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Nonlinear spin-current generation in quantum wells with arbitrary
Rashba-Dresselhaus spin-orbit interactions
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The problem of the nonlinear spin-currents generated by an electric field E and a temperature gradient ∇T in
spin-orbit coupled systems is revisited in a different formalism. Here, the second-order correction to the particle
distribution function δ f (2) is derived in a semiclassical approximation that takes into account the local change
in the equilibrium distribution function induced by the external fields. Our approach departs significantly from
the present theory, where δ f (2) is written as an iterative solution to the Boltzmann transport equation in the
relaxation-time approximation. As we show, such an expression does not actually satisfy the collision term of
the equation, and therefore it is not self-consistent. We apply our formalism to the case of a quantum well with
arbitrary values of the linear Rashba α and Dresselhaus β interactions. For the whole range of α versus β values,
we obtain analytic results for all the spin currents that can be driven in the system, proportional with E2, ∇T 2,
or with E · ∇T . The magnitude of these currents is smaller than previously anticipated.
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I. INTRODUCTION

Studied intensively for the past decade, spin-orbit (SO)
coupled systems continue to provide an interesting explo-
ration ground for theoretical and experimental investigations
focused on detecting phenomena that can lead to the establish-
ment of a spin-dependent transport paradigm for applications
[1,2]. Of all systems endowed with some form of spin-orbit
interaction, two-dimensional III-V semiconductor quantum
wells with inversion asymmetry occupy a preeminent spot,
given their well-understood behavior as normal Fermi sys-
tems, which, coupled with the high degree of electric control
over the SO parameters, makes them suitable for a large
range of experiments [3–9]. There, the spin-orbit interaction
is described by the linear coupling between the spin and mo-
mentum with strength α for the Rashba term, which originates
in the inversion asymmetry of the well [10], and with strength
β for the Dresselhaus term, which originates in the inversion
asymmetry of the crystal [11]. Since the two terms rotate the
spin in opposite directions, their simultaneous consideration
in theoretical investigations is somewhat challenging, and
often solutions are given only in numerical formalisms.

The search for the realization of stable spin currents in
two-dimensional systems has received an important impetus
from the predicted nonlinear generation of such currents in
anisotropic Fermi pockets that relied on using the second-
order correction to the distribution function induced by the
electric field or temperature gradient, δ f (2) [12]. The idea
behind this approach exploits the even parity in the mo-
mentum space of δ f (2) written as an iterative solution of
the Boltzmann transport equation (BTE) in the relaxation-
time approximation, which is juxtaposed on the anisotropy
of the single-particle energy spectrum to create a nonzero
differential valley or spin-current effect. In the presence of
an electric field E and a temperature gradient ∇T , spin and
charge currents proportional to E2 and (∇T )2 were calculated

to have, in both cases, significant values, thus heralding a new
paradigm for experimental realization.

More recently, the same computational algorithm was
applied to the case of a semiconductor quantum well with
Rashba and Dresselhaus spin-orbit interaction in Ref. [13],
where spin currents quadratic in the applied electric field
were evaluated. Analytic expressions were derived when only
one interaction was present, either α = 0 or β = 0, while
numerical results were obtained for the case of both couplings
being considered. Thus, it was found that pure spin currents,
whose amplitude is proportional with α or β, are driven
simultaneously along parallel and perpendicular directions
on the electric field. In each case, the spin polarization is
perpendicular to the direction of propagation. The calculated
magnitude of the parallel and perpendicular currents is differ-
ent, with the current along the direction of the electric field
about five times larger, but in both cases it was significant
enough to exceed the values obtained by other electric means.
A numerical study of the case α �= 0 and β �= 0 indicated that
both currents disappear in the limit α = β.

In this paper, we reformulate the theory of nonlinear spin
currents by using a different expression for δ f (2). This is nec-
essary since, as we demonstrate below, a second-order distri-
bution function cannot be derived iteratively in the relaxation-
time approximation as it does not satisfy self-consistently the
collision term of the Boltzmann transport equation. Instead,
we calculate δ f (2) from a power expansion of the Fermi
distribution function written in a semiclassical approximation
for a local energy configuration that reflects the change in the
electron energy in the presence of the electric field and the
change in the Boltzmann factor in the presence of a temper-
ature gradient. The spatial validity of this approximation is
established by the average distance between two successive
collisions, which is proportional to the relaxation time. This
limitation is imposed by the requirement that the first-order
correction to the distribution function δ f (1) derived in this way
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coincides with the solution of the Boltzmann equation linear
in the external fields.

