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We investigate the degree of entanglement quantified by the concurrence of photon pairs that are simultane-
ously emitted in the biexciton-exciton cascade from a quantum dot in a cavity. Four dot-cavity configurations
are compared that differ with respect to the detuning between the cavity modes and the quantum dot transitions,
corresponding to different relative weights of direct two-photon and sequential single-photon processes. The
dependence of the entanglement on the exciton fine-structure splitting δ is found to be significantly different for
each of the four configurations. For a finite splitting and low temperatures, the highest entanglement is found
when the cavity modes are in resonance with the two-photon transition between the biexciton and the ground state
and, in addition, the biexciton has a finite binding energy of a few meV. However, this widely used configuration
is rather strongly affected by phonons such that other dot-cavity configurations, that are commonly regarded
as less suited for obtaining high degrees of entanglement, become more favorable already at temperatures on
the order of 10 K and above. If the cavity modes are kept in resonance with one of the exciton-to-ground-state
transitions and the biexciton binding energy is finite, the entanglement drastically drops for positive δ with rising
temperatures when T is below � 4 K, but is virtually independent of the temperature for higher T .
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I. INTRODUCTION

Entangled photon pairs can be used as the fundamental
building blocks for a wide range of applications in quantum
communications, quantum cryptography, or quantum com-
putation [1–3]. Furthermore, entanglement can be used to
test fundamentals of quantum mechanics, e.g., by revealing
violations of Bell’s inequality [1,4]. Different devices and
protocols for the generation of entangled photon pairs have
been proposed. A well-established and especially attractive
way of producing (polarization) entangled photon pairs is
the emission of photon pairs via the biexciton cascade in
semiconductor quantum dots (QDs) inside a microcavity
which enhances the light collection efficiency [5–12]. One
special advantage of using semiconductor quantum dots is
the possibility to generate triggered [5–7] or even on-demand
[10,11,13] entangled photon pairs which is of utmost impor-
tance for applications.

Entanglement generation from the biexciton cascade is
possible since the biexciton can decay via two paths, first into
one of the two exciton states and a photon which can be either
polarized horizontally (H) or vertically (V ). Subsequently,
the exciton generated in the first step can further decay to
the QD ground state by emitting a second photon with the
same polarization as the photon generated in the biexciton
decay. Ideally, the two paths are fully symmetric and the
corresponding quantum state is a coherent superposition of
the respective amplitudes, resulting in a maximally entangled
two-photon state. However, when which-path information
is introduced by disturbing the symmetry, e.g., by a finite

fine-structure splitting between the intermediate exciton
states, the superposition becomes asymmetric and the en-
tanglement decreases. In principle, it is possible to come
close to maximal entanglement in current experiments, either
by selecting QDs which naturally have a sufficiently small
fine-structure splitting [7,10], by tuning the splitting with
external fields [5,6,14], or by applying strain [15]. However,
these requirements are rather restrictive. Therefore, it has
been proposed to look for less demanding conditions which
still allow for a high degree of entanglement. A prominent
proposal of this type considers QDs with a sizable biexciton
binding energy which are embedded in a microcavity. Besides
the possibility of an increased light extraction efficiency, a
microcavity offers the advantage that the resonance between
the cavity modes and electronic transitions in the dot can be
used to enhance, e.g., direct two-photon transitions between
the biexciton and the ground state compared to sequential
transitions from the biexciton to the exciton or from the
exciton to the ground state. Since the direct two-photon
transitions do not involve the occupation of exciton states,
the fine-structure splitting is effectively not probed, leading
to drastically reduced which-path information and therefore
increased entanglement [16,17]. When the cavity mode is
tuned to the two-photon resonance, a finite biexciton binding
energy is typically favorable for entanglement since it shifts
the sequential single-photon transitions further away from
resonance.

In order to systematically compare different configurations
of cavity and QD transition frequencies, a measure for the
entanglement is required. A widely accepted measure is the
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concurrence, which has a one-to-one correspondence to the
entanglement of formation [18]. The latter represents the
amount of pure-state entanglement that is at least present
in a mixed state described by a given density matrix. The
concurrence has the advantage that it can be directly cal-
culated from the values of the reduced density matrix of
the bipartite system for which the entanglement is to be
measured [19]. Here, we focus on the concurrence of simul-
taneously emitted photon pairs which, albeit yielding lower
signals due to filtering only photons with equal emission
times from the cavity, typically show the highest degree of
entanglement in experiments [20,21], as well as theoretical
calculations [17,22].

Phonons are known to have a tremendous impact on the
dynamics of QDs in general [23–33] and on QD-cavity sys-
tems in particular [34–43]. Since the pure dephasing induced
by acoustic phonons is a major source of decoherence in
QDs [24–26], phonons might also limit the entanglement
of the two-photon states generated in the biexciton cascade.
However, in many studies of the entanglement phonons have
either been completely disregarded [13,17] or accounted for
by a phenomenological pure dephasing rate [16,44,45]. The
description based on rates ignores that phonon-induced pure
dephasing leads only to a partial loss of coherence which
is nonexponential [46,47] and is the origin of many other
non-Markovian effects [37,48,49]. Furthermore, with phe-
nomenological rates the temperature dependence of the degree
of entanglement cannot be predicted. An explicit treatment
of the phonon impact on the concurrence in the biexciton
cascade has been presented in Ref. [50]. However, that paper
concentrates on the contributions from the sequential decay of
the biexciton via intermediate excitons and misses the compe-
tition with the direct two-photon decay to the ground state,
which is at the heart of the protocol based on resonant two-
photon transitions in systems with finite biexciton binding
energies proposed in Ref. [16]. The effect of phonons on the
concurrence in the case where two-photon transitions domi-
nate the biexciton decay has been analyzed in Ref. [51] where,
however, no selection of simultaneously emitted photon pairs
has been considered. As mentioned above, the latter is more
favorable for obtaining a high degree of photon entanglement.

In this paper, we investigate the phonon impact on the de-
gree of two-photon polarization entanglement obtained after
the decay of a biexciton in a cavity as measured by the con-
currence of simultaneously emitted photon pairs. We present
a comprehensive comparison of representative configurations
of cavity and QD transition frequencies referring to physical
situations with different relative importance of two-photon
and sequential single-photon pathways, respectively. We find
that the phonon influence in combination with the competition
between two-photon and one-photon processes leads to strik-
ingly different dependences on the exciton splitting as well as
strongly different temperature dependences.

