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We present experimental and theoretical studies of the anomalous high transmission of light (the Borrmann
effect) under the Laue diffraction in a one-dimensional photonic crystal (PhC) characterized by spatial
modulation of both refractive index and absorption. We show that a strong modulation of the refractive index
along with the large PhC period provide new features of the Borrmann effect as compared to the well-known
x-ray Borrmann effect in crystals appearing in PhC wavelength-angular transmission spectra. Namely, the
maximal transmission is attained at the Bragg angles of incidence and corresponds alternatively to even or odd
orders of the Bragg angles depending on the light wavelength. Second, a dramatic decrease of the angular width
of the high transmission areas in the spectrum appear near the diabolic points. According to our description, this
effect can be treated as a result of the topological phase transition accompanied by exchange of the parity of
spatial distribution of the electromagnetic field of the two eigenmodes experiencing degeneracy. We demonstrate
that these peculiarities are inherent to the PhC with the optical losses located in layers with higher refractive
index, and disappear if the losses are specific for the PhC layers with lower refractive index. The suggested
underlying mechanism involves the contribution of the waveguide PhC modes to the PhC transmission spectra.
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I. INTRODUCTION

The interaction of electromagnetic radiation with periodic
systems has been a popular research topic for many decades.
The first studies in this field were based on the x-ray diffrac-
tion in crystals where the existence of ordered atomic planes
led to a number of effects. Among those, one of the most
known phenomenon is the Borrmann effect consisting of
the suppression of the absorption of the x rays propagating
through the crystal at the Bragg angle of incidence in the trans-
mission geometry (the so called Laue geometry) [1–3]. The
effect was used in x-ray polarizers [4], monochromators [5],
and was considered for applications in gamma-ray laser [6].
It is at Bragg diffraction that there are two strong waves of
zero and first diffraction orders, superposition of which forms
two electromagnetic modes in the crystal [7]. One of the
modes, called the anti-Borrmann one, is localized on atomic
planes, suffers strong photoelectric absorption, and decreases
faster than the second mode, called the Borrmann one. In
turn, the Borrmann mode is localized between the atomic
planes of a crystal, so it experiences low absorption and
propagates for many attenuation lengths giving anomalous
high transmission.

Following the direct analogy between the interaction of
the x rays with crystals and of visible light with periodic
dielectric systems, the Borrmann effect was revealed at the
Laue diffraction of light in holographic gratings formed in
a several microns thick photographic emulsion and dyed
crystal [8–11]. It was also observed in one-dimensional (1D)
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porous silicon based photonic crystals (PhCs) and studied for
different mechanisms of losses such as absorption and light
scattering [12]. The phenomenon similar to the Borrmann
effect was observed at lateral mechanical shifting of light-
induced absorption grating in a photochromic material [13].
In the last years, studies of the Laue diffraction in 1D PhCs
brought plenty of optical effects such as the pendulum effect,
which allows the optical switching based on the coupling of
diffraction waves of different orders in PhC [14]; angular
asymmetry of the pendulum effect with respect to the angle
of incidence in PT-symmetric 1D PhC with the gain and
losses [15]; temporal femtosecond pulse splitting [16,17];
and phase- and quasiphase-matched second harmonic genera-
tion [18–20]. These phenomena specific for the Laue diffrac-
tion are rather perspective for the light manipulation.

The analog of the Borrmann effect appears as well in
another diffraction scheme, the so called Bragg one, at the
spectral edges of the PhC photonic band gap (PBG). In
that case the light localization inside the PhC is different
for the short- and long-wavelength PBG edges, forming the
nodes of the electromagnetic field inside or between the
absorbing layers, so that the anomalous transmission ap-
pears in the spectral range that corresponds to one of the
PBG edges. Experimentally it was confirmed for circularly
polarized light in cholesteric liquid crystals [21] and ones
with an admixture of dichroic molecules [22–26]. Besides,
the Borrmann effect may appear in higher dimensional PhC
structures such as two-dimensional (2D) PhC [27] and metal-
infiltrated opals [28,29]. It is worth noting that localization of
light in high refractive index layers at the long wavelength
PBG edge can be inverted in high-contrast PhC leading to
inverse Borrmann-like effect [30]. Anomalous transmission is
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possible as well in periodic media with modulation of losses
and a homogeneous real part of the refractive index, as was
revealed in optics [31] and acoustics [32].

The Borrmann effect allows one to minimize the optical
absorption at definite wavelengths and thus to amplify optical
and nonlinear optical effects. Good examples here are the
enhancement of the Faraday effect in 1D magnetophotonic
crystals due to the reduction of the absorption in magnetoac-
tive layers [30,33,34], and of self-focusing in 1D nonlinear
PhC consisting of alternating linear and nonlinear layers [35].

Optical effects in PhCs are governed by the properties of
the band structure. In recent years, the concept of topological
invariants initially developed in condensed matter physics was
transferred to optics, so that the Chern number, Zak phase and
Z2 invariant, which classify the pass bands in the bulk of a
spatially periodic material, were used for the construction of
photonic topological insulators [36]. These structures support
the existence of the edge states that are robust against pertur-
bation, lattice disorder, and are backscattering immune [37].
Discontinuous variations of the topological invariants at pass-
ing of the system through the band degeneracy make the
crossing points of the band structure important for obtaining
nontrivial band gaps, creation of the edge, and resonant states
at the interfaces of topologically distinct structures. Such
states were distinguished in optics [38–42], acoustics [40,43],
and mechanics [44].

The possibility of light routing by means of the edge states
tolerant to the structure imperfections inspires the studies of
the topological phenomena in 2D and three-dimensional (3D)
photonic systems. Since the discovery of the optical analog
of the quantum Hall effect [45] exploiting breaking of the
time-reversal symmetry in gyromagnetic material subjected
to a magnetic field, different approaches were developed to
eliminate the usage of weak magneto-optical effects for the
robust light transport. In particular, an asymmetric hopping
phase in a 2D array of coupled ring cavities was used for
generating a synthetic magnetic field that led to topologically
nontrivial PBGs [46,47]. The inversion symmetry breaking
in gyroid 3D PhCs [48] or 3D helical waveguide arrays [49]
leads to the appearance of nontrivial band structure associated
with the paired Weyl points, which is a 3D linear point
degeneracy between the two bands [43,48,50]. In this case,
topologically protected 2D chiral surface modes are guaran-
teed by the Fermi arc connecting these degeneracy points with
the opposite chirality.

Photonic structures of lower dimensions, such as 1D PhCs,
can demonstrate topologically protected edge states as well
by tuning the surface impedance. Topological properties of
the photonic bands of 1D PhCs with inversion symmetry
are described by the Zak phase, which is a 1D analog of
the Berry phase [51] accumulated by an eigenstate at its
movement across the Brillouin zone. The Zak phase is related
to the surface impedance [39] and can be determined from
the reflection phases in the band gaps [52]. The band gap
closing and reopening change the surface impedance and
switch the Zak phase, allowing one to realize a resonant
edge state at the interface of two topologically distinct 1D
PhCs [40,41,53]. This approach was used to predict the edge
states in hybrid plasmonic-photonic systems consisting of
graphene layers [42], as well as giant enhancement of the third

harmonic generation in a plasmonic film placed between two
PhCs [54] and laser generation in a PhC nanocavity [55].

