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Nonlinear optical properties and self-Kerr effect of Rydberg excitons
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We show how to compute the nonlinear optical functions (absorption, reflection, and transmission) for a
medium with Rydberg excitons (REs), including the effect of the coherence between the electron-hole pair and
the electromagnetic field. Using the real density-matrix approach the analytical expressions for nonlinear optical
functions are obtained and numerical calculations are performed for Cu2O crystal where REs have been observed.
We report a good agreement with recently published experimental data. Propagation of the electromagnetic
waves in Rydberg exciton media with nonlinear effect is also discussed and the possibility of obtaining self-phase
modulation due to Kerr nonlinearity is investigated.
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I. INTRODUCTION

Recently, a lot of attention has been drawn back to the
subject of excitons in bulk crystals due to an experimental
observation of the so-called yellow exciton series in Cu2O
up to a large principal quantum number of n = 25 [1]. Such
excitons in copper oxide, in analogy to atomic physics, have
been named Rydberg excitons (REs). By virtue of their
special properties Rydberg excitons have become widely
explored in solid and optical physics. These objects, the sizes
of which scale as the square of the principal quantum number
n, are ideally suited for fundamental quantum interrogations,
as well as detailed classical analysis. Due to their exaggerated
properties, including long lifetimes, large electric dipole
moments, and strong exciton-exciton interactions controlled
by the so-called Rydberg blockade, REs could have promising
applications in, among many areas, quantum calculating and
quantum information.

Several theoretical approaches to calculate optical proper-
ties of REs have been presented (see, for example, Ref. [2]
for a review). As was observed just in the first experiment
[1], the optical line shapes of REs are very sensitive to laser
power of the exciting electromagnetic wave, which could
be connected with nonlinear effects. However, almost all
efforts in the area of REs have been mainly devoted to the
linear optical properties of Rydberg excitons. The nonlinear
phenomena with REs were first discussed by Walther et al.
regarding coupling in the strong interaction of REs and optical
photons in a semiconductor microcavity [3]. Also the recent
experiment by Heckötter et al. [4] has touched on the problem
of nonlinear properties of REs in the presence of electron and
hole plasma and paved the way to extend the discussion of the
optical properties of REs to include nonlinear effects.

In this paper we discuss the role of the exciting light
intensity on the RE spectra, considering the impact of si-
multaneous interband and intraband excitations. As in our
previous paper [5], we will use a method based on the real

*david.ziemkiewicz@utp.edu.pl

density-matrix approach (RDMA). This method is an alterna-
tive to the many-body approach, which can be used also for
explaining Mott transition effects (see, for example, Ref. [6]
and references therein). While the experiments with REs were
performed at helium temperatures there are in principle no
obstacles for observations at temperatures reaching 100 K
[7,8]. By taking into account density matrices for electrons
and holes we are able to include additional effects regarding
temperature, which influences the gap energy as well as intrin-
sic damping parameter [7,9]. We derive expressions for the
third-order susceptibility χ (3) which enable us to obtain the
formula for the nonlinear optical functions. The calculations
are performed for a Cu2O crystal for which the nonlinear
optical functions in the case of quasistationary excitation are
analytically calculated.

Rydberg excitons in cuprous oxide might be of great
potential for future application in photonic quantum informa-
tion processing, where nonlinear interaction plays the crucial
role, so we have directed our interest to light propagation in
this medium. The electromagnetic wave propagation in the
nonlinear regime discussed in the present paper is connected
with the Kerr effect, which manifests itself as a self-induced
phase of a pulse of light as it travels through the medium.
Self-phase modulation (SPM) is a nonlinear optical effect of
light-matter interaction; it is induced by a varying refractive
index of the medium. This produces a phase shift in the pulse,
leading to a change of the pulse’s frequency spectrum. It
might be interesting to examine the intensity dependence of
the index of refraction in RE media. Such an approach might
be the first step to develop a new branch of investigations
and applications in media with REs; the phenomenon of
self-focusing is a promising example [10]. SPM steered on
demand by light intensity can also find interesting applications
in optoelectronic devices working with low-light intensity,
such as all-optical switching and logic gates. In the quantum
information context two-photon self-Kerr nonlinearities may
be used in quantum computing [11].