Tuning the cavity to the two-photon resonance and con-
sidering a quantum dot with a biexciton binding energy of a
few meV is likely to be the most widely studied configuration
in the literature because it is commonly expected to yield the
highest two-photon entanglement at finite fine-structure split-
ting. Indeed at low temperatures we confirm this expectation.
The main result of the present paper is, however, that the

distinction of the two-photon resonant configuration with fi-
nite biexciton binding energy to yield the highest concurrence
is lost typically already at temperatures as low as ∼10 K.

The article is structured as follows. In Sec. II we specify
the model and the method used. We discuss the concurrence of
simultaneously emitted photon pairs as the measure of choice
when high degrees of entanglement are targeted and explain
how this quantity is extracted from the numerical calcula-
tions. In Sec. III four configurations with different resonance
settings and biexciton binding energies are introduced which
enable us to analyze most clearly the competition between
direct two-photon and sequential single-photon processes and
its impact on the degree of entanglement. In Sec. IV we
demonstrate that the phonon impact strongly depends on the
considered configuration, resulting in substantially different
dependences on the fine-structure splitting and the tempera-
ture. Deviations from the standard bell shape dependence on
the splitting or asymmetries reflect the competition between
single- and two-photon processes. Finally, in the Conclusion,
Sec. V, we present a brief summary of the main results of this
article.

II. THEORETICAL APPROACH

A. Model

We consider a semiconductor QD embedded in a mi-
crocavity which is initially prepared in the biexciton state.
The dynamics of the statistical operator of the system ρ̂ is
determined by the Liouville–von Neumann equation

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂] + L[ρ̂], (1)

where [ , ] denotes the commutator. The Hamiltonian

Ĥ = ĤQD-cav + ĤQD-phon (2)

takes into account the interaction between the QD and two
linearly polarized cavity modes (ĤQD-cav) as well as a pure de-
phasing type coupling to a continuum of longitudinal acoustic
(LA) phonons (ĤQD-phon). The Lindblad operator L[ρ̂] allows
the inclusion of non-Hamiltonian dynamics, i.e., cavity losses
due to for example imperfect mirrors. Thus the model contains
three parts, which are discussed separately in the following.

The first part describes the coupling between the QD and
two linearly polarized cavity modes and is modeled by the
Hamiltonian [51]

ĤQD-cav = h̄ωH |XH 〉〈XH | + h̄ωV |XV 〉〈XV |
+ h̄(2ω̄X − ωB)|B〉〈B| +

∑
�=H,V

h̄ωc
�â†

� â� + X̂ ,

(3)

where the interaction part is given by

X̂ = − g(|G〉〈XH |â†
H + |XH 〉〈B|â†

H

+ |G〉〈XV |â†
V − |XV 〉〈B|â†

V ) + H.c. (4)

Here, the four states of the QD are represented by the
biexciton state |B〉, the two possible exciton states |XH 〉 and
|XV 〉, and the ground state |G〉. The exciton states as well
as the two photon modes are labeled with H (horizontal
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polarization) and V (vertical polarization). The bosonic oper-
ator â†

H/V creates one photon with frequency ωc
H/V and corre-

sponding polarization H or V and H.c. denotes the Hermitian
conjugate. The light-matter coupling strength g is assumed
to be equal for all couplings and the dipole approximation
as well as the rotating-wave approximation are used. The
energies h̄ωH/V denote the exciton energies, while the energy
of the biexciton is h̄(2ω̄X − ωB), where EB = h̄ωB represents
the biexciton binding energy and h̄ω̄X = h̄(ωH + ωV )/2 is the
mean exciton energy. The energy of the ground state is set
to zero. When the QD is initially prepared in the biexciton
state without any photons present in the two orthogonal cavity
modes, the total number of excitations (number of excitons
plus number of photons) is initially two. Since without losses
the excitation number is conserved, the number of states
that are accessible by the coherent QD-cavity coupling is
restricted to five states of the form |χ, nH , nV 〉 with χ denoting
the QD state and nH/V the number of photons present in
the corresponding cavity mode. To be specific, these five
states are given by |B, 0, 0〉, |XH , 1, 0〉, |XV , 0, 1〉, |G, 2, 0〉,
and |G, 0, 2〉. States with lower excitation numbers become
accessible via cavity losses by removing photons from the
system. However, we do not need to consider these states
explicitly in our calculations, first, because the corresponding
dynamical variables do not couple back to the dynamics of
the above five states and, second, only states with at least two
photons contribute to the concurrence [19,22], which is the
target quantity of our analysis.

In Fig. 1 a schematic sketch of the biexciton cascade with
the two cavity modes is shown. Because of the exchange inter-
action the two exciton states XH and XV are split by the fine-
structure splitting δ symmetric to the mean exciton energy
h̄ω̄X . Thus the energy of the horizontally polarized exciton
state is h̄ωH = h̄ω̄X + δ/2 and the energy of the vertically
polarized exciton state is h̄ωV = h̄ω̄X − δ/2. Furthermore, a
possible biexciton binding energy EB can lower the energy
of the biexciton state with respect to 2h̄ω̄X . In general, the
energies of the two orthogonally polarized cavity modes do
not match any of the electronic transition energies of the QD.

In addition to the light-matter interaction also a pure
dephasing type coupling to a continuum of LA phonons is

FIG. 1. Schematic sketch of the biexciton cascade with a fine-
structure splitting δ between the two exciton states, a mean exci-
ton energy h̄ω̄X = h̄(ωH + ωV )/2, and a possible biexciton binding
energy EB. In general, both cavity modes can be detuned from the
electronic transitions of the QD.

included in the model via

ĤQD-phon =
∑

q

h̄ωqb̂†
qb̂q +

∑
q,χ

nχ (γqb̂†
q + γ ∗

q b̂q)|χ〉〈χ |.
(5)

Here, nχ denotes the number of excitons in the different QD
states |χ〉 and γq is the coupling constant. We account for
deformation potential coupling which is known to dominate
for GaAs-type QDs [46] and b̂†

q are bosonic creation operators
for phonons with energy h̄ωq in the mode with wave vector q.

Finally, possible cavity losses of photons are taken into
account using the Lindblad operator

Lcav[ρ̂] =
∑

�=H,V

κ�

2
(2 â�ρ̂â†

� − ρ̂â†
� â� − â†

� â�ρ̂ ), (6)

which allows the inclusion of non-Hamiltonian dynamics
while preserving the physically important properties of the
statistical operator [52]. In the following we assume the loss
rates for the two differently polarized cavity modes to be equal
(κH = κV = κ).