In the absence of the inversion symmetry of the 1D PhC
an additional concept for the realization of the edge states at
the PhCs/substrate interface was proposed, which is based
on the synthetic Weyl points in the 3D parameter space (the
Bloch wave number and two unit cell parameters) instead of
momentum space [56,57]. The existence of the interface states
is guaranteed by the vortex structure of reflected light phase
around a synthetic Weyl point.

As opposed to solid state physics, photonic systems have
intrinsic losses related to light scattering, leakage, absorption,
or gain. Non-Hermiticity gives one the possibility to study the
topological transition employing the bulk dynamics instead of
probing the surface states. This approach was used to demon-
strate the winding number of a 1D topological waveguide
system [58]. Non-Hermiticity leads also to the appearance of
the exceptional points (EPs) or branch points that are another
type of the band degeneracies [59]. The EPs are accompanied
by a number of unusual topological phenomena such as mode
switching at encirculating EP [60,61], generation of the half-
integer vector-vortex beams [62], the exceptional ring in 2D
PhC [63], and the bulk Fermi arc connecting paired EPs in 2D
PhC, which originates from non-Hermiticity rather than the
Weyl points in 3D PhC [62].

In the context of the topological photonics, the parity-
time (PT ) symmetric structures are of particular interest as
a special class of non-Hermitian photonic systems combining
gain and loss, and resulting in real eigenvalue spectra despite
their non-Hermiticity. In 1D PT -symmetric PhCs the angular
asymmetric pendulum effect and asymmetric wave enhance-
ment [15,64], and unidirectional pulse splitting effect [65],
were predicted at the Laue diffraction, while the unidirectional
reflection and asymmetric transmission phase [66] were re-
vealed at the Bragg diffraction scheme.

In this work we study the Borrmann effect at the Laue
diffraction in absorptive 1D PhC under the topological phase
transition. The PhC is designed to demonstrate multiple cross-
ing points in the band structure due to the inversion symmetry,
sufficiently high refractive index contrast, and large PhC
period. In the crossing points the band inversion takes place,
which is described as the topological transition associated
with a discontinuous jump of the Zak phase and the symmetry
change of the eigenmodes. We demonstrate that it leads to
several pronounced peculiarities of the Borrmann effect in
photonic structures in contrast to that in the x rays. We show
that incorporation of slight optical losses to the PhC making it
a non-Hermitian system allows us to visualize the topological
transitions using the bulk properties of the PhC instead of
the interface states, which were used in previous works on
the topological properties of 1D PhCs. As well we revealed
crucial difference of the light transmission through the PhCs
as the losses are specific to the layers with high or low
refractive indices. Our work complements the studies of the
topological properties of 1D PhC performed mostly in the
Bragg diffraction geometry. To the best of our knowledge,
the topological properties of light transport in 1D PhCs at
the Laue diffraction scheme were not studied thoroughly
especially in the aspect of lossy PhCs and the Borrmann
effect.
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The rest part of the paper is organized as following:
Sec. II describes the procedure of the samples’ fabrication
and the experimental results, Sec. III presents the theoreti-
cal description of the observed peculiarities and prediction
of the qualitative changing of transmission at switching of
absorbing layers to low refractive index ones, followed by the
conclusions.

II. EXPERIMENTAL DETAILS

The studies were carried out for the 1D PhC with the
two-layered elementary cell fabricated by electrochemical
etching of silicon described in detail elsewhere [67]. In brief,
a p++ boron-doped silicon wafer with (001) orientation and
resistance of ρ = 0.005 � cm served as the anode in the two-
electrode electrochemical cell, the cathode was a flat tungsten
spiral, and 28% hydrofluoric acid solution was used as an
electrolyte. Electric current application through the cell led to
the random growth of the pores inside the Si wafer oriented
along the [001] crystallographic axis (perpendicular to the
wafer-liquid interface). Using the dependence of the porosity
of silicon on the current density j, the meanderlike periodical
temporal j modulation with the values j1 = 16 mA/cm2

and j2 = 170 mA/cm2 gave the layered structure. Then the
current with the high density of 1 A/cm2 was applied in order
to get the free-standing PhC, which was later dried at ambient
conditions. The obtained PhC consisted of 240 alternating
layers with equal thicknesses of d1 = d2 = 1450 nm, their
porosities being p1 = 0.57, p2 = 0.73, and the pore diameters
of δ1 = 19 ± 8 nm, δ2 = 65 ± 28 nm as measured by a low-
temperature nitrogen adsorption technique. Since pore sizes
are considerably smaller than the light wavelength, optical
properties of the silicon-air composite layers of the PhC were
described by the effective refractive indices n1(800 nm) =
2.00 + i2.2 × 10−3, n2(800 nm) = 1.50 + i0.8 × 10−3.

At the next stage, thermal annealing of the PhC was
performed at the temperature of 750 ◦C for 30 min. These
parameters were chosen to provide the full annealing of the
high porosity layers to porous silica, while low porosity layers
were partially annealed and consisted of silica, silicon, and air.
The spatial periodicity of silicon distribution in the PhC was
confirmed by luminescence microscopy [12]. The annealing
increased the optical transparency of the PhC making it con-
venient for carrying out transmission optical experiments, and
increased as well the depth of the absorption coefficient modu-
lation making the light penetration through the periodic struc-
ture more sensitive to the light localization inside the PhC.
Finally, the refractive indices of the PhC were n1(800 nm) =
1.76 + i1.6 × 10−3, n2(800 nm) = 1.11 + i2 × 10−5, the lay-
ers’ thicknesses d1 = d2 = 1450 nm, the period was d =
d1 + d2 = 2900 nm, and the geometrical sizes: length L =
500 μm, width w = 350 μm, height 5 mm (Fig. 1).

It is necessary to note that light losses take place in low
porosity absorptive layers, while high porosity layers are
transparent and have negligibly small losses associated with
the light scattering in pores. Interfaces between the layers of
different porosity are well defined; SEM images of the PhC’
edge show that the roughness of these interfaces is about
40 nm, which is much smaller than the wavelength of light
used in experiments.

FIG. 1. Scheme of the experimental setup. The used elements:
GP: Glan prism, BS: beam splitter, NF: neutral filter, PD: photodi-
odes, RS: rotation stage, S: slit.

The scheme of the experimental setup is shown in Fig. 1.
The s-polarized beam of a continuous wave titanium-sapphire
laser tunable in the wavelength range of λ = 720–890 nm was
focused on the sample to a spot of about 90 μm in diameter
by a lens with the focal distance of f = 25 cm. It gave the
confocal parameter of the focused beam of 14 mm that is
considerably smaller than the PhC length L. The sample was
mounted on the rotation stage. The photodiode with large
sensitive area of 78.5 mm2 placed close to the end facet of the
PhC gathered the radiation passed through the PhC including
all diffraction maxima.