The paper is organized as follows. In Sec. II we recall the
basic equations of the RDMA and formulate the equations
for the case when the interband and intraband electronic

2469-9950/2019/99(24)/245206(8) 245206-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.245206&domain=pdf&date_stamp=2019-06-25
https://doi.org/10.1103/PhysRevB.99.245206
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transitions are accounted for. In Sec. III we describe an
iteration procedure, which will be applied to solve a system
of coupled integro-differential equations. The second iteration
step, from which the nonlinear optical functions will be calcu-
lated, is given in Sec. IV. The formulas, derived in this section,
are than applied in Sec V, which is devoted to presentation
and discussion of the nonlinear optical functions for a Cu2O
crystal. Self-phase modulation in such a system regarding
intensity and transmission dependence is discussed in Sec. VI.
Finally, in Sec. VII we draw conclusions of nonlinear studies
presented in this paper.

II. EXCITONIC NONLINEARITIES IN RYDBERG
EXCITON MEDIA: DENSITY MATRIX FORMULATION

In the following we adapt the real density-matrix approach
to the case of semiconductors under high excitation, and show
how to calculate the nonlinear optical functions.

We discuss the nonlinear response of a semiconductor slab
to an electromagnetic wave characterized by the electric-field
vector:

E = Ei0 exp(ik0R − iωt ), k0 = ω/c, (1)

R being the excitonic center-of-mass coordinate [see Eq. (8)].
In the RDMA approach the bulk nonlinear response will

be described by a closed set of differential equations (“con-
stitutive equations”): one for the coherent amplitude Y (r1, r2)
representing the exciton density related to the interband transi-
tion, one for the density matrix for electrons C(r1, r2) (assum-
ing a nondegenerate conduction band), and one for the density
matrix for the holes in the valence band, D(r1, r2). Below we
will use the notation

Y (r1, r2) = Y12, etc. (2)

The constitutive equations have the forms of the interband
equation

ih̄∂tY12 − HehY12 = −ME(R12) + E1M0C12

+ E2M0D12 + ih̄

(
∂Y12

∂t

)
irrev

, (3)

conduction-band equation

ih̄∂tC12 + HeeC12 = M0(E1Y12 − E2Y
∗

21) + ih̄

(
∂C12

∂t

)
irrev

,

(4)

and valence-band equation

ih̄∂t D21 − HhhD21 = M0(E2Y12 − E1Y
∗

21)

+ ih̄

(
∂D21

∂t

)
irrev

. (5)

The diagonal elements of matrices C and D describe the
densities of electrons and holes, respectively. The operator Heh

is the effective mass Hamiltonian:

Heh = Hc.m. + Hr,

Hc.m. = (−h̄2/2)∇R(M tot )
−1∇R + Eg,

Hr = (−h̄2/2)∇r (μλ)−1∇r + Veh(r), (6)

where μ and M tot are the exciton reduced and total mass

tensors, respectively; Eg is the energy gap for the considered
pair of energy levels; Hc.m. and Hr are Hamiltonian parts for
center-of-mass motion and relative motion, respectively,

Hee = − h̄2

2me

(∇2
1 − ∇2

2

)
,

Hhh = − h̄2

2mh

(∇2
1 − ∇2

2

)
; (7)

and E12 means that the wave electric field in the medium is
taken in a middle point between r1 and r2: we take them at the
center of mass:

R = R12 = mhr1 + mer2

mh + me
. (8)

In the above formulas me and mh are the electron and the hole
effective masses (more generally, the effective mass tensors),
Mtot is the total exciton mass, and μ is the reduced mass
of the electron-hole pair. The smeared-out transition dipole
density M(r) is related to the bilocality of the amplitude Y and
describes the quantum coherence between the macroscopic
electromagnetic field and the interband transitions [12]. The
band structure of Cu2O is included in the form of the tran-
sition dipole density M. The coherent amplitude Y12 deter-
mines the excitonic part of the polarization of the medium
[13]:

