this paper we focus on this simple regime of
radiation-dipole coupling in order to illustrate the interesting
phenomena that can arise from a nanomagnet spintronic de-
vice subject to a resonant, time-dependent perturbation.

We contribute to the already extensive nanomagnet-based
spintronics literature [15–22] by considering a SMM con-
figuration with the potential to work as a spin pump and
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FIG. 1. A schematic representation of electron transport from
a ferromagnetic lead through a quantum dot that is antiferromag-
netically coupled to a SMM subject to resonant radiation. Energy
is supplied to the system to tilt the giant spin of the SMM (thick,
red) allowing a spin-majority electron to charge the device from the
ferromagnetic source. On relaxation, the SMM aligns against the
longitudinal field reversing the spin of the conduction electron as it
is emitted to the nonmagnetic drain.

spin switch. Although noncollinear magnetic molecules have
been previously presented as efficient spin-switching devices
[23,24], the possibility of inducing spin current switching is
presented here via a more general SMM system (i.e., without
invoking specific noncollinear spin configurations). Finally,
we discuss the possibility of reading out Rabi oscillations
between spin states via time-averaged spin-current measure-
ments, a result already observed in experiment between the
nuclear spin states of a TbPc2 molecule, in which case,
however, the device also required a sweeping magnetic field
[5].

In Sec. II we present a model describing the operation of
our SMM-based spintronic device under irradiation utilizing
the density matrix formalism. In Sec. III we show results
from our model when both continuous and pulsed radiation
are applied and discuss the underlying mechanism that leads
to pumping, switching, and amplification of the spin current.
Finally, in Sec. IV we recapitulate and make concluding
remarks.

II. THEORETICAL MODEL

A. Model Hamiltonian

We consider a device (Fig. 1) consisting of a SMM grafted
to a quantum dot that is weakly coupled to two metallic leads.
We include an interaction with a static longitudinal magnetic
field and a gate electrode. At sufficiently low temperatures,
we assume that the device operates in the Coulomb blockade
regime such that charging and discharging to and from the
dot occurs sequentially. We suppose that the onsite Coulomb
repulsion between electrons on the dot is large enough to
exclude doubly charged states from participating in transport
through the device. We also include a coupling between the
total spin of the device and the magnetic component of an
applied radiation.

The total Hamiltonian for the device reads as

H (t ) = HL + HS + V (t ) + HT , (1)

where

HL =
∑
αkσ

(εαkσ − μα )a†
αkσ

aαkσ (2)

is the isolated source and drain Hamiltonian, in which a(†)
αkσ

destroys (creates) an electron in lead α with wave vector
k, spin σ , and energy εαkσ . Here, μα corresponds to the
chemical potential of electrons in the Fermi level of lead α

which is often modulated in experiment by the application
of an antisymmetric bias voltage Vb such that μL = Vb/2 and
μR = −Vb/2. The system Hamiltonian is

HS = −DS2
z +

∑
σ

(ε − eVg)c†
σ cσ

+μBBz(g1Sz + g2sz ) − JS · s, (3)

where S = (Sx, Sy, Sz ) is the SMM spin operator, c(†)
σ an-

nihilates (creates) an electron on the dot with spin σ , and
s = (sx, sy, sz ) is the spin operator for the aforementioned
radical. D is the uniaxial anisotropy characterizing the zero-
field splitting of the SMM spin states, g1 and g2 are the
g factors for the SMM and the dot, respectively, μB is the
Bohr magneton, Bz is the amplitude of a static longitudinal
magnetic field, ε is the one-electron dot-orbital energy, Vg

is the magnitude of an applied gate voltage, and J is the
exchange coupling between the SMM and an electron on the
dot. The tunneling Hamiltonian is simply

HT =
∑
αkσ

T ∗
α a†

αkσ
cσ + Tαc†

σ aαkσ , (4)

where Tα are the tunneling amplitudes for charging and dis-
charging events between lead α and the dot; we neglect the
possibility of direct tunneling between source and drain leads.