Our nonlinear transport formalism is applied to the case of
a two-dimensional electron gas in a quantum well with Rashba
and Dresselhaus spin-orbit interactions. Analytic expressions
for the nonlinear spin currents are calculated for arbitrary val-
ues of the Rashba and Dresselhaus coupling constants in the
presence of an electric field and a temperature gradient. The
spin polarization of the currents is parallel or perpendicular
to the direction of propagation depending on the geometric
distribution of the applied perturbations. Their amplitude is
proportional to the spin-orbit coupling constants and cancels
in the limit α = β regardless of the directions of the applied
fields and propagation.

II. SECOND-ORDER DISTRIBUTION FUNCTION

We consider a simple two-dimensional Fermi system de-
scribed by a single-particle Hamiltonian H whose eigenvalues
εp are functions of the momentum p. Other quantum numbers,
such as spin (or valley index), might be present, but since
they are not relevant at this point, they will not be explicitly
declared. In thermodynamic equilibrium, the statistical occu-
pancy of a single-particle state is established by the Fermi dis-
tribution function at temperature T , f 0

p = [1 + exp εp−εF

kBT ]−1,

where εF is the Fermi energy.
In the presence of a time-independent perturbation,

f (p, r), function of position r and momentum p, describes
the particle distribution and satisfies the general Boltzmann
transport equation (BTE),[

∂ f (p, r)

∂t

]
=

[
∂ f (p, r)

∂t

]
coll.

. (1)

This equality expresses the conservation of the number of
particles in a volume in the phase space, as particles leave the
trajectory prescribed by Hamilton’s equations only as a result
of collisions. Introducing δ fp(r) as the deviation equilibrium
of the distribution function, a solution of the BTE is

f (r, p) = f 0
p + δ fp(r). (2)

Henceforth, the explicit dependence on r of δ fp(r) will not
be declared, considering that it does not play a role in the
collision integral, the central part of our analysis. With this,
the collision term can be written as[

∂ f (r, p)

∂t

]
coll.

= −
∑

p′
Pp,p′ [ fp(1 − fp′ ) − fp′ (1 − fp)]

= −
∑

p′
Pp,p′ (δ fp − δ fp′ ), (3)

where Pp,p′ is the probability of scattering between states of
momenta p and p′. For a scattering matrix element Vp,p′ (θpp′ ),
which depends at most on the angle between the initial and
final momentum states θp,p′ , the Fermi golden rule generates

Pp,p′ = 2π

h̄
|Vpp′ (θpp′ )|2δ(εp − εp′ ). (4)

When Eq. (1) is written for the deviation from equilibrium
of the distribution function in all orders in the external fields
δ f (n)

p , an additional perturbation is introduced via ṗ and ṙ

from Hamilton’s equations of motion. Therefore, the general
iterative equation satisfied is

ṗ · ∇pδ f (n−1)
p + ṙ · ∇rδ f (n−1)

p

= −
∑

p′
Pp,p′

(
δ f (n)

p − δ f (n)
p′

)
, n � 1. (5)

In equilibrium, of course, (
∂ f 0

p

∂t )coll. = 0.

A. Present theory

The present theory of nonlinear spin and charge currents
discussed in Refs. [12,13] is based on deriving δ f (2)

p , the
distribution function that is quadratic in the applied fields, by
approximating the collision term in Eq. (5) for n = 2 “in the
relaxation time approximation.” Thus, generalizing for the nth
order,

ṗ · ∇pδ f (n−1)
p + ṙ · ∇rδ f (n−1)

p = −δ f (n)
p

τ
(n � 1). (6)

τ is the energy-independent relaxation time, the average time
between two consecutive collisions.

In the following considerations, we assume for simplicity
that only an in-plane electric field is applied. Then, the first-
order correction to the distribution function δ f (1)

p is obtained
from Eq. (6) when n = 1 and ṗ = −eE, in the relaxation-time
approximation as

δ f (1)
p = eτE

∂ f 0
p

∂ p‖
, (7)

where p‖ is the projection of the electron momentum along
the direction of the electric field (p⊥ is the component of the
linear momentum perpendicular to the field). This is simply
the well-known linear textbook solution for the BTE.