Figure 2 shows the angular dependencies of the PhC total
transmission for different light wavelengths λ on the tangen-
tial component of the incident wave vector kx = k0 sin(θ ),
where θ is the angle of incidence and k0 = 2π/λ is the
vacuum wave number. In Fig. 2(a) each of the horizontal
cross sections of the transmission is normalized to its own
maximum for better visibility of the data, which avoids the
spectral dependence of the light absorption of silicon that
influences the registered transmission. Figure 2(b) shows the
cross sections of the data plotted in Fig. 2(a) for the wave-
lengths of 770 and 812 nm without normalization. One can
see a set of maxima that corresponds to the Bragg angles
θm of different orders m defined as 2d sin(θm) = mλ, m ∈ Z,
which correspond to kx = mh/2, h = 2π/d being the length
of the PhC reciprocal lattice vector, manifesting the optical
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FIG. 2. (a) Spectral-angular dependence of the normalized trans-
mission of the PhC; kx = (2π/λ) sin(θ ) is the tangential component
of the incident wave vector, θ is the angle of incidence, λ is the
wavelength of light, h = 2π/d is the reciprocal lattice vector, and
d is the PhC period. Solid orange lines correspond to the light cone,
vertical dashed lines to kx = h/2m, where m is the order of the Bragg
angle. (b) Cross sections of (a) for 770 and 812 nm wavelengths.
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FIG. 3. Spectral dependencies of (a) the amplitudes of the max-
ima m = 0 and m = 1, and (b) FWHM of the central transmission
maximum near θ = 0◦.

Borrmann effect. Importantly that the large lens focal distance
(25 cm) in our experiments was chosen in order to provide
the spatial spectrum of the focused beam (σb ≈ 0.4◦) to be
narrower than the typical width of the transmission maxima
(σm ≈ 3.5◦). This, more than 8 times difference of the widths
σb and σm, gives high enough visibility of the angular trans-
mission maxima.

It stems from Fig. 2 that depending on the light wavelength
the transmission maxima correspond to the Bragg angles of
odd or even orders m. To reveal this clearly, each cross section
is fitted by a superposition of the required number of Gaussian
curves. The obtained spectral dependence of the amplitudes
of the two maxima m = 0 and m = 1 is shown in Fig. 3(a).
The amplitude of the central maximum (m = 0) dominates
for short wavelengths (λ < 800 nm), while the amplitude for
m = 1 dominates for long wavelengths (λ > 800 nm), mani-
festing the swap of high transmission between odd and even
Bragg order maxima at wavelength changing. This exchange
is affected by the decrease of the absorption of Si nanograins
with increasing wavelength, which leads to fast growth of the
transmission amplitudes as shown in Fig. 3(a). Moreover, in
the case of domination of the maxima of even orders, the
anomalous transmission appears at normal incidence as well.
We note that for the x rays in crystals the anomalous trans-
mission is absent for the normal incidence since the Bragg
diffraction does not occur and nonuniform field distribution
in the crystal is not formed. The observed feature appears due
to high refractive index contrast of the PhC, which turns out to
be enough for the formation of nonuniform field distribution
even at normal incidence as described below.

Another peculiar effect to be discussed is the spectral
dependence of the angular width of even-order transmission
maxima on the light wavelength, which demonstrates the
minimum at 808 nm [Fig. 3(b)]. The observed narrowing is

at least 3 times, as can be seen in Fig. 3(b). It is worth noting
that the waist of the beam at this wavelength is smeared by
the finite divergence of the incidence beam σb and possibly
by irregularities of PhC’s input edge surface that arose at PhC
cleaving. It can be reduced further by the surface flattening
and if a focusing lens with longer focus is used.

To the best of our knowledge, the revealed features of
the light transmission through the PhC have not been de-
scribed previously and demonstrate peculiarities if compared
to known results of the x ray and the optical Borrmann effects.
As is shown in the theoretical part below, these features can
appear only for the PhC with high refractive index contrast
and large PhC period as compared to the probe wavelength,
thus they are peculiar to photonics rather than to the x rays.

III. THEORETICAL DESCRIPTION

The calculation of the light diffraction in the PhC was
carried out by means of the rigorous coupled-wave analysis
(RCWA) [68], which is based on the Fourier expansion of
the electromagnetic fields and of the dielectric function of
the PhC. The simulation was carried out for the PhC with the
same parameters as in the experiment (see Sec. II) and when
neglecting the dispersion of the complex refractive indexes of
all the constituent materials. In this approximation the spectra
are more clear, while their main features remain qualitatively
the same. Figure 4(a) shows the calculated spectral-angular
total transmission of the PhC, the shaded area indicates the
spectral region studied in the experiment. The spectrum
demonstrates a set of high transmission angular maxima cen-
tered at kx = mh/2, which correspond to anomalous transmis-
sion not only at the Bragg angles but at normal incidence
as well, which agrees with the experimental observations.
Moreover, the calculated spectrum reveals alternation of the
maxima at the Bragg angles of even and odd orders when
the wavelength is changing. So the maxima are staggered in
the spectral-angular space as in the experiment [Fig. 2(a)].
We note that there is a difference between the experimental
and numerical results, namely the appearance of odd order
maxima in the experimental spectrum at smaller wavelength
as compared to the numerical one. This difference stems
from the dispersion of absorption of Si inclusions that are
present in the PhC as was mentioned above. Each maximum
is a bowtielike and has the waist at the wavelength denoted
hereafter as λ∗, where the angular width of the maximum is
the smallest and transmission changes abruptly with small
angular variations close to the corresponding Bragg angle,
which confirms experimentally observed narrowing of the
maxima [Fig. 3(b)]. In Fig. 4(a) these wavelengths are indi-
cated by λ∗

m1,1. Note that the nodal points along the horizontal
line correspond to the same wavelength λ∗. Additionally we
emphasize that transmission in nodal points remains high
and only the angular width of the transmission maximum is
minimal.

The mechanism underlying the appearance of bright spots
in the PhC transmission spectra, which correspond to the
Borrmann effect, is related to diffraction-induced nonuniform
field distribution in the PhC. For the description of this effect,
we analyzed the eigenmodes of light in the PhC. In what
follows we consider the central maximum in the shaded area

245403-4



BORRMANN EFFECT IN LAUE DIFFRACTION IN … PHYSICAL REVIEW B 99, 245403 (2019)

FIG. 4. (a) Calculated spectral-angular dependence of the total transmission of the PhC. The shaded region corresponds to the Ti-Sa laser
tuning range. Solid orange lines correspond to the light cone. λ∗

m1,1 is the wavelength of diabolic point (m1, 1) defined by Eq. (3). (b) Projected
band diagram of the PhC. The index γ indicates the serial number of dispersion sheet. Dashed and solid lines are the spectral dependencies
of the normalized propagation constants Re(qz/k0 ) of the modes in the center and edges of the Brillouin zone of the PhC, respectively. The
crossing points (circles) are labeled by pair of integer numbers (m1, m2) according to Eq. (3). The “+” symbol indicates the transition to the
waveguide propagation at λwg

m1
where the integer m1 is near the symbol “+”. The highlighted regions indicate the parts of dispersion curves,

which give the transmission maxima.

shown in Fig. 4(a) that fetches out the experimentally accessi-
ble spectral region; the analysis remains valid for other spec-
tral maxima as well. Each TE-polarized mode with the electric
field parallel to the y axis is the Bloch mode Eγ (x, z) =
Aγ (x) exp(iq(γ )

z z) exp(ikxx) characterized by the propagation
and attenuation constants [Re(q(γ )

z ), Im(q(γ )
z )], the ampli-

tude spatial distribution Aγ (x), and number γ of the Bloch
mode.