We discuss here the simplest radiation-dipole coupling
regime that can induce magnetic dipole-allowed resonant
transitions in the ground spin multiplet of the nanomagnet.
We approximate the magnetic component of radiation prop-
agating along the easy axis of the nanomagnet as a rotating
transverse magnetic field that couples to the giant spin of the
SMM by a Zeeman interaction. We take the field to be rotating
clockwise with a frequency ω in the plane perpendicular to the
easy axis of the SMM so that

V (t ) = g1μBB⊥[Sx cos(ωt ) − Sy sin(ωt )], (5)

where B⊥ is the amplitude of the magnetic component of the
radiation.

After noting that the z component of the total spin operator
(defined by St = S + s) commutes with HS , it is convenient to
enumerate the energy eigenstates of HS with the eigenvalues
of St

z. We use a notation where |n, m〉 denotes an electronic
state of the SMM-dot hybrid with a total spin projection
m and with n electrons occupying the lowest unoccupied
molecular orbital (LUMO) of the dot. The energy eigenstates
of the neutral and charged systems are |0, m〉 ≡ |m〉 ⊗ |vac〉
and |1, m〉± ≡ A±

m |m + 1/2〉 ⊗ |↓〉 + B±
m |m − 1/2〉 ⊗ |↑〉, re-

spectively; the fully polarized states are simply |1, s + 1/2〉 ≡
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|s〉 ⊗ |↑〉 and |1,−s − 1/2〉 ≡ |−s〉 ⊗ |↓〉. The coefficients
A±

m and B±
m are of the form

A±
m = ±|J|

J

√
2�ε(m) ∓ [(2D − J )m − μBBzδg]

2
√

�ε(m)
,

B±
m = |J|

√
s(s + 1) − m2 + 1/4

2
√

�ε(m)
√

2�ε(m) ∓ [(2D − J )m − μBBzδg]
(6)

with �ε(m) = [(μBBzδg/2)2 + μBBzδg(2D − J )m/2 +
D(D − J )m2 + (J/4)2(2s + 1)2]1/2 and δg = g1 − g2.
The energies of the electronic states of the SMM-dot
hybrid are E (0, m) = −Dm2 − g1μBmBz and E (1, m)± =
ε − Vg + J/4 − D(m2 + 1/4) − g1μBmBz ± �ε(m). The
energies of the fully polarized charged states are given by
E (1,±s ± 1/2)+ when 2D − J � 0 and E (1,±s ± 1/2)−
otherwise.

From here we shall be concerned with the 2D − J > 0
regime in which the charged ground states are the antiferro-
magnetic |1,±s ∓ 1/2〉− states. Note that the exchange part
of the Hamiltonian in Eq. (3) mixes states of the SMM-dot
hybrid that conserve the axial projection of the total spin of
the device. Thus, in the antiferromagnetic coupling regime the
charged ground states are linear combinations of SMM spin
states; this is a crucial condition for the operation of the device
as discussed later. We choose Bz < 0 to lift the degeneracy
of both neutral and charged spectra but are careful not to
choose |Bz| so large that the ferromagnetic |1, s + 1/2〉 state
becomes the new ground state of the charged system. Finally,
we impose a level degeneracy condition between the |0, s〉 and
|1, s − 1/2〉− states by choosing a suitable gate voltage Vg so
that |E (0, s) − E (1, s − 1/2)−| = 0.

B. Master equation in a time-dependent resonant field
and stationary current

The reduced density matrix describing the electronic
spin states of the SMM-dot hybrid is defined by ρ(t ) =
TrL{ρ tot(t )} where ρ tot(t ) is the density matrix for the entire
device and TrL{. . . } denotes a trace over states in the leads. A
system of differential equations for ρ(t ) is obtained within the
Born-Markov approximation by making standard manipula-
tions [25] to the Von Neumann equation, however, neglecting
the effect of V (t ) in the unperturbed propagators used to
transform the equations of motion of the density matrix into
the interaction picture. It is self-consistent to neglect the effect
of the radiation in the definition of the interaction picture
provided that the transitions caused by V (t ) are much slower
than the decay of correlations in the leads induced by HT [26].
After retaining only the secular terms in the resultant master
equation (the validity of which is investigated in Appendix B),
the evolution of a reduced density matrix element is governed
by