Longitudinal optic (LO) phonons have been shown to
affect the two-photon entanglement by multiphonon transi-
tions to the continuum of wetting layer states [53]. This
mechanism is, however, negligible for temperatures below
∼80 K. Since all major findings of the present paper occur
at much lower temperatures, effects of LO phonons can safely
be disregarded. Nevertheless, we show in the present paper a
few results for temperatures above 80 K in order to illustrate
how the contribution of LA phonons behaves at elevated
temperatures.

B. Method

Equation (1) is numerically solved by using a real-time
path-integral (PI) approach. As almost all modern implemen-
tations of the real-time PI concept, also our simulations are
based on an iteration scheme for the so called augmented
density matrix which was introduced in the pioneering work
of Makri and Makarov [54,55]. This scheme exploits the
finiteness of the environment memory to obtain an efficient
algorithm for performing efficiently a numerically complete
summation over the paths. A specialization of these general
ideas to QDs with a super-Ohmic pure-dephasing coupling
to a continuum of phonons has been worked out, e.g., in
Ref. [56]. Important for the present investigations are two
recent extensions of the standard PI treatment. The first
is a translation of the PI method from the usual Hilbert
space formulation to Liouville space [57]. In this way, the
non-Hamiltonian contributions to the dynamics, like, e.g.,
Lindblad-type loss rates, can be accounted for in a natural
way while still treating the phonons without approximation
to the model. The second is a reformulation of the PI algo-
rithm such that now a partially summed augmented density
matrix is iterated. This reformulation is described in detail in
the supplement of Ref. [58], which in principle contains all
information about the actually used PI method. For systems
like QDs coupled to cavities the reformulation reduces the
numerical demands by many orders of magnitude and thus
numerically complete simulations for such systems would
not be feasible without it. The numerical efficiency might be
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FIG. 2. Phonon spectral density J (ω) for a spherical GaAs QD
with an electron (hole) geometrical confinement length ae = 3 nm
(ah = ae/1.15). The deformation potential constants and the mass
density, as well as the sound velocity for a GaAs QD are taken from
Ref. [60] and are listed in Table I. An explicit formula for J (ω) can
be found in Ref. [56] or Ref. [57].

further boosted by using recently developed tensor-network
techniques [59] which could further extend the applicability
of PI methods in future work.

We consider a spherically symmetric GaAs QD with a har-
monic oscillator confinement resulting in an electron (hole)
confinement length ae = 3 nm (ah = ae/1.15). The deforma-
tion potential constants and the mass density as well as the
sound velocity are taken from the literature [60] and enter the
phonon spectral density

Jχχ ′ (ω) = nχ nχ ′ J (ω), (7)

with

J (ω) =
∑

q

γqγ
∗
q δ(ω − ωq) (8)

appearing in the memory kernels of the PI approach [57]. It
is worthwhile to note that all phonon related influences on the
dynamics of the QD-photon system enter only via J (ω). Thus
the assumption of a symmetric QD does not entail a loss of
generality as long as only the dynamics of QD and photons
are concerned, since as shown in Ref. [61] for any QD (not
necessarily assuming a symmetric confinement) it is always
possible to find a symmetric QD with the same J (ω).

In Fig. 2 J (ω) is depicted for the chosen parameters of
the QD. For low frequencies J (ω) approaches zero ∼ω3 as
can be seen from the explicit expression for the deformation
potential coupling [46]. We are therefore dealing with a cou-
pling of super-Ohmic type which is responsible for striking
non-Markovian effects such as the nonexponential partial loss
of coherence [46,47]. Furthermore, we note a pronounced
maximum at about 2 meV that is the origin of the resonant
structure of the phononic response [24,62].

Assuming that initially the phonons are in thermal equilib-
rium and the electronic system is prepared in the biexciton
state without photons, our PI approach delivers the time
dependence of the reduced density matrix ˆ̄ρ in the subspace
spanned by the five states |B, 0, 0〉, |XH , 1, 0〉, |XV , 0, 1〉,
|G, 2, 0〉, and |G, 0, 2〉, where the phonon degrees of freedom
have been traced out.

C. Concurrence

As a measure for the degree of entanglement we use
the concurrence of simultaneously emitted photons that for
brevity will be referred to in the following simply as the
concurrence. This quantity can be directly calculated from
the time-averaged values of the reduced density matrix ˆ̄ρ of
the system [22,45,53]. The time-dependent populations of the
two states where two photons are present and the coherences
between these states are given by

ρmn(t ) = 〈mm| ˆ̄ρ(t )|nn〉, (9)

with m, n ∈ {H,V }. Here |HH〉 := |G, 2, 0〉 is the state with
two horizontally polarized photons and |VV 〉 := |G, 0, 2〉
denotes the state with two vertically polarized photons. The
corresponding time-averaged quantities ρ̄mn are calculated
according to

ρ̄mn = 1

Tav

∫ Tav

0
ρmn(t )dt . (10)

From these quantities, the concurrence C is derived as [19,22]

C = 2
∣∣ρ̄N

HV

∣∣, (11)

where all quantities entering the normalized two-photon
coherence

ρ̄N
HV = ρ̄HV

ρ̄HH + ρ̄VV
(12)

are evaluated in the limit Tav → ∞. We average the time-
dependent quantities ρmn(t ) until all excitations have left the
cavity and the system has reached its ground state |G, 0, 0〉.
Experimentally, the concurrence C is accessible [20,21] by
measuring the two-photon correlation function G(2)

i j,kl (t, τ ) and
extrapolating towards zero delay time τ = 0.

Before presenting the results of our calculations, let us
briefly comment on different measures to quantify the entan-
glement in the biexciton cascade and the impact of the cavity
loss rate (a more extended discussion of these issues can be
found, e.g., in Ref. [22]). Indeed, for an analysis of polariza-
tion entanglement there is a variety of choices for selecting
photon pairs for which to calculate the concurrence. Probably
the most widely used choice is to inspect the concurrence of
all photon pairs that are detected in coincidence measurements
without discriminating between the detection times of the two
photons. The obvious advantage of this scheme is the high
signal yield. For the corresponding theoretical description, the
calculation of the two-time two-photon correlation function
G(2)(t, τ ) is required [16,22,51,63,64]. Another approach is
to consider the concurrence of frequency filtered coincidence
measurements [17,63] or for a subsystem of the detected
photons, e.g., by only selecting photon pairs with equal emis-
sion times from the cavity [17,45]. As stated previously, we
follow the latter scheme and focus on the concurrence of
simultaneously emitted photon pairs. The reasons behind this
choice are presented in the following.