To describe the observed angular narrowing and wave-
length boundedness of the maxima, we analyze the depen-
dencies of the mode losses and field distribution on kx for
the wavelength λ∗ that corresponds to the nodal point of the
central maximum in the shaded region in Fig. 4(a) and on
the wavelength at kx = 0, i.e., in horizontal and vertical cross
sections of Fig. 4(a) passing through the nodal point of the
central maximum. The isofrequency curves of light in the
PhC, which are the dependencies of the real and imaginary
parts of q(γ )

z on the tangential component of the wave vector
kx, are shown in Figs. 5(a) and 5(b) at λ = 808 nm � λ∗,
which corresponds to almost the closed gap between the sixth
and seventh isofrequency curves. At the crossing point, the
gap is closing and the modes have the same phase velocities.

High values of the refractive index, as well as of the
PhC period compared to the considered light wavelengths,
result in the appearance of a large number of modes that
equals 11 for the considered PhC. At the same time, the
transmission through the PhC is specified by very few of
them. This is illustrated by Figs. 5(a) and 5(b) showing the
dispersion of the real and imaginary parts of q(γ )

z . Indeed
the first five modes with γ = 1–5 reveal flat isofrequency
curves that correspond to the waveguidelike propagation of
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light in PhC. For example, the orange curve in Fig. 5(c)
shows the localization of the waveguide modes with γ = 2
in the high refractive index layers, where the absorption is
introduced by Si nanocrystals present in partially annealed
layers. So the waveguide modes have a high attenuation
constant comparable to the one of the bulk material with
the refractive index n1, and is about 1.6 × 10−3 [Fig. 5(b)].
Higher order modes have high attenuation constants as
well.

We assert that for a particular λ∗ wavelength the smallest
attenuation in the PhC is realized at crossing of the two
modes with Re(qz/k0) � n2 [Fig. 5(b)]. It is near this prop-
agation constant one of the crossing modes is localized in
low absorption layers with the refractive index n2. In the
considered case, the mode with γ = 6 possesses the single
antinode in low refractive index layers and a small field
amplitude in absorbing layers [Fig. 5(c)]. Consequently, this
mode has very small absorption, which is 16 times smaller
absorption as compared to that in bulk material with n1

[Fig. 5(b)]. So the light transmission through the PhC for
the critical wavelength λ∗ is high chiefly due to the pres-
ence of the sixth mode, which has the smallest losses, while
other modes decay rapidly and do not reach the output PhC
facet.

The angular width of the attenuation constant dip of
the sixth mode defines the width of the transmission max-
ima. It is minimal for the gap closing at the wavelength
λ∗ and leads to the appearance of the nodal points in the
spectral-angular dependence of the transmission. Rapid an-
gular changing of Im(qz ) in vicinity of the crossing point
is attributed to variation of the electromagnetic field of the
mode at kx deviation from 0,±h/2, . . ., at which strongly
localized modes transform to weakly localized ones having
comparable field amplitudes in absorbing and nonabsorbing
layers. This field transformation will be demonstrated fur-
ther when discussing the topological phase transition in the
PhC.

So high sensitivity of the light absorption and localiza-
tion is related to the linear dispersion near the crossing
point, where the dispersion surfaces are the double cone
(diabolo) with the apex at the degeneracy frequency, so
that the crossing point is known also as the diabolic one
[Fig. 6(a)]. Linear dispersion in the diabolic point can be
confirmed directly from the Taylor series of Eq. (1). In that
case, the angular region (kx range) of the Bragg diffrac-
tion associated with bending of the dispersion surface near
the center or edge of the Brillouin zone goes to zero and
therefore leads to a narrow Bragg diffraction region and
thus to the appearance of a nodal point in the transmission
spectrum.

More accurately, the band degeneracy in a PhC made
of lossy materials is achieved along the arc in (kx, qz )
plane instead of the point. Its known effect resulted from
the non-Hermite perturbation [59] and was exploited in
2D PhCs [62,63]. Nevertheless, when taking into ac-
count that the absorption in the considered PhC is rather
low, in what follows we will consider the pointlike band
degeneracy.

We obtain the position of the crossing points by con-
sidering the explicit expression of light dispersion in a 1D

FIG. 6. (a) Dispersion surfaces γ = 6, 7 and projected band di-
agram for s-polarized light in the PhC. The red (blue) line indicate
even (odd) eigenstates. The color map is the difference of frequencies
of the two surfaces. Inset illustrates touching of the conical disper-
sion sheets at the diabolic point. (b) The distribution of complex
electric field of modes γ = 6, 7 along the circular path shown by an
arrow in (a). The radial direction corresponds to x-coordinate, angle
ϕ to point at the circle. The right picture is the color map for the
complex number plane; color is phase, color saturation is the absolute
value of the complex number.

PhC [69]:

cos(kxd ) = cos(k1xd1) cos(k2xd2)

−A sin(k1xd1) sin(k2xd2),

kix =
√(

ni
ω

c

)2
− q2

z , i = 1, 2,

A = 1

2

(
k2x

k1x
+ k1x

k2x

)
, TE,

A = 1

2

(
n2

1k2x

n2
2k1x

+ n2
2k1x

n2
1k2x

)
, TM, (1)

where TE (TM) denote the polarization of light with the
electric (magnetic) field along the y axis, the coordinate
system is shown in Fig. 1, and kx is the Bloch wave number.
Equation (1) defines the set of dispersion surfaces ωγ (kx, qz ),
which can touch each other leading to the photonic band gap
closing. This happens when the right-hand side of Eq. (1) has
zero derivatives with respect to d1, d2 and takes the value
of ±1. As A > 1, the right-hand side of Eq. (1) takes the
extremum values of ±A and saddle point values ±1. The latter
one is achieved at

k1xd1 = πm1, k2xd2 = πm2, (2)
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where m1, m2 are positive integers. The conditions of the
band degeneracy that appears at Fabri-Perot-like resonant
conditions of light in each PhC layer are given by Eqs. (2),
which provide the explicit position of the crossing point as

ω∗
m1m2

c
= π

√√√√ 1

n2
1 − n2

2

[(
m1

d1

)2

−
(

m2

d2

)2
]
,

q∗
zm1m2

= π

√√√√ 1

n2
1 − n2

2

[(
m1n2

d1

)2

−
(

m2n1

d2

)2
]
,

k∗
x = π [1 − (−1)m1+m2 ]/2d, (3)

the diabolic point wavelength is λ∗
m1,m2

= 2πc/ω∗
m1,m2

. Since
the diabolic point is determined by the parameters m1 and
m2, in the following we denote each such point by a pair of
integers (m1, m2). The combination (m1, m2) corresponds to
the crossing of γ = m1 + m2 and γ = m1 + m2 + 1 modes.
As an example, Eq. (3) defines the touching point of the
isofrequency curves of the modes with γ = 6, 7 shown in
Fig. 5(a).