P(R, t ) = 2
∫

d3r M∗(r)ReY (R, r, t )

=
∫

d3rM∗(r)[Y (R, r, t ) + c.c.], (9)

where r = r1 − r2 is the electron-hole relative coordinate.
The linear optical properties are obtained by solving the

interband equation (3), supplemented by the corresponding
Maxwell equation, where the polarization (9) acts as a source.
For computing the nonlinear optical properties we use the
entire set of constitutive equations (3)–(5). At the moment
a general solution of the equations seems to be inaccessible.
Only in special situations a solution can be found. For ex-
ample, if one assumes that the matrices Y, C, and D can be
expanded in powers of the electric field E, an iteration scheme
can be used.

The relevant expansion of the polarization in powers of the
field has the form

P(2)(ω j ) =
∑

k

χ (2)(ω j, ωk ) : E(ωk )E(ω j − ωk ), (10)

with the second-order susceptibility

χ (2)
(
ω j, ωk

) =
∫ ∞

0
dτ

∫ ∞

0
dτ ′χ (2)(τ, τ ′)e−iω jτ−iωkτ

′
, (11)

and for the third-order polarization

P(3)(ω j ) =
∑
k,�

χ (3)(ω j, ωk, ω�):̇E(ω�)

× E(ωk − ω�)E(ω j − ωk ), (12)
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with the third-order polarization

χ (3)(ω j, ωk, ω�) =
∫ ∞

0
dτ

∫ ∞

0
dτ ′

∫ ∞

0
dτ ′′χ (3)

× (τ, τ ′, τ ′′)e−iω jτ−iωkτ
′−iω�τ

′′
. (13)

The expressions χ (2)(ω j, ωk ) : E(ωk )E(ω j − ωk ) and
χ (3)(ω j, ωk, ω�):̇E(ω�)E(ωk − ω�)E(ω j − ωk ) represent
vectors with components

P(2)
m =

∑
s,p

χ (2)
msp(ω j, ωk )Es(ωk )Ep(ω j − ωk ),

P(3)
m =

∑
s,p,r

χ (3)
mspr (ω j, ωk, ω�)Es(ω�)

× Ep(ωk − ω�)Er (ω j − ωk ). (14)

Below we consider the situation with ω j = ω = −ωk = ω�

and assume that the incoming field is polarized along the
em axis. Then the nonlinear optical response is due to
χ (3)

mmmm(ω) = χ (3)(ω), and the third-order polarization will
have a em component only, so we can write

Pm(k, ω) = ε0[χ (1)Em(k, ω)

+χ (3)(ω,−ω,ω)|Em(k, ω)|2Em(k, ω)].

(15)

We will assume that the transition density vector M has
a component in the direction em and the interband tran-
sition is allowed for the given polarization. Once the po-
larization em is chosen, we will omit the index in further
considerations.

III. THE ITERATION PROCEDURE

Following the calculation scheme proposed in
Refs. [12,14,15], we calculate the susceptibility χ (3)

iteratively from the dynamic equations (3)–(5). The first
step in the iteration consists of solving Eq. (3), which we take
in the form

ih̄∂tY
(1)

12H − HehY (1)
12 = −ME + ih̄

(
∂Y (1)

12

∂t

)
irrev

. (16)

For the irreversible part we assume, as usual, a relaxation-time
approximation:(

∂Y (1)
12

∂t

)
irrev

= − 1

T2
Y12 = −	

h̄
Y12, (17)

where Γ is a dissipation constant and T2 = h̄/Γ . In the
discussion of nonlinear effects we take also into account the
nonresonant parts of the amplitude Y , and consider the electric
field E in the medium in the form

E12 = E(R, t ) + E∗(R, t ) = E0ei(kR−ωt ) + E0e−i(kR−ωt ).