For n = 2, the second-order correction to the particle dis-
tribution function follows immediately from (6) and (7) as

δ f (2)
p = (eτE )2

∂2 f 0
p

∂ p2
‖

, (8)

while the nth-order generalization is [13]

δ f n
p = (eτE )n

∂n f 0
p

∂ pn
‖

. (9)

Using (8), nonlinear currents are obtained by summing
a generic (spin or valley-charge) velocity operator matrix
element ṽp multiplied by δ f (2)

p over the two-dimensional
momentum space. Symmetry considerations require that a
nonzero result is obtained only if the two terms have the same
parity, even in the momentum. Thus,

δj =
∑

p

ṽpδ f (2)
p = (eτE )2

∑
p

ṽp
∂2 f 0

p

∂ p2
‖

. (10)

When implemented for a 2D electron system with either
Rashba or Dresselhaus interactions, this algorithm leads to
analytic expressions predicting the existence of spin currents
whose magnitude is proportional with α or β, respectively.
Numerical results are obtained when both spin-orbit couplings
are present. In the limit of α = β, when the two spin-orbit
interactions are equal, no spin currents are found [13].
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As we demonstrate below, however, using Eq. (6) in deriv-
ing a second-order correction to the particle density distribu-
tion function is not appropriate since, for n � 2, the collision
term in Eq. (5) cannot be approximated in the relaxation-time
approximation,

∑
p′

Pp,p′
(
δ f (n)

p − δ f (n)
p′

) �= δ f (n)
p

τ
, n � 2. (11)

B. The relaxation-time approximation
to the Boltzmann equation

When Eq. (5) is written for n = 1, the first-order correction
to the equilibrium particle distribution function satisfies

eE · vp
∂ f 0

p

∂εp
=

∑
p′

Ppp′
[
δ f (1)

p − δ f (1)
p′

]
, (12)

where vp = ∇pεp is the velocity of the particle.
Solving Eq. (12) for δ f (1)

p starts by proposing a self-
consistent solution of the form

δ f (1)
p = C(εp)(eE · vp)

∂ f 0
p

∂εp
, (13)

where C(εp) is a constant, at most dependent on energy. With
this choice, the right-hand side of Eq. (12) becomes∑

p′
Ppp′

(
δ f (1)

p − δ f (1)
p′

)

= 2π

h̄

∑
p′

|V (θp,p′ )|2δ(εp − εp′ )
(
δ f (1)

p − δ f (1)
p′

)

= eC(εp)Evp
∂ f 0

p

∂εp

ν0

h̄

∫ 2π

0
dθp,p′ |V (θp,p′ )|2

× [cos θp,E − cos θp′,E]

= δ f (1)
p

ν0

h̄

∫ 2π

0
dθp,p′ |V (θp,p′ )|2(1 − cos θp,p′ )

= δ f (1)
p

τ
. (14)

The end result is possible because the scattering matrix ele-
ment |Vp,p′ |2 is an even function of θp,p′ implying that the odd
part of cos θp′,E = cos(θp,E + θp,p′ ) does not contribute to the
angular integral. Therefore C(εp) = τ , the electron relaxation
time, same as in Eq. (6), given by

h̄

τ
= ν0

∫
|Vp,p′ |2(1 − cos θpp′ )dθpp′ , (15)

with ν0 the density of states at the Fermi surface. The final
form of δ f (1)

p is also obtained in a quantum-mechanical for-
malism that evaluates the conductivity as a linear-response
function to an electric field. It is equivalent to the renormaliza-
tion of the electron velocity (current vertex renormalization)
on account of impurity-mediated scattering [14].

It is important to accentuate the idea that the transport time
τ appears in the expression of δ f (1)

p precisely because it was
assumed that δ f (1)

p is of the form (13) when the collision term
in the BTE was calculated.