Using the transfer matrix approach [69] we obtained the
ratio of the field amplitudes E1

γ , E2
γ in the PhC’s layers 1 and

2 for each of the two crossing modes in the diabolic point
(m1, m2). For one of the modes the amplitudes in both layers
are the same [the case of γ = 7, red curve in Fig. 5(c)], so
this mode is highly absorbed, while for the second mode [γ =
6, blue curve in Fig. 5(c)] the amplitudes are different and
depend on the values of m1, m2:

∣∣E1
α

∣∣∣∣E2
α

∣∣ =
⎧⎨
⎩

1,
(

∂ωα

∂qz

)
q∗

zm1m2
,k∗

x

<
(

∂ωβ

∂qz

)
q∗

zm1m2
,k∗

x

,

d1m2
d2m1

< 1, otherwise,
(4)

where α, β are the serial numbers of the crossing modes,
i.e., m1 + m2, m1 + m2 + 1. Each case can be recognized in
Fig. 4(b) by the slope of the touching dispersion curves.
According to Eq. (4), near each diabolic point the field ampli-
tudes in the two adjacent layers are equal for a weakly sloping
dispersion curve, while they are different for a strongly slop-
ing curve [see Fig. 4(b); note ordinate is λ, but not ω]. As
an example, the latter ones are highlighted for diabolic points
(m1, 1) [Fig. 4(b)]. It stems from Eq. (4) that the maximal
field difference in the neighboring layers is achieved at (m1, 1)
points indicating the existence of the well localized states with
extremely low losses [see blue curve in Fig. 5(c)]. Increasing
of the resonance order m1 in the first layer improves the
localization and decreases the losses.

Note the position of the diabolic points [Eq. (3)] does not
depend on the light polarization. For TM polarization addi-
tional points appear, which correspond to k1xd1 + k2xd2 = mπ

and n2
1k2x

n2
2k1x

+ n2
2k1x

n2
1k2x

= 2, i.e., at A = 1. It gives

ω∗
m

c
= mπ

√
n2

1 + n2
2

n2
1d1 + n2

2d2
, q∗

zm = ω∗
m

c

n1n2√
n2

1 + n2
2

,

kx = π [1 − (−1)m]/2d. (5)

These additional crossing points appear as a result the Brew-
ster effect at the interfaces between the layers inside the PhC
and do not emerge in our studies.

As the degeneracy points appear at the edges or in the
center of the Brillouin zone, i.e., at kx = 0 and kx = π/d ,
let us consider the propagation constants of the TE-polarized
modes shown in Fig. 4(b) for these kx values by dashed and
solid curves, respectively. Shaded regions are the projected
bands, the white ones stand for the PBGs. Each crossing point
is labeled by the two integer numbers (m1, m2) according to
Eq. (3). As seen the waists of the maxima of the spectral-
angular dependence of transmission [see Fig. 4(a)] corre-
spond exactly to the crossing points with indexes (m1, m2) =
(m1, 1). Since m2 = 1 in all these points, the mode with single
antinode of the field in low refractive index layer specifies
the transmission maxima and it suffers the degeneracy as
was demonstrated above for the point (5,1) at λ∗

5,1 = 808 nm
[Fig. 5(c)]. Due to the periodicity of the PhC band structure,
the crossing points of the dispersion curves and the nodes in
the angular-wavelength transmission spectrum appear at the
same wavelengths and are distanced by the reciprocal lattice
vector length h.

The interrelation of the narrowing of the transmission
maxima and diabolic points can be discussed in terms of
the topological effects in the PhC band structure as chang-
ing the symmetry of eigenstates at the crossing points. The
considered PhC has the inversion symmetry with respect of
the center of one of the layers. Let us put the origin of the
coordinate system in the center of the layer with the refractive
index n2. In this case the PhC eigenmodes Eγ (x, z) in the
center and at the edge of the Brillouin zone can be divided
in symmetric or antisymmetric ones [39,70]. The amplitude
of the symmetric mode |Eγ (x, z)| has an antinode at x =
0, while for antisymmetric |Eγ (0, z)| = 0. For example, in
Fig. 5(c) the sixth mode is symmetric, while the seventh mode
is antisymmetric.

The band crossing is accompanied by the inversion of the
symmetry of the eigenstates. The band inversion is illustrated
by Fig. 6(a), which demonstrates the dispersion surfaces for
γ = 6, 7 with the diabolic point, i.e., conical intersections of
the surfaces. At this point the photonic band gap comes to
zero as shown in the projected band diagram. At the edges
of the Brillouin zone the eigenstates are symmetric, which is
indicated by the red curves, while in the center of the zone
there are symmetric (red curve) and antisymmetric states (blue
curve), which cross in the diabolic point leading to topological
phase transition. As a result, each dispersion sheet at kx = 0
has the states of both types of symmetry. The intersection of
the states with different symmetry is an intrinsic property of
all crossing points of the considered photonic system. These
points are symmetry protected and robust to the variation
of the refractive indexes and thicknesses of the PhC layers.
As seen from the explicit expression of the position of the
diabolic points given by Eqs. (3) and (5), any variation of the
PhC parameters results in the spectral shift of the diabolic
point without opening the gap. It is worth noting that under
the violation of the PhC symmetry the eigenstates lose their
symmetry, the gap opens, and the crossing point disappears,
which can be demonstrated by adding the third layer to the
unit cell.
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TABLE I. The Zak phase of 6 and 7 bands depending on qz.

γ qz range Zak phase, φ

q∗
z41 < qz < q∗

z51 06
q∗

z51 < qz π

q∗
z52 < qz < q∗

z51 π
7

q∗
z51 < qz < q∗

z61 0

Changing the symmetry of eigenstates at the topologi-
cal phase transition in the diabolic point of a periodic sys-
tem possessing the inversion symmetry is known in solid
state physics as quantization of the Zak phase φ [51]. The
Zak phase is the topological invariant, which characterizes
the topological property of bands of a 1D periodic sys-
tem. It is a special type of the Berry phase for a 1D
band over the Brillouin zone. The Berry phase � is the
geometrical phase acquired by a system at translating it
along the parameter loop [71]. Representing the loop as a
set of N points (kxi, qzi ), i = 1, . . . , N , it can be defined
as [72]

� = − arg(〈ψ1|ψ2〉〈ψ2|ψ3〉 · · · 〈ψN−1|ψN 〉〈ψN |ψ1〉), (6)

where |ψi〉 = √
εAγ (x) is the state at the ith point (kxi, qzi ) at

the loop and

〈ψα|ψβ〉 = 1

d

d/2∫
−d/2

ψ∗
αψβdx. (7)

Due to the torus topology of the Brillouin zone the path can
be closed over its edges. So the path is now a set of N points
(kxi, qz ), where kx1 = −π/a, kxN = π/a, and qz is fixed, i.e.,
it goes around the Brillouin zone [−h/2, h/2]. In this case
the acquired phase is the Zak phase defined in analogy with
Eq. (6). Being defined for 1D periodic systems, the Zak phase
for the inversion symmetric structures is quantized and takes
the value of 0 or π by modulo 2π for each band depending
on whether the symmetry of the states in the center and at
the edge of the Brillouin zone are the same or not [39].
Here we used the Pancharatnam discrete formula instead of
the continuous one for the calculation convenience [72,73],
in which an additional factor of