(18)

Therefore Eq. (16) generate two equations: one for an am-
plitude Y (1)

− ∝ exp(−iωt ) and the second for the nonresonant

part Y (1)
+ ∝ exp(iωt ):

ih̄

(
iω + 1

T2

)
Y (1)

12+ − HehY (1)
12+ = −ME∗(R, t ),

ih̄

(
−iω + 1

T2

)
Y (1)

12− − HehY (1)
12− = −ME(R, t ). (19)

We will consider only one component of E and M. As in
our previous papers [5,16] we look for a solution in terms
of eigenfunctions of the Hamiltonian Heh, which we use in
the form ϕn�m = Rn�(r)Y�m(θ, φ), where Rn� are the hydrogen
radial functions, and En are the corresponding eigenvalues. So
we obtain

Y12− = E (R, t )
∑

n

cn�mϕn�m(r)

h̄(�n�m − ω − i/T2n)
,

Y12+ = E∗(R, t )
∑

n

cn�mϕn�m(r)

h̄(�n�m + ω − i/T2n)
, (20)

where

cn�m =
∫

d3rM(r)ϕn�m(r),

h̄�n�m = Eglm + En + h̄2

2Mtot
k2

z ,

r =
√

x2 + y2 + z2, (21)

and, in the case of Cu2O, Eg�m are the gap energies appropriate
for p and f excitons. For the sake of simplicity, we consider
only the p exciton contribution. The solutions Y (1)

12± determine
the linear susceptibility

χ (1)(ω, k(1)
z

) = 1

ε0E0

∫
d3r

[
Y (1)

12− + Y (1)∗
12+

]
M∗(r)

= 1

ε0h̄

∑
n�m

bn1�n�m

�2
n�m − (ω + i/T2n)2

, (22)

with the coefficients [5]

bn1 = 2|cn10|2

= 8π

3

(∫ ∞

0
r2drM(r)Rn1(r)

)2

. (23)

The so-obtained susceptibility defines the linear dispersion
rule for the polariton modes:

c2
(
k(1)

z

)2

ω2
= εb + χ (1)

(
ω, k(1)

z

)
. (24)

The coefficients bn1 can be expressed in terms of the band
parameters and, for energies below the gap, one obtains

k(1)2
z

k2
0

− εb

= εb

N∑
n=2

fn1�LT/R∗

(ET n − E − iΓn)/R∗ + (μ/Mtot )
(
k(1)

z a∗)2 (25)

where k0 = ω/c, Γn = h̄/T2n, and ET n are energies of the
exciton resonances, and the oscillator strengths are given
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by [5]

fn1 = 32(n2 − 1)

3n5

[
n(r0 + 2a∗)

2(r0 + na∗)

]6

. (26)

For the wave propagating in the medium, we choose the
appropriate component of the dipole density. For p excitons
(� = 1) the z component of the dipole density vector, which
will be used below, has the form [5]

Mz(r) = M10
r + r0

2r2r2
0

√
4π

3
Y10e−r/r0 , (27)

with the coherence radius r0 [5,12]:

r−1
0 =

√
2μ‖
h̄2 Eg. (28)

IV. ITERATION PROCEDURE: SECOND STEP

Let us consider a wave linearly polarized in the z direction.
Then Y (1)

± [Eq. (20)] are inserted into the source terms of
the conduction-band and valence-band equations (4) and (5),
respectively. Solving for stationary solutions, we have

JC = M10

(
E1Y

(1)
12 − E2Y

(1)∗
21

)

= 2iM10E2
0

h̄

[
exp

(
ik(1)

z z
me

Mtot

)
Im g(−ω, r)

+ exp

(
−ik(1)

z z
me

Mtot

)
Im g(ω, r)

]
, (29)

where

g(±ω, r) =
∑

j

c j10ϕ j10(r)

� j10 ∓ ω − i/T2 j1
. (30)

For the source terms of the valence-band equations (5) we
obtain

JV = M01
(
E2Y

(1)
12 − E1Y

(1)∗
21

)
= 2iM10E2

0

h̄

[
exp

(
ik(1)

z z
mh

Mtot

)
Im g(ω, r)

+ exp

(
−ik(1)

z z
mh

Mtot

)
Im g(−ω, r)

]
. (31)