ρ̇mm′ = −i

h̄
[HS +V (t ), ρ]mm′ +δmm′

∑
l

W l→mρl −γmm′ρmm′ ,

(7)

where ρmm′ = 〈n, m|ρ(t )|n, m′〉 is a matrix element between
eigenstates of HS (we do not consider coherences between
states from different charge spaces and so unambiguously

drop the index n in ρmm′ ), γmm′ = 1
2

∑
l W m→l + W m′→l is the

total decoherence rate, and W l→m = ∑
ασ W l→m

ασ are rates of
charging/discharging (summed over leads and spin) from a
state |n, l〉 to a state |n′, m〉 given by [18]

W l→m
ασ = 
α (1 + 2σPα )

2h̄

⎧⎨
⎩

∣∣cn→n+1
σ,ml

∣∣2
fα (�ml ),∣∣cn→n−1

σ,ml

∣∣2
[1 − fα (�lm)],

(8)

where the upper case applies for charging transitions (n′ =
n + 1) and the lower case applies for discharging transi-
tions (n′ = n − 1). In the expression above, fα (�) = {1 +
exp[β(� ∓ Vb/2)]}−1 is the Fermi-Dirac distribution for elec-
trons in lead α, the argument � is the energy difference
between the relevant charged and neutral states, − (+)Vb cor-
responds to the applied bias voltage at the source (drain) lead,
β = 1/kBT where T is temperature and kB is Boltzmann’s
constant, 
α is the coupling strength between lead α and the
SMM-dot hybrid, and Pα is the spin polarization inherent
to lead α. Finally, cn→n+1

σ,ml = 〈n′, m|c†
σ |n, l〉 and cn→n−1

σ,ml =
〈n′, m|cσ |n, l〉 are the charging and discharging transition am-
plitudes, respectively. Note that W l→m is only nonzero when
the number of conduction electrons is changed by one and the
total spin of the SMM-dot hybrid is changed by one-half, i.e.,
|n′ − n| = 1 and |l − m| = 1/2.

In the Coulomb blockade regime, at low temperatures and
bias voltages, only the |0, s〉, |0, s − 1〉, and |1, s − 1/2〉−
states make significant contributions to the current flowing
through the device and so we focus only on the evolution of
these states. Since the |1, s − 1/2〉+ state will not participate
in transport, we will from now on unambiguously refer to
|1, s − 1/2〉− as |1, s − 1/2〉 in order to ease notation. Due
to the presence of V (t ) inside the commutator in Eq. (7)
we obtain rate equations with an explicit time dependence
in the coefficients of the density matrix elements. This ex-
plicit time dependence can be eliminated [26] by changing
to the rotating reference frame |n, m〉R = eimωt |n, m〉 so that
ρmm′ = eiω(m−m′ )tρR

mm′ . In the rotating frame, the relevant rate
equations take the form

ρ̇R
s =

√
2sg1μBB⊥

h̄
Im

{
ρR

s−1,s

}
+W s−1/2→sρR

s−1/2 − W s→s−1/2ρR
s ,

ρ̇R
s−1 =

√
2sg1μBB⊥

h̄
Im

{
ρR

s,s−1

}
+W s−1/2→s−1ρR

s−1/2 − W s−1→s−1/2ρR
s−1,

ρ̇R
s−1/2 = W s→s−1/2ρR

s + W s−1→s−1/2ρR
s−1

− (W s−1/2→s + W s−1/2→s−1)ρR
s−1/2,

ρ̇R
s−1,s = i

√
2sg1μBB⊥

2h̄

(
ρR

s−1 − ρR
s

)
− i(�s−1,s − ω)ρR

s−1,s − γs−1,sρ
R
s−1,s,

ρ̇R
s,s−1 = i

√
2sg1μBB⊥

2h̄

(
ρR

s − ρR
s−1

)
− i(�s,s−1 + ω)ρR

s,s−1 − γs,s−1ρ
R
s,s−1, (9)
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where �s−1,s = [E (0, s − 1) − E (0, s)]/h̄. We approximate
the coherences in the rotating frame by setting ρ̇R