√
ε occurs according to

Refs. [39,74,75]. The Zak phase depends on the band number
γ and qz. It suffers the π jump for the glued bands when
the qz parameter passes through the critical value defined by
Eq. (3). In the case of the PhC considered here, the Zak phases
for γ = 6 and γ = 7 bands depending on qz are shown in
Table I. The Zak phase is 0 (π ) for γ = 6(7) at qz < q∗

z51 and,
on the contrary, it is π (0) at q∗

z51 < qz indicating the band
inversion at the topological phase transition, which occurs
at q∗

z51.
As was mentioned above, narrowing of the transmission

maxima is related to rapid changing of the eigenmode fields
in a PhC near the crossing point. We demonstrate the transfor-
mation of the fields of the eigenmodes γ = 6, 7 from even to
odd states at the topological transition by spatial distributions
of the electric field in the PhC’s unit cell. These distributions
are shown along the circular path in (kx, qz ) plane around the

diabolic point in Fig. 6(b). The circumference path and round
direction are shown by the arrow in Fig. 6(a). The angle ϕ is
the angular position of a point on the loop. We choose the path
in such a way that it has the radius of r = h/10 and is centered
at the diabolic point shown by the minimum of the color map
in Fig. 6(a). The A and S sections shown by dashed segments
in Fig. 6(b) for the dispersion surface with γ = 6 correspond
to field distribution at points (kx, qz ): (0, q∗

z51 + h/10) and
(0, q∗

z51 − h/10), respectively, i.e., ϕ = π/2 and ϕ = 3π/2.
On the contrary, for γ = 7 the A(S) section corresponds
to ϕ = 3π/2 (π/2). As seen at S section of Fig. 6(b), an
even state that is highly localized in a nonabsorbing layer
becomes odd at A section having similar field amplitudes
in both layers. The field in the absorbing layer appears as
rings near the internal and external circular edges of the
figure (x = ±d/2). As a result, for the light frequencies above
(below) the diabolic point, the seventh (sixth) mode specifies
the transmission maximum. Since the topological transition
occurs in the diabolic point, the transformation of the mode
with small attenuation to the one with high attenuation takes
place for the arbitrary small path around it. So an arbitrarily
small deviation from the Bragg angle near the diabolic point
leads to crucial changes of the field forming nodes in the
transmission maximum.

The topological transition is also manifested by acquiring
the Berry phase along the loop of the wave vector trajec-
tory around the degeneracy point. It appears as a π phase
jump of the eigenstate at the first and the end points of
the closed path [Fig. 6(b)]. Although the absolute phase of
the Bloch mode is not defined, the geometric phase � is
gauge invariant and robust against the deformation of the
loop. In the considered case the gauge is chosen in such a
way that 〈ψi|ψi+1〉/|〈ψi|ψi+1〉| = 1, where i = 1, . . . , N − 1,
leading to � = − arg(〈ψN |ψ1〉) = π . This accumulated phase
remains the same while the path embraces the diabolic point
and equals zero otherwise indicating topological transition in
the PhC.

Another remarkable property of the light transmission
through the PhC is the staggering maxima of the spectral-
angular dependence of the PhC transmission. This effect can
be described in the following way. Let us consider again
the maximum near (kx, λ

∗
5,1) = (0, 808 nm) in Fig. 4(a). It

appears owing to low losses of the sixth mode for λ > λ∗
5,1

and the seventh mode for λ < λ∗
5,1. Importantly that when

passing the light wavelength through the diabolic point (5,1)
the field passes continuously from the sixth dispersion sheet
to the seventh one. It is shown in Fig. 7(a) by changing
the wavelength while keeping kx = 0, i.e., along the vertical
line (kx = 0) in Fig. 4(a). It can be seen that the field
absorption rises when moving away from the diabolic point
[Fig. 7(b)]. Indeed the seventh mode becomes waveguidelike
as the light wavelength decreases. Transition to the waveguide
propagation corresponds to the light wavelength λ

wg
m1 = λ∗

m1,0
in which we have to take m2 = 0 formally. This wavelength
does not actually correspond to the PBG degeneracy, as
shown in Fig. 4(b) where the crossovers to the waveguide
regime are shown by the “+” symbols. At λ

wg
m1 the equality

of q∗
zm10/(ω∗

m10/c) = n2 is exact and the electric field of the
(m1 + 1)th mode has a uniform distribution in low refractive
index layers with the same amplitude as in high refractive
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μ

λ4,2
∗

∗λ5,1

λ
γ

γ

FIG. 7. (a) The spectral dependence of the electric field squared
of modes γ = 6 and γ = 7 at λ > λ∗

5,1 and λ < λ∗
5,1, respectively,

when kx = 0. The top inset is the refractive index profile. (b) Spectral
dependence of the attenuation constants of the same modes.

index layers [Fig. 7(a)]. In the considered case this transition
appears at the wavelength of λ

wg
6 .

On the other hand, as underlined above, the amplitudes of
the electric field in both PhC’s layers become equal (|E1

6 | =
|E2

6 |) again as the wavelength increases and approaches the
diabolic point (4,2) [Eq. (4)]. In both cases, moving away
from the diabolic point λ∗

5,1 leads to the growth of the field
localization in absorbing PhC layers. It leads to the appear-
ance of the transmission spots near (kx, λ

∗
5,1), where kx =

0,±h, . . . So each maximum corresponds to the parts of the
dispersion curves, which have the propagation constant equal
approximately to the smaller refractive index n2 [Re(qz/k0) ≈
n2], pass through the diabolic point (m1, 1) connecting two
dispersion sheets, and lie between the waveguide propaga-
tion starting at the point (m1 + 1, 0), and up to the point
(m1 − 1, 2). These regions of dispersion curves with smallest
losses are highlighted in Fig. 4(b) and appear alternatively
in the center and edges of the Brillouin zone on the wave-
length scale as seen in Fig. 4(b). So the maxima staggering
appears.

To accomplish the description of the revealed properties
of the Borrmann effect associated with diabolic points we
emphasize that they are related with high refractive index
contrast of the PhC. First, as explicitly seen from Eq. (3) the
diabolic points shift to higher frequencies at decreasing the
refractive index contrast |n1 − n2|, moving the nodal points in
the spectral-angular dependence of the PhC transmission to
shorter wavelengths away from visible range. Second, high
refractive index contrast of PhC layers leads to exciting of
several eigenmodes in the PhC with significant amplitudes
when the light wave impinges on the PhC facet. As was
shown, some of them experience the degeneracy forming
the described features of the Borrmann effect. Reduction
of the refractive index contrast of PhC layers eliminates
excitation of high order modes removing pronounced prop-
erties of the Borrmann effect. Particularly, for a PhC with
low refractive index contrast the single mode γ = 1 pos-
sessing homogeneous electric field distribution is excited at
normal incidence. This mode does not experience the de-
generacy and cannot give transmission maximum at normal
incidence shown for the considered PhC possessing high
refractive index contrast. So the demonstrated properties of

FIG. 8. (a) Calculated spectral-angular dependence of transmis-
sion of the PhC with losses in low refractive index layers, and
(b) attenuation constants of the modes at λ = 808 nm for this PhC.
The curve colors are the same as in Fig. 5(a).

the Borrmann effect are peculiar to the photonics in contrast
to x rays.