If irreversible terms are well defined, Eq. (5) can be solved
and their solutions are then used in the saturating terms
on the right-hand side of Eq. (3). Assuming relaxation-time
approximation the time dependence of density matrices C and
D is described as(

∂C

∂t

)
irrev

= − 1

τ
[C(X, r, t ) − f0e(r)

×C(X, r = r0, t )] − C(r0)

T1
,

(
∂D

∂t

)
irrev

= − 1

τ
[D(X, r, t ) − f0h(r)

× D(X, r = r0, t )] − D(r0)

T1
, (32)

where

X = 1
2 (re + rh), (33)

and f0e and f0h are normalized Boltzmann distributions for
electrons and holes, respectively, and τ denotes the relaxation
time. For the considered temperatures T ∼ 10 K, the use of
the Boltzmann distribution is justified because R∗/kBT 
 1,
kB being the Boltzmann constant [17,18]. The relaxation T1

stands for interband recombination [14] and f0e is defined as

f0e(r) =
∫

d3q f0e(q)e−iqr = exp

[
−mekBT

2h̄2 r2

]

with

f0e(q) =
(

h̄3

2πkBT

)3/2
1

m3/2
e

exp

(
− h̄2q2

2mekBT

)
, (34)

where T is the temperature. Similarly, for the hole equilibrium
distribution, we have

f0h(r) = exp

(
−mhkBT

2h̄2 r2

)
. (35)

Matrices C and D are related to charge densities

ρe = −eC(r, r), ρh = eD(r, r), (36)

which are conserved quantities. We therefore have assumed
that they relax to an equilibrium normalized to the actual
number of carriers. It should be noticed that matrices C and
D are temperature dependent and they give an additional
contribution for interpretation of temperature variations of ex-
citonic optical spectra. However, the temperature dependence
of relaxation constants 	n remains a dominant mechanism
influencing the spectra. Moreover, for sufficient temperature
and optical power, the density matrices C and D inherently
include the effect of the Mott transition. Due to the value of the
exciton radius in Cu2O, the Mott density is relatively large, so
at least at low temperatures and moderate power density one
is below the Mott transition. We remain in this regime, where
both excitons and holes define the optical properties. Further,
we will assume that our medium is excited homogeneously
in X space. For p excitons the matrices C and D relax to
their values at r = r0. In Cu2O, the dipole density can be
approximated by [12] M(r) ∝ rδ(r − r0), which leads to the
following expressions for the matrices C and D:

C(r) = − i

h̄
[τJC (r) − τJC (r0) + T1 f0e(r)JC (r0)],

D(r) = − i

h̄
[τJV (r) − τJV (r0) + T1 f0hH (r)JV (r0)]. (37)

With the above expressions the equation for the third-order
coherent amplitude Y (3)

12 takes the form

h̄

(
ω + i

T2

)
Y (3)

12− − HehY (3)
12−

= M10(E1C12 + E2D21) = E (R, t )J̃−,

h̄

(
−ω + i

T2

)
Y (3)

12+ − HehY
(3)

12+

= M10(E∗
1 C12 + E∗

2 D21) = E∗(R, t )J̃+, (38)
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where

J̃− = − i

h̄
M10

{
τ [JC (r)eikzzme/Mz + JV (r)e−ikzzmh/Mtot ]

− τJC (r0)eikzzme/Mz − τJV (r0)e−ik(1)
z zmh/Mtot

+ T1JC (r0) f0e(r)eik(1)
z zme/Mtot

+ T1JV (r0) f0h(r)e−ik(1)
z zmh/Mtot

}
, (39)

J̃+ = − i

h̄
M10

{
τ
[
JC (r)e−ik(1)

z zme/Mtot + JV (r)eik(1)
z zmh/Mtot

]
− τJC (r0)e−ik(1)

z zme/Mtot − τJV (r0)eik(1)
z zmh/Mtot

+ T1JC (r0) f0e(r)e−ik(1)
z zme/Mtot

+ T1JV (r0) f0h(r)eik(1)
z zmh/Mtot

}
. (40)

From Y (3) one finds the third-order polarization accord-
ing to

P(3)(R) = 2
∫

d3rRe M(r)Y (3)(R, r)