The concurrence calculated for a selected subset of photons
is in general quantitatively as well as qualitatively different
from the concurrence obtained for another photon subset.
For example, it has been found [22] that the concurrence of
simultaneously emitted photons shows qualitatively different
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FIG. 3. Schematic sketches of the four different configurations of the QD-cavity system studied in this paper. Big curved purple arrows
indicate transitions that are resonant with the corresponding cavity mode. Transitions which are detuned on the order of the fine-structure
splitting δ are represented by medium-sized curved green arrows and small curved orange arrows indicate transitions where the detuning is on
the order of the biexciton binding energy EB.

trends with varying cavity losses than observed for photon
pairs without selection of the emission time (an increase of
the concurrence with rising loss rate is turned into a decrease).
Thus these two concurrences calculated for different photon
subsets cannot be equivalent measures for the same physical
quantity. Nevertheless, in both cases, the phonon impact is
reduced with rising loss rate and the concurrence approaches
its phonon-free value in the limit of infinite losses [22]. This
can be explained by noting that the phonon impact requires
a finite time to develop. The loss rate limits the available
time window and when the latter becomes too small the
phonons cannot efficiently act on the QD degrees of freedom.
Besides the different trends regarding the cavity loss rate,
experiments [20,21] as well as theory [17,22] indicate that
simultaneously emitted photons exhibit a significantly higher
degree of entanglement and are much less affected by the
which-path information introduced by a finite fine-structure
splitting than photon pairs detected without emission time
selection. In particular, the concurrence of simultaneously
emitted photons represents an upper limit for the achievable
degree of entanglement in the latter situation. Since we are
interested in the highest possible degree of entanglement for
a given QD-cavity configuration we solely concentrate on
the concurrence of simultaneously emitted photons. Detecting
photon pairs without emission time filtering, on the other
hand, would maximize the emission efficiency.

III. DIFFERENT CAVITY CONFIGURATIONS

In this section, four configurations of the QD-cavity system
are considered which differ in the value of the biexciton

binding energy EB as well as in the way the cavity modes
are energetically positioned. Throughout this paper, the two
orthogonal linearly polarized cavity modes are assumed to
have the same frequency (ωc

H = ωc
V ). The main difference

between the configurations is the position of the cavity modes
with respect to the QD transitions. When the cavity modes
are kept in resonance with the direct two-photon transition to
the biexciton, such that ωc

H/V = ω̄X − ωB/2, we refer to the
configuration as two-photon resonant (2PR). In contrast, if the
cavity mode frequencies are chosen to match the transition
frequency of one of the excitons (without loss of generality
we choose the H exciton), such that ωc

H/V = ωH , we refer
to the configuration as one-photon resonant (1PR). In both
configurations, we further distinguish between the case of
a vanishing biexciton binding energy and a finite value of
the latter (in this paper, we consider finite values 0.5 meV �
EB � 6 meV). Note that if a finite biexciton binding energy is
introduced, the energy of the biexciton state is no longer the
sum of the energies of the two exciton states.

In Fig. 3 schematic sketches of the 2PR and 1PR con-
figuration with and without a biexciton binding energy are
shown. In order to highlight the difference concerning the
respective resonance situations, QD transitions are marked
by three types of curved arrows in the figure that corre-
spond to different detunings of these transitions from the
cavity mode frequency (red or blue straight arrow). Reso-
nant transitions are represented by big curved purple arrows.
The medium-sized curved green arrows denote transitions
which are detuned on the order of the fine-structure split-
ting δ and strongly off-resonant transitions with a detuning
on the order of the biexciton binding energy EB (typically

245301-5



T. SEIDELMANN et al. PHYSICAL REVIEW B 99, 245301 (2019)

much larger than δ) are indicated by small curved orange
arrows.

The special characteristic of the 2PR configurations
[Figs. 3(a) and 3(c)] is that the |G〉 ↔ |B〉 transition is reso-
nant with a direct two-photon emission or absorption process,
respectively. Therefore, there are two competing channels
for the biexciton decay. The biexciton state can decay either
via two sequential single-photon emission processes via the
exciton states or via a coherent two-photon process from the
biexciton state directly to the ground state. For vanishing
EB [Fig. 3(a)] the energies of the exciton states h̄ωH/V =
h̄ω̄X ± δ/2 are detuned by ±δ/2 from the cavity modes which
are fixed at ωc

H/V = ω̄X . Thus all four electronic transitions
involved in the sequential emission paths are weakly detuned
by half the value of the fine-structure splitting δ. The direct
two-photon processes stay resonant in the 2PR configuration
when a finite binding energy EB is introduced as the cavity
modes are changed accordingly. But the four electronic tran-
sitions involving an exciton state become strongly detuned on
the order of half the biexciton binding energy EB/2 [Fig. 3(c)]
when EB is finite.

In the 1PR configurations [Figs. 3(b) and 3(d)], the
|XH 〉 ↔ |G〉 transition is chosen to be resonant with the
corresponding cavity mode. Therefore, in the case of a van-
ishing biexciton binding energy [Fig. 3(b)], the |XV 〉 ↔ |B〉
transition is also resonant, whereas the two remaining cascade
transitions as well as the direct two-photon processes are
detuned by the value of the splitting δ. Introducing a finite
biexciton binding energy does not change the situation for
the exciton-to-ground-state transitions but the two transitions
between the biexciton state and one of the exciton states as
well as the direct two-photon processes are now strongly off
resonant and detuned on the order of EB [cf. Fig. 3(d)].

IV. RESULTS

In this section we analyze how the degree of entanglement
between the two states with two photons (|HH〉 and |VV 〉) is
affected by various system parameters. As mentioned before,
the system is initially prepared in the biexciton state without
any photons and the phonons are assumed to be initially in
thermal equilibrium. If not stated otherwise, a light-matter
coupling strength g = 0.1 meV, a finite exciton splitting
δ = 0.1 meV, a biexciton binding energy EB = 0.5 meV, and
a cavity loss rate κ = 0.025 ps−1 corresponding to a cavity
quality factor Q ≈ 45 000 are used. Table I displays these
default values and all other material parameters used for the
numerical calculations. The given value for the biexciton
binding energy EB is the difference between twice the polaron
shifted mean exciton energy and the polaron shifted biexciton
energy. In the corresponding phonon-free situation the value
for EB is kept the same in order to compare QD-cavity systems
with identical energetic detunings between the cavity modes
and the QD transition energies. After quantifying the compe-
tition between direct two-photon and sequential single-photon
processes in Sec. IV A, the dependence of the concurrence on
the exciton fine-structure splitting is investigated in Sec. IV B.
Finally, we discuss the temperature dependence of the concur-
rence for fixed splittings in Sec. IV C.