s−1,s =
ρ̇R

s,s−1 = 0 so that by inverting the last two equations in Eq. (9)
we obtain expressions for ρR

s−1,s and ρR
s,s−1. The imaginary

parts of the coherences are Lorentzian line shapes multiplied
by the difference in the nonequilibrium populations of the two
states involved in the coherent superposition, and are given by

Im
{
ρR

s−1,s

} =
√

2sg1μBB⊥
2h̄

γs−1,s
(
ρR

s−1 − ρR
s

)
(�s−1,s − ω)2 + γ 2

s−1,s

(10)

with Im{ρR
s,s−1} = −Im{ρR

s−1,s}. Note that the Lorentzian line
shapes appearing in Eq. (10) are broadened by the total
decoherence rate γs−1,s, and peaked at ω = �s−1,s, thus defin-
ing the resonance condition for the dissipative system. After
inserting the imaginary part of the coherences into the top two
expressions in Eq. (9) we obtain a 3 × 3 system of differential
equations containing only the diagonal components of the
reduced density matrix in the rotating reference frame. To ex-
plore the stationary current limit, we invoke a further steady-
state approximation and solve for the long-time behavior of
the diagonal components of the density matrix. The solutions
may be transformed back into the rest frame trivially as the
diagonal components of the density matrix do not pick up an
explicit time dependence when shifting between frames.

We calculate the total current and the spin current at lead α

with

I (α)
t = ±e(Iα↑ + Iα↓),

(11)
I (α)
s = ±e(Iα↑ − Iα↓),

respectively, where the plus (minus) sign is used for the source
(drain), e is the elementary charge,

Iασ = W s→s−1/2
ασ ρs + W s−1→s−1/2

ασ ρs−1

− (
W s−1/2→s

ασ + W s−1/2→s−1
ασ

)
ρs−1/2, (12)

and ρs, ρs−1, ρs−1/2 are the rest frame reduced density matrix
elements obtained above.

III. RESULTS AND DISCUSSION

For the purpose of our calculations we have chosen some
reasonable parameters describing an easy-axis spin system
containing all the necessary properties to behave as a SMM
with s = 6, D = 0.02 meV, and J = −0.06 meV. We further
choose Bz = −0.2 T, B⊥ = 2 × 10−3 T, 
S = 
D = 10−3

meV, T = 10 mK, and ω = �s−1,s = 3.5 × 1011 s−1. Vg is
always chosen to impose a level degeneracy condition be-
tween the ground states of the neutral and charged manifolds
rendering ε an arbitrary parameter. We consider a system with
g1 = g2 = 2 but note that the implications of our model are
not restricted by this choice. Variation of g1 will change the
position of the level degeneracy; this can be compensated
for by adjusting Vg. With this choice of parameters, the
resulting energy levels of the neutral and singly charged states
of the device have the structure presented in Fig. 2. It is
particularly important to note that due to the antiferromagnetic
coupling assumed here, the lowest-lying exchange coupled
state is |1, s − 1/2〉 while the ferromagnetic state is thermally
inaccessible for charge transport. We consider the case of an

FIG. 2. Energy levels of the SMM-dot hybrid described by the
Hamiltonian given in Eq. (3) calculated using parameters chosen
above. The neutral states are represented by black dots and the plus
(minus) charged states by upward-facing (red) [downward-facing
(blue)] triangles.

idealized spintronics experiment in which the source lead is
ferromagnetic and spin injection is 100% effective (PS = 1)
while the drain remains nonmagnetic (PD = 0).