=
∫

d3r M(r)
(
Y (3)

12− + Y (3∗)
12+

)
. (41)

The fact that the source terms J̃± contain terms proportional
either to the relaxation time τ or to the interband recom-
bination time T1 allows a further approximation. For most
semiconductors T1 
 τ , so the terms proportional to τ can
be neglected. As in the case of linear amplitudes Y (1), we ex-
pand the nonlinear amplitudes in terms of the eigenfunctions
ϕn�m(r), obtaining

χ (3)
(
ω, k(1)

z

) = −M2
10T1

ε0h̄3

∑
n

cn10�n10

�2
n10 − (

ω + iT −1
2

)2

× {
[Im g(ω, r0) + Im g(−ω, r0)]

×〈ϕn10|eik(1)
z z me

Mtot f0e(r) + e−ik(1)
z z

mh
Mtot f0h(r)〉},

(42)

where

〈ϕn10| f 〉 =
∫

d3r ϕn10(r) f (r). (43)

Assuming further that h̄ω is just below the band edge, with
regard to the relation (23), and

�LT = π

ε0εba∗3
M2

10

(
a∗

r0

)4( 2r0

r0 + 2a∗

)6

= R∗ × 2
2μ

h̄2

M2
01

πε0εba∗ f (r0, a∗), (44)

one obtains

χ (3) = −8πε0(εb�LT)2a∗3

g2(r0)

∑
jn

(
Γ j

Γ01

)

× ϕ j10(ρ0)
√

f j1 fn1ET n1(An10 + Bn10)[
(ET j1 − E )2 + Γ j

2
][

E2
T n1 − (E + iΓn)2

] , (45)

TABLE I. Band parameter values for Cu2O, masses in free-
electron mass m0.

Parameter Value Unit Reference

Eg 2172.08 meV [1]
Ra 87.78 meV [2]a

�LT 1.25 × 10−3 meV [7]
me 0.99 m0 [19]
mh 0.58 m0 [19]
μ 0.363 m0

μ′ –2.33 m0

Mtot 1.56 m0

aa 1.1 nm [2]
r0 0.22 nm [5]
εb 7.5 [1]
T1 500 ns

a 2μ

h̄2 = 1
R∗ (a∗ )2 .

with coefficients

An10 = 〈ϕn10|eikezz f0e(r)〉,
Bn10 = 〈ϕn10|e−ikhzz f0h(r〉, (46)

where

kez = k(1)
jz

me

Mtot
, khz = k(1)

jz

mh

Mtot
,

Γ j = h̄

T2 j
, Γ01 = h̄

T1
,

ϕ j10(ρ0) =
√

3

4π
Rj1(ρ0), ρ0 = r0

a∗ ,

ET n1 = h̄�n(kz = 0), E = h̄ω. (47)

V. NONLINEAR OPTICAL FUNCTIONS

Based on the nonlinear susceptibility χ (3), one obtains the
total index of refraction:

[n(3)]2 = εb

[
1 + χ (1)

εb
+ |Eprop|2 χ (3)

εb

]
, (48)

where Eprop is the amplitude of the wave propagating in the
crystal. It is obtained from the equation

|Eprop|2 = 2

∣∣∣∣ 2

1 + √
εb

∣∣∣∣
2

ζP, (49)

where P is the laser power, and ζ ≈ 377 � is the impedance
of free space. Regarding the experiment by Heckötter et al.
[4] carried out at the temperature 1.35 K, we performed
the calculations for a Cu2O crystal of thickness 40 μm, for
various powers of the impinging light. For the lowest excitonic
state considered in the paper (n = 10), the upper limit for
exciton density, assuming that all the absorbed energy is used
to create excitons and no Rydberg blockade is present, is
ρE ∼ 1015 cm−3. The band parameters of cuprous oxide used
in the calculations are collected in Table I. Important parame-
ters such as Bohr radius, effective masses, and longitudinal-
transverse splitting are taken from the literature [7,19] and
the Rydberg energy is calculated accordingly. We used the
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FIG. 1. The real and imaginary part of the wave vector k(1)
z of a

Cu2O crystal, in the energetic region of n = 2–20 excitonic states,
calculated by Eq. (25).

damping parameters Γn obtained by fitting of the experimental
curves by Kazimierczuk et al. [1] and Heckötter et al. [4].
The dependence on the temperature owing to the Boltzmann
distribution is very weak, and a much larger impact of the
temperature increase is dependent on the energy gap and
the dissipation constants, as was noticed, for example, in
Ref. [18].