A. Competition between direct two-photon and sequential
single-photon transitions

As pointed out before, e.g., by Schumacher et al. [16]
or del Valle [17], the competition between the direct two-
photon processes from the biexciton state to the ground state
and the sequential single-photon processes via the exciton
states is of utmost importance for the concurrence. Obviously,
by considering configurations with different resonance situ-
ations, in particular when switching between 2PR and 1PR
configurations, we are comparing situations with different rel-
ative importance of two-photon and sequential single-photon
processes. To quantify the relative impact of these processes,
we introduce the quantity

r2P/1P = |ρ̄B,HH | + |ρ̄B,VV |
ρ̄XH + ρ̄XV

, (13)

i.e., r2P/1P is a ratio where the numerator is derived
from the coherences ρB,HH = 〈B, 0, 0| ˆ̄ρ|G, 2, 0〉 and ρB,VV =
〈B, 0, 0| ˆ̄ρ|G, 0, 2〉 between the biexciton and the ground state
with either two horizontally or vertically polarized photons.
The denominator represents the total exciton occupation
ρXH + ρXV , where ρXH and ρXV denote the occupations of
the states |XH , 1, 0〉 and |XV , 0, 1〉, respectively. The bar over
these quantities indicates a time averaging as introduced in
Eq. (10).

The coherences between the biexciton state and the two
states containing the ground state represent a measure for
the direct two-photon processes. Note that by inspecting the
equations of motion for all elements of the reduced den-
sity matrix it becomes apparent that only the equations for
these coherences introduce a resonance when the biexciton-
to-ground-state transition frequency matches twice the photon
frequency. This is the distinctive property of a two-photon
process. In contrast, the characteristic feature of sequential
single-photon emission processes is the occupation of the in-
termediate electronic states, in our case the excitons. Thus the
total exciton occupation reflects the importance of sequential
processes. Altogether, this justifies that the ratio r2P/1P is a
possible measure for the relative importance of the direct

TABLE I. Material parameters for the GaAs quantum dot and
the default values for the system parameters: light-matter coupling
strength g, exciton splitting δ, biexciton binding energy EB, and
cavity loss rate κ . If not stated otherwise these default values are
used for the calculations.

Parameter Value

Electron geometrical confinement length (nm) ae 3.0
Hole geometrical confinement length (nm) ah ae/1.15
Mass density (kg/m3) ρ 5370 [65]
Longitudinal sound velocity (m/s) cs 5110 [65]
Electron deformation potential constant (eV) De 7.0 [66]
Hole deformation potential constant (eV) Dh −3.5 [66]
Light-matter coupling strength (meV) g 0.1
Exciton fine-structure splitting (meV) δ 0.1
Biexciton binding energy (meV) EB 0.5
Cavity loss rate (ps−1) κ 0.025
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FIG. 4. Comparison of the concurrence [panel (a)] and a measure
for the relative importance of two-photon and sequential single-
photon processes r2P/1P [panel (b)] as a function of the exciton
splitting δ. Different temperatures as well as the limit without
phonons are considered. Note that r2P/1P is scaled by the factor 1/50
in the phonon-free case. The cavity modes are arranged in the 2PR
configuration and a vanishing biexciton binding energy is assumed.

two-photon processes compared with the sequential single-
photon processes.

Figure 4 displays the concurrence [panel (a)] along with
r2P/1P [panel (b)] as a function of δ. The analysis is carried out
exemplarily for the 2PR configuration with EB = 0 for four
temperatures as well as for the phonon-free case. The plotted
range for the fine-structure splitting is chosen larger than
usually covered by typical QDs as the role of the two-photon
processes can be better highlighted on this extended scale.

As can be seen in Fig. 4(a), the concurrence exhibits a
nonmonotonic dependence on the exciton splitting for low
temperatures and the phonon-free situation. This behavior can
be traced back to the competition between two-photon and
sequential single-photon processes. Recalling that in the 2PR
configuration the two-photon processes are chosen to be al-
ways resonant independent of δ, it follows that any which-path
information introduced by the fine-structure splitting affects
only the sequential single-photon processes. Figure 4(b) re-
veals a dominance of sequential emission processes for small
exciton splittings. Therefore, the concurrence decreases with
rising |δ| in the small splitting limit since (i) the which-path
information is larger for larger |δ| and (ii) it efficiently affects
the concurrence due to the dominance of sequential single-
photon processes.

As the splitting increases further, r2P/1P rises because
the single-photon processes become more off-resonant and

thus the relative importance of two-photon processes grows,
since the latter are always resonant. When either the inter-
action with the phonons is switched off or the temperature
is low enough, r2P/1P increases strongly for larger exciton
splittings, indicating a dominance of two-photon processes
[cf. Fig. 4(b) for T = 10 K]. As a result, the concurrence
rises and eventually approaches unity because the which-path
information introduced by the exciton splitting is no longer
tested. The local maximum of the concurrence seen at higher
temperatures of 30 K and 50 K can also be understood
with the help of r2P/1P since it shows a similar behavior. Hence
the nonmonotonic behavior of the concurrence is a result of
the competition between the coherent direct two-photon and
sequential single-photon emission processes.

At higher temperatures the relative importance of the
sequential emission processes is raised, as can be seen in
Fig. 4(b). As the electronic transitions become detuned from
the corresponding cavity modes the sequential single-photon
processes are assisted by phonon absorption and emission
processes to compensate the energy differences, an effect
which is enhanced with increasing temperature. In addition,
for larger exciton splittings the phonon spectral density is
effectively probed at higher values of ω (on the order of δ),
resulting in a stronger phonon influence on the system (cf.
Fig. 2). Furthermore, coherences, such as the ones relevant
for the two-photon processes, are more strongly affected by
phonon-induced decoherence than occupations. The combi-
nation of these effects explains why r2P/1P decreases for
larger splittings at higher temperatures and the concurrence
approaches zero.

B. Dependence of the concurrence on the exciton
splitting for different configurations

For all four QD-cavity configurations illustrated in Fig. 3,
the dependence of the concurrence on the exciton splitting is
shown in Fig. 5. First of all, for a vanishing fine-structure
splitting, the concurrence is strictly one regardless of the
phonon influence since the system is completely symmetric
with respect to H ↔ V so that no which-path information
is introduced. This result was also found on the basis of
a phenomenological rate equation approach for the phonon-
induced pure dephasing [45].