A. Continuous radiation

In order to investigate the time-dependent coherent dynam-
ics of the magnetic system induced by the resonant radia-
tion, we first performed brute force numerical integration of
Eq. (7). In addition, numerical integration of Eq. (7) provides
a means to assess the robustness of the approximations leading
to the analytic steady-state solutions obtained for Eq. (9).
Figure 3 shows the time evolution of the relevant diagonal
elements of ρ(t ) obtained at Vb = 0 when the SMM hybrid
is initially prepared in the |0, s〉 state. The radiation induces
damped Rabi oscillations between |0, s〉 and |0, s − 1〉 that
quickly decay to a steady state due to decoherence introduced
by the incoherent charge-transfer process between the the
leads and the open quantum system. We find that the long-time
behavior of these solutions agrees with the analytical solutions

FIG. 3. Time evolution of the ρs, ρs−1/2, and ρs−1 density matrix
elements obtained by numerical integration of Eq. (7) at Vb = 0 with
a ferromagnetic source.
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FIG. 4. The stationary charge current (top) and spin currents at
source and drain (bottom) flowing through the device as a function
of applied bias voltage.

obtained from our treatment of the master equation above,
therefore corroborating the steady-state approximations lead-
ing to Eq. (10). The rate of population transfer between |0, s〉
and |0, s − 1〉 at steady state is related to the imaginary part of
the off-diagonal matrix element given in Eq. (10) and is thus
maximal when ω = �s−1,s. The energy supplied to the device
via continuous irradiation drives a population imbalance in
the neutral manifold leading to the manifestation of several
interesting steady-state transport effects.

Figure 4 shows the stationary charge and spin currents
as a function of applied bias voltage flowing through the
device. A net current is pumped through the device at zero-
bias voltage with the majority-spin current injected from the
ferromagnetic source being completely reversed and ampli-
fied at the drain. When the SMM is prepared in the |0, s〉
ground state via an external magnetic field along the easy
axis but is not irradiated, then charging from the source
can not occur as the ferromagnetic reduced state |1, s + 1/2〉
of the device is thermally inaccessible for transport (see
Fig. 2). One may view this configuration as the high-resistance
state of a molecular spin valve where the single-molecule
magnet acts as a spin analyzer. When energy is supplied to
the system by resonant electromagnetic radiation (see Fig. 1
for a schematic), then the giant spin of the SMM is tilted
via transfer of population to the excited |0, s − 1〉 state. A
spin-majority electron may now charge the device owing
to the nonzero amplitude 〈1, s − 1/2|c†

↑|0, s − 1〉 between

the |0, s − 1〉 and |1, s − 1/2〉 = A−
s−1/2|s〉 ⊗ |↓〉 + B−

s−1/2 ⊗
|s − 1〉|↑〉 states. The only nonzero discharging process that
can take place from |1, s − 1/2〉 is one in which the SMM is
returned to its maximal spin ground state |s〉, and therefore
only discharging of spin-minority electrons is possible, due to
the coherent superposition structure of |1, s − 1/2〉; crucially,
this can occur only at the drain owing to the fully spin-
polarized character of the ferromagnetic source lead. Thus,
even at zero-bias voltage, a spin-switched current is pumped
through the device due to energy supplied via the resonant
radiation and the spin-asymmetric charge-transfer processes
at the ferromagnetic source and nonmagnetic drain. We note
that at low temperatures the |0, s − 1〉 state lies outside of
the conduction window provided that Vb < 2�s−1,s−1/2 =
D(2s − 1) − g1μBBz. As a consequence, when the |0, s − 1〉
is populated as a result of the resonant electromagnetic radi-
ation, the device may also be charged by electrons from the
drain that also undergo a spin reversal before being emitted
back to the drain. Although this process does not contribute
to the net charge current flowing through the device, it does
provide an additional contribution to the negative spin cur-
rent at the drain resulting in an amplification of the drain
spin current. These effects persist for nonzero bias voltage
provided that the bias is not so large as to activate the ferro-
magnetic |1, s + 1/2〉 charged state or to include |0, s − 1〉 in
the conduction window. While the charge pumping described
here is reminiscent of the photon-assisted tunneling already
observed in quantum dots [27,28], we stress that in this setup
it is the SMM that absorbs the radiation in order to overcome
the current blockade rather than the conduction electron.