We start the iteration procedure with the linear polariton
problem, taking in the bulk dispersion the antiresonant terms
as in Eq. (22). We obtain the polariton wave vector k(1)

z from
Eq. (25) and the bulk polariton amplitude Eprop. The real and
imaginary parts of the wave vector are presented in Fig. 1.

It is known that the separation of the center of exciton
masses and electron-hole relative motion in excitons is not
possible in a complex valence band. However, most of the
authors dealing with the topic make this assumption, and
the obtained theoretical shapes of the optical functions (for
example, absorption) agree very well with the experimental
data. We do not neglect the effect of the nonzero exciton
center-of-mass wave vector. It is used in the calculation of the
electron (hole) density matrices C and D [see Eq. (42)]. On the
other hand, we neglect the c.m. vector in the denominator of
the polariton dispersion relation [Eq. (25)]. As a consequence,
we do not consider the separate polariton branches. In the
calculations, detailed knowledge of the polariton amplitudes,
corresponding to every branch, is needed. To calculate the
amplitudes, one has to solve the boundary problem with at
least 2n polariton waves (or 4n, when including the reflected
waves). This problem is related to the so-called additional
boundary conditions (ABCs) problem, since the ordinary
Maxwell boundary conditions are not sufficient. In semicon-
ductors, where few excitonic states were considered, many

FIG. 2. The nonlinear absorption coefficient of a Cu2O crystal,
in the energetic region of n = 10–20 excitonic states. Dashed lines
mark the resonance positions reported in Ref. [4]. For clarity, ab-
sorption spectra are separated vertically.

models for ABCs have been proposed, and the solution is
possible. When considering REs, the number of ABCs should
be at least 2n (for half-space geometry). To our best knowl-
edge, the ABCs for RE polaritons in Cu2O were not proposed.
Therefore we did not consider this problem, as it is beyond the
scope of this paper.

When the spatial dispersion effects are neglected, the am-
plitude of the propagating wave results from the standard re-
lation for the half-space geometry (49). In the second step we
compute the third-order susceptibility and the total excitonic
bulk polarization using as input the linear polariton charac-
teristics. From the imaginary part one obtains the absorption
coefficient:

α(3) = 2
h̄ω

h̄c
Im n(3). (50)

It has been calculated for various laser intensities, in the en-
ergetic region of the n = 10, . . . , 20 excitonic states (Fig. 2).
The results are in excellent agreement with the experimen-
tal data by Heckötter et al. [4]; the maxima of absorption
vanish for higher excitonic states, especially for larger laser
power. Additionally, optical bleaching is noticeable, e.g., the
overall absorption decreases with power. Here one can notice
the advantage of using RDMA, which gives simultaneously
(without use of Kramers-Kronig relations) both parts of the
susceptibility.

Finally, having the intensity dependent index of refraction
(48), we can calculate the optical functions (reflectivity, trans-
missivity, and absorption). We have chosen the reflectivity,
resulting from the equation [17]

R(ω, L) = R∞(ω) + {1 − [R∞(ω)]2}R∞(ω)

× exp[−2α(ω)L], (51)

R∞ =
∣∣∣∣1 − n(3)

1 + n(3)

∣∣∣∣
2

.
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FIG. 3. The nonlinear reflectivity of a Cu2O crystal, in the ener-
getic region of n = 10–20 excitonic states.