With increasing |δ| the concurrence decreases, reflecting
the increase of which-path information. Furthermore, phonons
generally reduce the concurrence for a given splitting, an
effect which typically becomes more pronounced at higher
temperatures. This can be understood by noting that phonons
typically enhance the differences between different pathways
and thus increase the which-path information. To see this,
we first recall that, when the electronic transitions of the QD
are detuned from the corresponding cavity modes, the pho-
ton emission processes are assisted by phonon emission and
absorption processes to compensate the energy differences.
For a finite splitting, depending on the configuration, the two
sequential emission paths differ either in the values or the
order of the detunings and are therefore influenced differently
by the phonons. For example, in the 2PR configuration with
δ > 0 and EB = 0, the sequential emission process of two
horizontally polarized photons is at first assisted by phonon
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FIG. 5. Impact of the exciton splitting δ on the concurrence for all four cavity configurations introduced in Sec. III and depicted in Fig. 3.
Results are shown for two different temperatures and without phonons. Panel (b) additionally displays the ratio r2P/1P for the phonon-free case.

absorption and in the second step phonon emission occurs for
the exciton-to-ground-state transition. This order is reversed
for the sequential emission path for two vertically polarized
photons. Obviously, this enhances the difference between both
pathways compared with the phonon-free case at least at
low temperatures where emission and absorption are notice-
ably different. In general, as discussed in Sec. IV A, with
increasing temperature more phonons are thermally excited
and sequential one-photon transitions can be more efficiently
bridged by phonon-assisted processes. In combination with
the increased phonon-induced decoherence, this leads to a
smaller impact of two-photon transitions and therefore a lower
concurrence at higher temperatures.

Despite these common tendencies, the detailed depen-
dences of the concurrence on the exciton splitting differ
significantly in the respective configurations. For EB = 0, the
results for the 2PR configuration [Fig. 5(a)] and the 1PR
configuration [Fig. 5(b)] are qualitatively similar for small |δ|
but differ strongly for larger detunings. This can be under-
stood by consulting Fig. 3(a) and Fig. 3(b) which reveals that
these configurations become identical in the limit of vanishing
splitting. The corresponding concurrences are thus very close
to each other for small exciton splittings.

The deviation for larger splittings between the two con-
figurations can be explained by the competition between the

coherent direct two-photon and the sequential single-photon
processes. In the 2PR configuration, the relative importance
of two-photon processes rises with increasing |δ| as already
discussed in Sec. IV A. However, compared with the 2PR
case, the influence of two-photon processes is reduced in
the 1PR configuration since they are detuned by the exciton
splitting [cf. Fig. 3(b)]. Thus the concurrence in the 2PR
configuration is significantly higher for larger |δ| than in the
1PR configuration.

Nevertheless, the competition between two-photon and
single-photon processes also influences the 1PR configuration
where the concurrence exhibits a local minimum for low
temperatures as well as without phonons, which means that
this is not a phonon-induced effect. In fact, phonons cause this
minimum to eventually disappear, as can be seen in Fig. 5(b)
at 50 K. Figure 5(b) reveals that the nonmonotonic behavior of
the concurrence reflects the behavior of r2P/1P. Compared with
the 2PR configuration [cf. Fig. 4(a)], here the local minima are
found already at smaller |δ| because the electronic transitions
of the QD are now detuned by the value of δ, whereas the
detuning is only δ/2 in the 2PR configuration. Furthermore,
although the value of r2P/1P at vanishing splitting without
phonons in Fig. 5(b) is the same as in Fig. 4(b) (note the
different scaling in the latter figure), the ratio between two-
and one-photon processes is a decreasing function of δ in
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the 1PR configuration since a finite splitting also causes a
detuning of the direct two-photon transitions in this case. This
is in contrast to the 2PR case in Fig. 4, where r2P/1P rises with
increasing δ in the phonon-free case.

Next, we consider the results for the 2PR configuration
with a finite biexciton binding energy EB = 0.5 meV plot-
ted in Fig. 5(c). In the phonon-free situation and for a
temperature of 4 K the concurrence decreases only weakly
with increasing |δ|, but at T = 50 K it is drastically reduced
at finite |δ|. Therefore, a finite biexciton binding energy in
the 2PR configuration significantly affects the concurrence
[cf. Fig. 5(a)] since it leads to strongly detuned biexciton-
to-exciton and exciton-to-ground-state transitions, while the
direct two-photon processes remain resonant. Thus, without
phonons, the direct two-photon processes are strongly en-
hanced compared with the sequential single-photon processes,
resulting in a significantly higher concurrence that is much
less influenced by the splitting.

On the other hand, in the 2PR configuration with finite EB,
phonons with energies h̄ωq � EB/2 are required to bridge the
detunings of the sequential transitions. In contrast, for vanish-
ing EB, the required phonon energies are given by the much
smaller value of |δ|/2. At the same time, the relative weight of
the phonon influence is proportional to J (ω). Figure 2 shows
that J ( EB

2h̄ ) > J ( δ
2h̄ ) for EB = 0.5 meV and |δ| < 0.3 meV, i.e.,

the phonon influence and thus the temperature dependence
of the concurrence is stronger for a finite biexciton binding
energy. This results in the significantly larger difference of
the concurrence for 4 K and 50 K in Fig. 5(c) compared with
curves for the same parameters but vanishing binding energy
in Fig. 5(a). We note in passing that, keeping the splitting
in the typical range |δ| < 0.3 meV, for rather high values of
the biexciton binding energy the relation J ( EB

2h̄ ) > J ( δ
2h̄ ) is

reversed (cf. Fig. 2). However, this limit is usually not reached
since typical biexciton binding energies stay below ∼6 meV.

In contrast to the configurations discussed up to now, the
interaction with phonons in the 1PR configuration with a finite
biexciton binding energy, depicted in Fig. 5(d), drastically
reduces the concurrence already at low temperatures. In this
situation, both biexciton-to-exciton-transitions are strongly
detuned from the corresponding cavity modes. The horizon-
tally polarized exciton-to-ground-state transition is resonant
by definition, while the vertically polarized one is detuned
by δ. In addition, also the direct two-photon processes are
highly off resonant. As all possible electronic transitions
starting from the biexciton state are strongly detuned, the
initially prepared occupation of the biexciton state decreases
only very slowly when phonons are not accounted for. Hence
the occupations of the exciton states and the QD ground state
with two photons are always very small. In both the H and V
pathway the exciton can be reached by emission of a photon
only when a phonon with an energy on the order of � EB

is absorbed. At this energy J (ω) is even larger than in the
2PR configuration with finite EB where phonons with energies
� EB/2 are required, which explains the dramatic drop of the
concurrence from the phonon-free case to the values obtained
for 4 K. Furthermore, the concurrence is clearly asymmetric
with respect to the exciton splitting in this configuration.
Especially in the phonon-free case the concurrence decays
much stronger with rising |δ| for negative than for positive δ.