B. Pulsed radiation

The continuous irradiation model described in the previous
section may present practical challenges in attaining constant
temperature of the system due to heat dissipation involved
by the absorption process. Thus, we also explore a perhaps
more easily realizable experimental setup, investigating the
spintronics problem under pulsed radiation. Accordingly, we
define a timescale tp+w = tp + tw corresponding to a single
pulse-wait sequence. During the interval t ∈ [0, tp] the radi-
ation is switched on and V (t ) is given by Eq. (5), whereas
in the interval t ∈ [tp, tp+w] the radiation is switched off and
V (t ) = 0; this sequence is repeated for multiples of tp+w. We
calculate the average current through the device by numerical
integration of the master equation followed by averaging of
the time-dependent current over an arbitrary number of pulse-
wait sequences occurring after the initial pulse. For clarity,
we define the time average of a function f (t ) over the time
domain T = {t ∈ R | ta � t � tb} by

〈 f 〉T = 1

tb − ta

∫ tb

ta

f (t ) dt . (13)

We focus on the case when Vb = 0 and investigate the depen-
dence of the time-averaged current on the pulse and wait times
tp and tw, respectively.

Figure 5 shows the time-averaged current flowing through
the device at zero bias for values of tp and tw. Even here
we obtain a finite time-averaged charge current for all values
of tp �= 0 which tends toward saturation as tp → ∞ and
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FIG. 5. The time-averaged charge current flowing through the
device at Vb = 0 as a function of various pulse times tp and wait
times tw .

manifests an oscillatory behavior as tp → 0. By increasing
the wait time in-between pulses, we see that the average
charge current per tp+w cycle diminishes and tends to zero for
tw → ∞.

As noted previously, the resonant radiation causes damped
Rabi oscillations between elements of the density matrix (see
Fig. 3) which is consequently reflected in the time-dependent
current. When tp is shorter than the decay of the damped
oscillations, 〈I tot〉T provides piecewise measurements of the
time evolution of the Rabi oscillations between |0, s〉 and
|0, s − 1〉. Conversely, when tp is longer than the decay of the
damped Rabi oscillations, the system is able to reach a quasi-
steady-state limit (as in the continuous irradiation model)
within the pulse phase of each tp+w cycle and, therefore, the
oscillations are averaged out in 〈I tot〉T . During wait sequences
[where V (t ) = 0] the coherences in Eq. (7) become com-
pletely decoupled from the diagonal elements of the density
matrix and the master equation becomes completely soluble
up until the next pulse. Specializing to the 3 × 3 system
discussed above, we solve ρ̇ = Mρ over tp � t � tp+w where
ρ = (ρs, ρs−1, ρs−1/2)T and M is the time-independent rate
matrix describing charging and discharging processes be-
tween the dot and the leads. A great deal of simplification can
be made when Vb = 0 as W s−1/2→s−1 ≈ 0 and W s→s−1/2 =
W s−1/2→s, leading one to discover the eigenvalues of M
as {0,−2W s→s−1/2,−W s−1→s−1/2}. Recalling that the long-
time limit of the system in the absence of resonant radiation
leads to a blockage of current we see that, regardless of tp,
for tw > max(−2W s→s−1/2,−W s−1→s−1/2) no current flows
through the device resulting in a diminishing value of 〈I tot〉T

as tw → ∞.
Although in this section we have focused only on the

time-averaged charge current in the pulsed radiation regime,
we note that the time-averaged spin currents (not shown) are
also switched and amplified at the drain as in the continuous
radiation model. The behavior of the time-averaged spin cur-
rents as functions of tp and tw is mirrored in the discussion
above and so we omit it here. For the device to function
optimally, tp and tw should be chosen such that the |0, s − 1〉
state is sufficiently populated on each tp+w cycle and also such
that heat acquired from the resonant radiation diffuses away
from the SMM before the next pulse. We do not investigate
the added complexity of heat diffusion in this paper.