In the last part of the article we demonstrate a crucial dif-
ference of the light transmission through the PhC with losses
in low refractive index layers as compared to the PhC with ab-
sorption in high refractive index layers considered above. Let
us assign the losses to the layers with n2: n1(800 nm) = 1.76,
n2(800 nm) = 1.11 + i1.6 × 10−3 and keep the same layer
thicknesses. In this case the light transmission is increased
manyfold compared to the previous PhC and does not reveal
multiple maxima [Fig. 8(a)]. We attribute this difference of
the light transmission of both structures to the contribution
of many waveguide modes localized in nonabsorbing layers.
Indeed, transfer of a small imaginary part of the refractive
indexes from the layer with n1 to n2 changes substantially
the mode decay while keeping isofrequency curves of Re(qz )
unchanged [Fig. 8(b)]. As can be seen, the set of waveguide
modes in this case has the smallest attenuation constant, which
varies by no more than 3% in the whole range of the kx

variation. So the existence of multiple waveguide modes with
negligible variation of Im(qz ) leads to a monotonic decrease
of the light transmission at increasing the angle of incidence,
which is attributed to the Fresnel reflection at the PhC edges
[Fig. 8(a)].

IV. CONCLUSION

Summing up, in this work we discuss the results of our
experimental and theoretical studies of spectral features of the
Borrmann effect in absorbing 1D PhC in the Laue diffraction
scheme. Compared to the x-ray Borrmann effect in the or-
dinary crystals, the fascinating properties of this effect were
revealed in artificial photonic systems. We show both experi-
mentally and theoretically the anomalous high transmission of
the PhC not only at the Bragg angles of incidence, but at the
normal incidence as well. It is important that in the last case
the Bragg diffraction is absent for the x rays in crystals and the
Borrmann effect does not appear. Moreover, a chessboardlike
set of maxima in the spectral-angular dependence of PhC
transmission is obtained, accompanied by angular narrowing
of each maximum at certain wavelengths associated with the
diabolic points. These features of the Borrmann effect are
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discussed in terms of the topological transition in a PhC where
the symmetry inversion of the eigenstates and discontinuous
jump of the Zak phase take place. We note that the revealed
features are intimately related to the high refractive index
contrast and large period of the PhC, which result in the
appearance of a number of diabolic points in the PhC band
structure.

Finally we demonstrate by numerical calculations the qual-
itative difference of the light transmission through the PhCs
with absorption located in the PhC layers with high or low
refractive index. Namely, if the losses are inherent to the lay-
ers with low refractive index, the Borrmann effect disappears
because of the waveguide modes transfer light energy through
the PhC.

We would like to emphasize that as compared to previous
works on topological properties of 1D PhCs considered in the
the Bragg geometry of light diffraction, our studies are carried
out for the Laue diffraction scheme, so that no PBGs are
formed and several eigenmodes are excited simultaneously.
As a result, the diabolic points in the 1D PhCs band structure
have a strong effect on the transmission spectra without tuning
of the PhC parameters as required at the Bragg geometry. For
our structure, the existence of diabolic points is due to the
symmetry of the considered PhC. Topological properties of
these points were confirmed by the discontinuous Zak phase
jump, carrying the Berry phase and changing the symmetry of
the PhC eigenstates. An important result is the redistribution
of the optical field between the adjacent PhC layers of differ-
ent absorption in the vicinity of the diabolic point, resulting
from the eigenstates’ symmetry change. We demonstrate that
this redistribution is especially strong near the topological
transition, which makes the light transmission extremely sen-
sitive to the angle of incidence for the case of a PhC with
periodic distribution of light losses. In the experiment this

appears as an angular narrowing point in the PhC wavelength-
angular transmission spectrum. So the usage of periodically
lossy 1D PhCs that makes the system non-Hermitian allows us
to study the topological properties of the PhC using the bulk
instead of surface states. One more meaningful result is the
strong difference of the light localization in PhC layers for the
neighboring diabolic points from the single dispersion sheet
[see Eq. (4)]. We demonstrate that wavelength detuning from
the diabolic points labeled as (m1, 1) leads to a pronounced
increase of the field amplitude in absorbing layers, which
results in the wavelength boundedness of PhC transmission
maxima.

These unique properties of the Laue diffraction in ab-
sorbing PhC are intrinsic to photonic systems, which allow
us to achieve high contrast of the refractive index of the
constituting layers. In turn this leads to the appearance of
crossing points in the band structure and waveguide modes.
We assert that the revealed properties of the Borrmann effect
is a way for the observation of the topological phase transition
owing to light losses of the PhC. This approach can be further
improved in order to resolve other diabolic points by using
a more complex spatial profile of the light absorption in a
PhC. High sensitivity of the field distribution in a PhC to
variation of the parameters of the structure near the crossing
point allows us to use it for the control over the light-matter
interaction.

ACKNOWLEDGMENTS

The authors are thankful to Professor B. I. Mantsyzov for
fruitful and encouraging discussions. This work was partially
supported by Russian Foundation for Basic Research, Grant
19-02-00826.

[1] G. Borrmann, Phys. Z 42, 157 (1941).
[2] G. Borrmann, Z. Phys. 127, 297 (1950).
[3] H. N. Campbell, J. Appl. Phys. 22, 1139 (1951).
[4] H. Cole, F. W. Chambers, and C. G. Wood, J. Appl. Phys. 32,

1942 (1961).
[5] S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F.

Scarinci, G. Savelli, and A. Tebano, Phys. Rev. B 45, 6953
(1992).

[6] G. C. Baldwin, J. C. Solem, and V. I. Gol’danskii, Rev. Mod.
Phys. 53, 687 (1981).

[7] B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681
(1964).

[8] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey,
Appl. Opt. 5, 1303 (1966).

[9] E. J. Saccocio, J. Appl. Phys. 38, 3994 (1967).
[10] V. V. Aristov, V. S. Shekhtman, and V. B. Timofeev, Phys. Lett.

A 28, 700 (1969).
[11] L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A.

Beléndez, Opt. Lett. 26, 786 (2001).
[12] V. B. Novikov and T. V. Murzina, Opt. Lett. 42, 1389

(2017).
[13] W. J. Tomlinson and G. D. Aumiller, Appl. Opt. 14, 1100

(1975).

[14] V. B. Novikov, S. E. Svyakhovskiy, A. I. Maydykovskiy, T. V.
Murzina, and B. I. Mantsyzov, J. Appl. Phys. 118, 193101
(2015).

[15] V. A. Bushuev, L. V. Dergacheva, and B. I. Mantsyzov, Phys.
Rev. A 95, 033843 (2017).

[16] V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, Phys. Rev.
A 79, 053811 (2009).

[17] S. E. Svyakhovskiy, A. A. Skorynin, V. A. Bushuev, S. V.
Chekalin, V. O. Kompanets, A. I. Maydykovskiy, T. V. Murzina,
V. B. Novikov, and B. I. Mantsyzov, J. Opt. Soc. Am. B 30,
1261 (2013).

[18] V. B. Novikov, A. I. Maydykovskiy, B. I. Mantsyzov, and T. V.
Murzina, Phys. Rev. B 93, 235420 (2016).