This is due to the fact that for negative δ one comes closer
to the condition that the transition from the biexciton to the H
exciton is getting in resonance. Since the decay from the H ex-
citon to the ground state is held in resonance in this configu-
ration, the pathway |B〉 → |XH , 1, 0〉 → |G, 2, 0〉 is strongly
favored compared with |B〉 → |XV , 0, 1〉 → |G, 0, 2〉, result-
ing in low values of the concurrence. Interestingly, for δ > 0
the concurrence decreases only very little when the tempera-
ture is raised further from 4 K to 50 K.

In general, the symmetry with respect to δ is found to
be another distinguishing feature between the 2PR and the
1PR configuration. In the 2PR configuration, independent of
the biexciton binding energy, the concurrence is a symmet-
ric function of the splitting no matter whether phonons are
included or not. In contrast, in the 1PR configuration with
a finite binding energy, the concurrence always shows an
asymmetric dependence on δ. In this situation, changing the
sign of δ changes the absolute value of the detuning between
the horizontally polarized cavity mode and the corresponding
biexciton-to-exciton transition 
B,XH (δ) = EB + δ, while the
absolute values of the detunings of the remaining sequential
transitions are unaffected. The direct two-photon processes
are also detuned by the same value 
E2P(δ) = EB + δ. Since
without phonons the dynamics depends only on the absolute
values of the detunings between the electronic transitions
and their corresponding cavity modes, an asymmetric con-
currence is expected, which is also visible when phonons are
accounted for. This asymmetry is stronger at low temperatures
since there phonon absorption and emission processes are not
equally likely. Turning finally to the 1PR configuration with
EB = 0, changing the sign of the exciton splitting no longer
changes the absolute values of the detunings. Thus, without
phonons, the concurrence is once more symmetric and only a
slight asymmetry is observed when phonons are included.

We conclude that the competition between single-photon
and two-photon processes plays a decisive role for the con-
currence. Furthermore, the arrangement of the cavity modes
strongly affects the concurrence as one of the competing
processes can be either favored or suppressed. Finally, the
values of the various detunings depend on the chosen config-
uration, resulting in different effective phonon influences and
very different dependences of the concurrence on the exciton
splitting for each of the considered QD-cavity configurations.

C. Temperature dependence of the concurrence
at a finite exciton splitting

After the discussion in the last section it is clear that the
temperature dependence of the concurrence also differs for
each of the four configurations. In this section we investigate
in more detail the concurrence as a function of temperature
for different fixed values of the exciton splitting.

Figure 6(a) displays the concurrence as a function of
the temperature for a typical value of the exciton splitting
δ = 0.02 meV, while a larger value δ = 0.1 meV is used in
Fig. 6(b). As expected after the discussion of the 1PR config-
uration with a finite biexciton binding energy in Sec. IV B, the
concurrence drops in this setting steeply for low temperatures
followed by a very weak T dependence compared with the
other configurations for T > 4 K and both splittings. Note that
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for δ > 0 in this configuration all sequential processes require
the absorption of phonons to bridge the energy mismatches
and thus for T → 0 the phonon-free result should be reached.
Indeed, as seen in Fig. 6(b), changing the temperature from 1
to 4 K entails a very steep drop of the concurrence before it
becomes almost independent of T for T > 4 K.

The 2PR configuration with a finite binding energy exhibits
a rather strong temperature dependence for both selected
values of δ. Because of the weak influence of the exciton
splitting in this configuration the concurrence reaches almost
one for temperatures close to zero.

The 2PR and 1PR configuration with a vanishing binding
energy are, as discussed earlier, almost the same for small δ.
Therefore, for δ = 0.02 meV, the concurrence as a function of
temperature is nearly identical for both configurations, with
the 1PR result being marginally lower. For the larger splitting
δ = 0.1 meV these two configurations show a similar tem-
perature dependence at very low temperatures but at higher
temperatures the concurrence decreases noticeably stronger in
the 1PR configuration.

In the 2PR as well as in the 1PR configuration the se-
quential single-photon processes are detuned on the order of δ

when the biexciton binding energy is zero. Since two-photon
processes are more important in the 2PR configuration the
corresponding concurrence is higher for all temperatures than
in the 1PR configuration when EB = 0. However, this trend
reverses for finite EB at high temperatures.

Let us now compare 2PR results with and without a finite
biexciton binding energy. As can be seen in Fig. 6(a) and
Fig. 6(b), introducing a finite value for EB in the 2PR con-
figuration leads to a higher concurrence only below a crossing
temperature which depends on δ. In fact, there is a crossing

point of the 2PR concurrence evaluated at finite EB with each
of the three other concurrences considered here. It turns out
that the setting with the lowest crossing temperature is the
2PR configuration with vanishing biexciton binding energy.
We will denote the corresponding crossing temperature by
Tcross in the following.

For large splittings, a finite biexciton binding energy
can raise the concurrence significantly at low temperatures
since the sequential single-photon emission processes become
largely detuned and the importance of the two-photon pro-
cesses is raised. Therefore, in the absence of phonons, a finite
binding energy in general results in an increased concurrence,
a finding which was already proposed and discussed by Schu-
macher et al. [16].

Above the crossing temperature, however, the pure dephas-
ing coupling to the phonons alters this effect and a finite bind-
ing energy in the 2PR configuration reduces the concurrence.
As the temperature increases, phonons raise the importance
of the detuned single-photon processes because they become
assisted by phonon absorption and emission. In the case of
a finite binding energy, the cavity modes are more detuned
from the electronic transitions involving exciton states. There-
fore, the phonon spectral density J (ω) is probed at larger
values so that the effective phonon coupling is stronger com-
pared with the situation without biexciton binding energy.
These two effects combined lead to a stronger decrease of
the concurrence with increasing temperature for a finite EB.
Thus, above Tcross, a finite biexciton binding energy reduces
the concurrence and the protection of entanglement in the 2PR
configuration is lost.