C. Candidate nanomagnets for the device

In the model presented above, we have made no mention
of the specific SMM that should be used in the junction
as we predict the pumping, switching, and amplification ef-
fects described above to be achievable with any nanomagnet
that is well described by the Hamiltonian given in Eq. (3).
In a practical setting, however, the choice of SMM is far
from arbitrary as the frequency of radiation required for the
m = s → s − 1 transition may also couple to vibrational
modes in the molecule or contribute to other undesirable in-
teractions. Fe4-based nanomagnets could be prime candidates
for the device proposed above as their magnetic properties
are retained following surface deposition [29] and have been
shown to be robust under successive oxidation and reduction
in three terminal devices [30,31]. A first-principles theoretical
study of an Fe4 nanomagnet attached to metallic leads has
furthermore indicated that the magnetic properties of Fe4

are likely to be preserved in such a junction and may enjoy
a modest increase in uniaxial anisotropy on reduction [32].
The aforementioned theoretical work by Nossa et al. partially
corroborates the assumption made by Burzuri et al. [31] in
that Fe4 acquires a S = 9

2 ground state on reduction, implying
an antiferromagnetic coupling between the giant spin of the
magnet and the radical. In addition, the gap between the
ground and excited states on graphene has been reported
∼1 cm−1 which could be probed with microwave radiation
[33,34]. Octanuclear Fe(III) nanomagnets are also good can-
didates for the device since the gap �s−1,s ∼ 4 cm−1 is also
amenable to microwave radiation. In fact, the m = s → s − 1
transition in Fe8 SMM crystals has already been probed with
pulsed microwave radiation in previous studies [35–39]. The
required radiation-induced transition in Mn12 could also be
achieved with microwave radiation as it has been reported to
possess a �s−1,s of ∼9 cm−1 [40]. Cr7M (M = Cd, Mn, Ni)
molecular wheels may also be excellent candidates for our
device given their stability on surface deposition [41,42] and
under microwave radiation [43,44].

IV. CONCLUSION

We have proposed a model for electron transport through a
SMM nanostructure under irradiation in the Coulomb block-
ade regime. We demonstrated that a spin current is pumped
through the device at zero-bias voltage when coupled to a
ferromagnetic source as a result of radiation-induced transi-
tions in the SMM followed by spin-asymmetric discharging
at the source and drain leads. In addition to this spin-pumping
effect, we find that the spin-polarized current pumped from
the source is reversed and amplified at the drain even when
Vb �= 0. We also investigated the behavior of the device under
pulsed irradiation and discussed the time-averaged current as
a function of pulse length and wait time. We find that for
long enough pulse lengths and short wait times the station-
ary current results are recovered. Interestingly, however, for
short pulse lengths and long wait times we also find that
the proposed device can be used to measure coherent Rabi
oscillations between the SMM spin states, which could offer
an as yet unexplored strategy to integrate SMM-based spin
qubits into spintronics circuits.
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APPENDIX A: ALTERNATE RESONANT PERTURBATION
COUPLING SCHEMES

Throughout this paper we have discussed the spin-transport
dynamics imparted to a SMM-dot hybrid device with a spe-
cific radiation-dipole coupling scheme [see Eq. (5)]. A more
general coupling between the magnetic states of the SMM
and a resonant coherent perturbation can be achieved with the
Hamiltonian

VN (t ) = ν[SN
+eiωt + SN

−e−iωt ], (A1)

where N ∈ N and ν is some constant specific to the applied
resonant perturbation in a given experimental setup. Note
that Eq. (5) is recovered from Eq. (A1) when N = 1 and
ν = g1μBB⊥. To investigate the consequences on the spin-
transport dynamics of the device when the ground spin state
|0, s〉 is coherently and resonantly coupled to an excited spin
state |0, s − N〉 with N > 1, we proceeded as in the main
text and developed a master equation for the reduced density
matrix elements akin to Eq. (7), but with the substitution
V (t ) �→ VN (t ). Using the parameters from Sec. III with ω =
�s−N,s, we computed the zero-bias steady-state spin currents
at the ferromagnetic source and nonmagnetic drain elec-
trodes for several values of N and nanomagnet spin quantum
numbers s.