[19] D. A. Kopylov, S. E. Svyakhovskiy, L. V. Dergacheva, V. A.
Bushuev, B. I. Mantsyzov, and T. V. Murzina, Phys. Rev. A 93,
053840 (2016).

[20] I. V. Shutov, I. A. Ozheredov, A. V. Shumitski, and A. S.
Chirkin, Opt. Spectrosc. 105, 79 (2008).

[21] C. Kulkarni, D. Di Nuzzo, E. Meijer, and S. C. Meskers, J. Phys.
Chem. B 121, 11520 (2017).

[22] K. A. Suresh, Mol. Cryst. Liq. Cryst. 35, 267 (1976).
[23] R. Nityananda, U. Kini, S. Chandrasekhar, and K. Suresh,

Pramana 1, 325 (1975).

245403-10

https://doi.org/10.1007/BF01329828
https://doi.org/10.1007/BF01329828
https://doi.org/10.1007/BF01329828
https://doi.org/10.1007/BF01329828
https://doi.org/10.1063/1.1700122
https://doi.org/10.1063/1.1700122
https://doi.org/10.1063/1.1700122
https://doi.org/10.1063/1.1700122
https://doi.org/10.1063/1.1728267
https://doi.org/10.1063/1.1728267
https://doi.org/10.1063/1.1728267
https://doi.org/10.1063/1.1728267
https://doi.org/10.1103/PhysRevB.45.6953
https://doi.org/10.1103/PhysRevB.45.6953
https://doi.org/10.1103/PhysRevB.45.6953
https://doi.org/10.1103/PhysRevB.45.6953
https://doi.org/10.1103/RevModPhys.53.687
https://doi.org/10.1103/RevModPhys.53.687
https://doi.org/10.1103/RevModPhys.53.687
https://doi.org/10.1103/RevModPhys.53.687
https://doi.org/10.1103/RevModPhys.36.681
https://doi.org/10.1103/RevModPhys.36.681
https://doi.org/10.1103/RevModPhys.36.681
https://doi.org/10.1103/RevModPhys.36.681
https://doi.org/10.1364/AO.5.001303
https://doi.org/10.1364/AO.5.001303
https://doi.org/10.1364/AO.5.001303
https://doi.org/10.1364/AO.5.001303
https://doi.org/10.1063/1.1709055
https://doi.org/10.1063/1.1709055
https://doi.org/10.1063/1.1709055
https://doi.org/10.1063/1.1709055
https://doi.org/10.1016/0375-9601(69)90695-1
https://doi.org/10.1016/0375-9601(69)90695-1
https://doi.org/10.1016/0375-9601(69)90695-1
https://doi.org/10.1016/0375-9601(69)90695-1
https://doi.org/10.1364/OL.26.000786
https://doi.org/10.1364/OL.26.000786
https://doi.org/10.1364/OL.26.000786
https://doi.org/10.1364/OL.26.000786
https://doi.org/10.1364/OL.42.001389
https://doi.org/10.1364/OL.42.001389
https://doi.org/10.1364/OL.42.001389
https://doi.org/10.1364/OL.42.001389
https://doi.org/10.1364/AO.14.001100
https://doi.org/10.1364/AO.14.001100
https://doi.org/10.1364/AO.14.001100
https://doi.org/10.1364/AO.14.001100
https://doi.org/10.1063/1.4935635
https://doi.org/10.1063/1.4935635
https://doi.org/10.1063/1.4935635
https://doi.org/10.1063/1.4935635
https://doi.org/10.1103/PhysRevA.95.033843
https://doi.org/10.1103/PhysRevA.95.033843
https://doi.org/10.1103/PhysRevA.95.033843
https://doi.org/10.1103/PhysRevA.95.033843
https://doi.org/10.1103/PhysRevA.79.053811
https://doi.org/10.1103/PhysRevA.79.053811
https://doi.org/10.1103/PhysRevA.79.053811
https://doi.org/10.1103/PhysRevA.79.053811
https://doi.org/10.1364/JOSAB.30.001261
https://doi.org/10.1364/JOSAB.30.001261
https://doi.org/10.1364/JOSAB.30.001261
https://doi.org/10.1364/JOSAB.30.001261
https://doi.org/10.1103/PhysRevB.93.235420
https://doi.org/10.1103/PhysRevB.93.235420
https://doi.org/10.1103/PhysRevB.93.235420
https://doi.org/10.1103/PhysRevB.93.235420
https://doi.org/10.1103/PhysRevA.93.053840
https://doi.org/10.1103/PhysRevA.93.053840
https://doi.org/10.1103/PhysRevA.93.053840
https://doi.org/10.1103/PhysRevA.93.053840
https://doi.org/10.1134/S0030400X08070138
https://doi.org/10.1134/S0030400X08070138
https://doi.org/10.1134/S0030400X08070138
https://doi.org/10.1134/S0030400X08070138
https://doi.org/10.1021/acs.jpcb.7b10236
https://doi.org/10.1021/acs.jpcb.7b10236
https://doi.org/10.1021/acs.jpcb.7b10236
https://doi.org/10.1021/acs.jpcb.7b10236
https://doi.org/10.1080/15421407608083677
https://doi.org/10.1080/15421407608083677
https://doi.org/10.1080/15421407608083677
https://doi.org/10.1080/15421407608083677


BORRMANN EFFECT IN LAUE DIFFRACTION IN … PHYSICAL REVIEW B 99, 245403 (2019)

[24] S. Aronishidze, V. Dmitrienko, D. Khoshtariya, and G. Chilaya,
JETP Lett. 32, 17 (1980).

[25] S. Endo, T. Kuribara, and T. Akahane, Jpn. J. Appl. Phys. 22,
L499 (1983).

[26] V. A. Belyakov, Mol. Cryst. Liq. Cryst. 612, 81 (2015).
[27] Z. Zhang and S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990).
[28] W. Wang and S. A. Asher, J. Am. Chem. Soc. 123, 12528

(2001).
[29] M. V. Bogdanova, Y. E. Lozovik, and S. L. Eiderman, J. Exp.

Theor. Phys. 110, 604 (2010).
[30] A. P. Vinogradov, Y. E. Lozovik, A. M. Merzlikin, A. V.

Dorofeenko, I. Vitebskiy, A. Figotin, A. B. Granovsky, and
A. A. Lisyansky, Phys. Rev. B 80, 235106 (2009).

[31] S. G. Erokhin, A. A. Lisyansky, A. M. Merzlikin, A. P.
Vinogradov, and A. B. Granovsky, Phys. Rev. B 77, 233102
(2008).

[32] A. Cebrecos, R. Picó, V. Romero-García, A. M. Yasser, L.
Maigyte, R. Herrero, M. Botey, V. J. Sánchez-Morcillo, and K.
Staliunas, Appl. Phys. Lett. 105, 204104 (2014).

[33] A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M.
Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy,
and O. A. Aktsipetrov, Phys. Rev. B 78, 193102 (2008).

[34] A. Figotin and I. Vitebskiy, Phys. Rev. B 77, 104421
(2008).

[35] I. E. Razdol’skii, T. V. Murzina, O. A. Aktsipetrov, and M.
Inoue, JETP Lett. 87, 395 (2008).

[36] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).

[37] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Nature
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