The results, for the same crystal as above, and in the same
energetic region, are shown in Fig. 3. Both quantities, the
absorption and the reflectivity, show the decreasing oscil-
lator strengths, which is the main effect of the increasing
applied laser power. We have estimated the relative oscillator
strengths by integrating the peak area for n = 1–24 excitons,
for various laser powers. The results are shown in Fig. 4.
At low power, one obtains the well-known n−3 dependence
reported by Kazimierczuk et al. [1] evident for the Rydberg
states with n > 10. Our fit gives proper predictions for both n
number and power dependence of the oscillator strengths; as
the power increases, the highly excited states are suppressed
due to the Urbach tail [4]. We have approximated this effect by
introducing additional relaxation term Γ ′ = Γ ′

0
(E−Eg)3/2 , which

is added to the excitonic relaxation constants Γn. The constant
Γ ′

0 is obtained by fitting the data in Fig. 2 to the experimental
results by Heckötter et al. [4].

FIG. 4. Dependence of Oscillator strength (peak area) on laser
power for different n resonances.

FIG. 5. The relative phase shift ϕ(P) − ϕ(0), for various laser
powers P and crystal length L = 100 μm.

VI. SELF-KERR NONLINEARITY AND SELF-PHASE
MODULATION

The self-Kerr interaction is a nonlinear self-interaction of
an electromagnetic wave which arises during its propagation
in the medium that produces a phase shift proportional to the
square of the field or, in the quantum regime, number of pho-
tons in the field. The dependence of the medium polarization,
or equivalently the index of refraction, on the intensity of
the field is the basis of this effect. The consequence of the
Kerr effect is self-phase modulation; this means that a light
wave in the medium experiences a nonlinear phase change;
an optical field modifies its own phase. The self-induced
phase modulation of a pulse of light is a useful measurable
parameter and the engineering of self-Kerr interaction is of
great interest for processing of the optical spectrum of light
beams propagating through the media.

In media which are characterized with a non-negligible
nonlinear term of susceptibility, the phase of a wave traversing
a distance L increases by ϕ = �kzL, and the increment in
phase due to the power-dependent term is equal to

ϕ = ω

c
[n(3)(P) − n(3)(0)], (52)

where n(3)(P) is the power-dependent part of the refractive
index.

It seems that cuprous oxide with Rydberg excitons is a
superior material for solid-state quantum optics, so we have
performed numerical calculations of phase dependence for
this medium using results presented in Secs. IV and V. It
can be seen from Fig. 5 that the self-Kerr nonlinear phase
changes are observed even at relatively low light intensity.
One can observe that the phase gets larger if the optical
intensity increases and the phase modulation can reach several
radians at readily available conditions (P = 12 mW, crystal
length L = 100 μm). As in the case of absorption, the medium
exhibits bleaching; the refraction index and corresponding
phase shift decrease with power through the whole spectrum.
The self-Kerr nonlinear optical properties of the system can be
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FIG. 6. The absolute value of phase shift as a function of absorp-
tion coefficient and laser power, for E = 2171 meV.

controlled by changing the crystal size. Due to the absorption,
there is an interplay between transmission and field intensity.
This is shown in Fig. 6. For any desired phase change, there is
a range of parameters for which such a value can be obtained.
One can see that while the maximum value of 6 rad is
acquired only for very low, practically negligible transmission
the phase change of π can be reached with 10% transmission
and P ∼ 10 mW.

VII. CONCLUSIONS

We have developed a simple mathematical procedure to
calculate the nonlinear optical functions of a semiconductor
crystal with Rydberg excitons. The experiments with Cu2O
have made it possible to observe the nonlinear absorption
and dependence of oscillator strength on laser power, and our
theoretical results show a good agreement with experimental
data, facilitating the calculation of absorption spectra for any
number of excitonic states in a wide range of conditions
(laser power, temperature, etc.). Taking advantage of optical
functions in the nonlinear regime we have studied how SPM,
which is a measurable evidence of self-Kerr interaction, can
be controlled by laser intensity. Obtained results show that,
depending on the length of the crystal, it is possible to reach a
phase shift of π for selected excitonic states even for relatively
low light intensities. We conclude that the real density-matrix
approach is well suited for describing the linear and nonlinear
properties of various types of excitons.
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