If N > s, the resonant perturbation will induce popula-
tion transfer over the nanomagnet anisotropy barrier thus
quenching the spin pumping, switching, and amplification
effects described above. Multiple excitations caused by VN (t ),
while occurring on the slowest timescales can, in the steady-
state limit, also result in population transfer over the barrier
even when N < s; these processes are suppressed, however,
with increasing s or D. Provided that N is not too large
with respect to the barrier height, Fig. 6 demonstrates that
coupling the ground state |0, s〉 to excited states with axial
spin projections less than s − 1 with a resonant perturbation
can still give rise to the current pumping, switching, and
amplification effects described in the main text. As N is
increased, these effects are augmented owing to the multistep

FIG. 6. Zero-bias steady-state spin currents at the source and
drain electrodes for SMM devices with various spin quantum num-
bers s and resonant perturbations VN (t ).

charging/discharging cascade that is required to relax the
nanomagnet from the excited state |0, s − N〉 to the ground
state |0, s〉. For example, consider a resonant perturbation
that couples |0, s〉 and |0, s − 2〉: after each excitation from
the ground state to |0, s − 2〉 relaxation proceeds via the
charging/discharging cascade |0, s − 2〉 → |1, s − 3/2〉− →
|0, s − 1〉 → |1, s − 1/2〉− → |0, s〉. In this example, two
electrons much sequentially charge and discharge from the de-
vice both with their individual spin moments switched hence
leading to a larger spin current than observed in the N = 1
case. Finally, we note that for the nanomagnet spintronics
setup outlined here with a resonant perturbation VN>1(t ),
calculation of the steady-state spin currents can be reduced
to that of the effective three-state model described in the
main text with only the lead-dot coupling 
α renormalized to
account for the multistep charging/discharging cascade.

APPENDIX B: NONSECULAR RATE EQUATION

In order to confirm the validity of the secular approxima-
tion leading to Eq. (7), we performed a numerical integration
of the full nonsecular quantum master equation. The evolution
of a reduced density matrix element is

ρ̇mm′ = −i

h̄
[HS + V (t ), ρ]mm′ + (Rρ)mm′ , (B1)

where R controls the full nonsecular dynamics of the device
owing to the dissipative effects from coupling to the leads and
is given explicitly by

(Rρ)mm′ =
S,D∑
α

↑↓∑
σ


α (1 + 2σPα )

4h̄

{
n+1∑
kl

cn+1→n
σ,ml ρlkcn→n+1

σ,km′ [2 − fα (�lm) − fα (�km′ )]

+
n−1∑
kl

cn−1→n
σ,ml ρlkcn→n−1

σ,km′ [ fα (�ml ) + fα (�m′k )] −
n∑
k

n+1∑
l

fα (�lk )
(
cn+1→n
σ,ml cn→n+1

σ,lk ρkm′ + ρmkcn+1→n
σ,kl cn→n+1

σ,lm′
)

−
n∑
k

n−1∑
l

[1 − fα (�kl )]
(
cn−1→n
σ,ml cn→n−1

σ,lk ρkm′ + ρmkcn−1→n
σ,kl cn→n−1

σ,lm′
)}

. (B2)
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We found the numerical solutions to Eq. (B1) to be indistin-
guishable from those that result from a quantum rate equation
containing only secular terms (Fig. 3). The secular approx-
imation is thus justified for this system as the nonsecular

dynamics of the coherences induced by the dissipative effect
of the leads occurs on a much faster timescale than the time
evolution of the populations ρm and as such are canceled out
upon integration.
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