By comparing Fig. 6(a) and Fig. 6(b), one notices that the
crossing point of the concurrence in the 2PR configuration
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with and without a finite binding energy moves to lower
temperatures for smaller values of the exciton splitting. For
the concurrence, this means that the advantage provided by
a finite EB is lost for small δ already at low temperatures
T ∼10 K. In Fig. 6(c) this crossing temperature is plotted
against δ for several values of EB. For a given binding energy,
Tcross exhibits a monotonic increase with increasing exciton
splitting and converges to a finite value of about 10 K in
the limit δ → 0 and typical binding energies. Therefore, for
typical splittings on the order of several 10 μeV, the pro-
tection of the entanglement due to a finite binding energy
is already lost at quite low temperatures. As can be seen by
comparing the results in Fig. 5(a) and Fig. 5(c), the protection
of the concurrence due to a finite EB in the 2PR configuration
at temperatures close to zero improves for larger δ. Thus,
for larger δ, higher temperatures are needed to destroy this
protection and Tcross increases with increasing splitting for a
given EB.

Comparing the crossing temperature for different values
of the binding energy, a nonmonotonic behavior is found at
a given exciton splitting. On the one hand, a higher value
of the binding energy results in a better protection of the
entanglement at temperatures close to zero. But, on the other
hand, the phonon influence and thus the influence of the tem-
perature depends on the energy of the phonons needed to assist
the detuned single-photon processes as the phonon spectral
density J (ω) depends (nonmonotonically) on this energy. In
the case of the 2PR configuration with finite EB, this roughly
corresponds to half the binding energy. The nonmonotonic be-
havior of Tcross as a function of EB at a given exciton splitting
thus originates from the trade-off between a better protection
of the concurrence for higher binding energies at temperatures
close to zero and the varying influence of the phonons due
to the nonmonotonic behavior of the phonon spectral density.
For example, the crossing point temperature in Fig. 6(c)
for EB = 1 meV is always higher than for EB = 2 meV. The
reason is the much stronger temperature dependence in the
latter situation as the phonon spectral density is much higher
for a phonon energy of 1 meV than for a value of 0.5 meV
(cf. Fig. 2). However, at h̄ω = 1 meV and h̄ω = 3 meV the
values of J (ω) are similar, which means that the phonon
influence is similar for EB = 2 meV and EB = 6 meV and
Tcross is always higher in the latter case because of the stronger
protection due to the higher binding energy.

V. CONCLUSION

We have analyzed how the competition between two-
photon and single-photon emission processes as well as the
coupling to LA phonons influences the degree of two-photon
entanglement created in a QD-cavity system. To this end
we have calculated the concurrence of photon pairs simul-
taneously emitted in a biexciton-exciton cascade of a QD
in a cavity for four different configurations. We account for
four electronic states (biexciton, two excitons, and the ground
state), two degenerate orthogonally polarized cavity modes
that are coupled to the electronic transitions, and cavity losses,
as well as for a continuum of LA phonons coupled by the
deformation potential interaction to the QD. The numerical
simulations are based on a path-integral scheme that allows

the evaluation of quantities of interest without approximation
to the model.

The four configurations considered in this paper comprise
the two-photon resonant (2PR) and the one-photon resonant
(1PR) configuration with a vanishing as well as a finite biex-
citon binding energy. We find a wealth of interesting results
and insights in the physics of the system at hand which we
would like to briefly summarize below before we outline our
main result at the end.

(a) The competition between two-photon and one-photon
processes plays a decisive role for the concurrence and leads
to strikingly different dependences on the exciton splitting
δ. Among other things, we find, e.g., nonmonotonic depen-
dences and deviations from the standard bell shape in the
2PR as well as in the 1PR configuration. While the 2PR and
1PR configuration without a biexciton binding energy lead to
almost the same degree of entanglement for small splittings
the 2PR configuration is favorable for larger splittings. These
results and the different dependences on the splitting δ can
be very well explained by the different relative importance of
direct two-photon and sequential single-photon contributions
as well as the changing phonon impact when the resonance
settings are varied.

(b) The concurrence is in general only symmetric regarding
the exciton splitting δ in the 2PR configurations. Additionally,
LA phonons affect or even introduce the asymmetry in the
1PR configurations. Because of the characteristics of the
phonon coupling this asymmetry is stronger at low temper-
atures as phonon absorption and emission processes are not
equally likely to occur.

(c) The chosen configuration defines the detunings in the
quantum dot-cavity system and results in different effective
phonon influences and therefore also strongly different tem-
perature dependences of the concurrence. The 2PR and 1PR
configuration with a vanishing binding energy have almost the
same concurrence value and temperature dependence for the
usual exciton splittings of several 10 μeV. The concurrence
can be virtually independent of the temperature over a wide
temperature range, as it is the case in the 1PR configuration
with a finite binding energy and positive δ after the con-
currence has fallen drastically with rising temperature for T
below 4 K.

In order to appreciate our main result, it should be noted
that the 2PR configuration with finite biexciton binding energy
has attracted a lot of attention [16,17,51] since this configura-
tion has been proposed in order to reach high degrees of entan-
glement at finite fine-structure splittings. The idea is that two-
photon transitions are favored which are much less affected by
the which-path information introduced by the fine-structure
splitting than sequential single-photon processes. Thus a finite
biexciton binding energy protects the entanglement from the
destructive impact of the fine-structure splitting by making
single-photon processes off-resonant. Indeed, at low temper-
atures we find the highest degree of entanglement for this
configuration which depends only little on the fine-structure
splitting. However, the concurrence in the 2PR configuration
with finite biexciton binding energy exhibits a steep decrease
with rising temperature, which can be explained by an en-
hanced interaction with phonons resulting from the frequency
dependence of the phonon-spectral density combined with
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an increase of the importance of sequential single-photon
processes at higher temperatures.

This strong temperature dependence is the origin of our
most important result that for each of the other three consid-
ered configurations there is a finite temperature above which
the corresponding concurrence is higher than in the 2PR case
with finite biexciton binding energy. Out of the configurations
that we compare, the 2PR configuration with vanishing biex-
citon binding energy has the lowest such crossing temperature
Tcross, which is found to depend on the fine-structure splitting
as well as on the biexciton binding energy. For splittings that
are typically found in experiments on the order of several
10 μeV or below and typical biexciton binding energies of few
meV, Tcross is around or even below 10 K. Thus the special
distinction of the 2PR configuration with finite biexciton
binding energy in terms of yielding the highest degree of

entanglement for finite fine-structure splittings is lost already
at rather low temperatures due to the phonon impact and the
2PR configuration with vanishing biexciton binding energy
becomes more favorable for achieving the highest value of the
concurrence.
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