When one solves Eq. (5) for n = 2, the above procedure
has to be repeated. Therefore, a second-order solution should
be of the form

δ f (2)
p = C(εp)(eE · ∇p)δ f 1

p = C(εp)τ (eE · ∇p)2 f 0
p , (16)

where as before C(εp) is a constant, at most dependent on
the energy. With this choice, the collision integral in Eq. (5)
becomes∑

p′
Pp,p′

(
δ f (2)

p − δ f (2)
p′

)

= C(εp)τ (eE )2 ν0

h̄

∫ 2π

0
dθp′ |V (θp,p′ )|2

[
∂2 f 0

p

∂ p2
‖

− ∂2 f 0
p

∂ (p′)2
‖

]
.

(17)

A straightforward calculation yields

∂2 f 0
p

∂ p2
‖

= ∂

∂ p‖

(
∂εp

∂ p‖

∂ f 0
p

∂εp

)
= ∂2εp

∂ p2
‖

∂ f 0
p

∂εp
+

(
∂εp

∂ p‖

)2 ∂2 f 0
p

∂ε2
p

= ∂2εp

∂ p2
‖

∂ f 0
p

∂εp
− 1

kBT

(
∂εp

∂ p‖

)2

tanh
εp − εF

2kBT

∂ f 0
p

∂εp
.

(18)

When Eq. (18) is used to evaluate the collision integral, we
obtain∑

p′
Pp,p′

(
δ f (2)

p − δ f (2)
p′

)

= C(εp)τ (eE )2
∂ f 0

p

∂εp

ν0

h̄

{∫ 2π

0
dθp′ |V (θp,p′ )|2

×
[

∂2εp

∂ p2
‖

− ∂2εp′

∂ (p′)2
‖

]
− v2

p
1

kBT
tanh

εp − εF

2kBT

×
∫ 2π

0
dθp′ |V (θp,p′ )|2(cos2 θp,E − cos2 θp′,E)

}

�= δ f (2)
p

τ
, (19)

where τ has to be the same as in Eq. (15).
Consequently, a second-order solution cannot be obtained

in the “relaxation-time approximation” since it does not sat-
isfy consistently the right-hand side of the BTE, i.e., the colli-
sion integral. Any other higher-order approximation cannot be
obtained in this way, either. The gist of this argument is that in
order for

∑
p′ Pp,p′δ f (n)

p′ ∼ δ f (n)
p , δ f (n)

p has to have an angular
dependence that is given exactly by vp · E, which is true only
in first order in the perturbative fields.

It is clear, therefore, that the generalization Eq. (9) is inac-
curate as it neglects the second term of the collision integral,∑

p′ Pp,p′δ f (n)
p′ . In reality, this term is of the same order as∑

p′ Pp,p′δ f (n)
p = δ f (n)

p /τ (assuming isotropic scattering), so
its disappearance is not justified.

C. The local approximation to the particle distribution function

Here we discuss a different algorithm that generates
the second-order distribution function in a semiclassical
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approximation, based on the local perturbation of the single-
particle distribution function induced by the external fields.
The addition of an electrostatic potential V (r) = −E · r mod-
ifies locally the electron energy to ε̃p = εp + eE · r, while
a temperature gradient changes the Boltzmann factor to
1/kB(T + ∇T · r). If these changes are weak compared with
the Fermi energy, the electron distribution function is just the
Fermi function written for the local energy and Boltzmann
factor,

f̃p(r) =
{

1 + exp

[
εp − εF + eE · r
kB(T + ∇T · r)

]}−1

. (20)

Equation (20) can be expanded in a series of terms pro-
portional to powers of the electric field and the temperature
gradient, respectively. When the linear terms are constrained
to replicate the solution of the BTE, it is found that r = vpτ , a
result that establishes the spatial range of the approximation.

With this input, the expansion of the distribution function
becomes

f̃p = f 0
p +

[
(eτE · vp) − (εp − εF )

(
τvp · ∇T

T

)]
∂ f 0

p

∂εp

+ 1

2

{[
(eτE · vp)2 + (εp − εF )2

(
τvp · ∇T

T

)2

− 2(εp − εF )(eτE · vp)

(
τvp · ∇T

T

)]
∂2 f 0

p

∂ε2
p

+
[

2(εp − εF )

(
τvp · ∇T

T

)2

− 2(eτE · vp)

×
(

τvp · ∇T

T

)]
∂ f 0

p

∂εp

}
. (21)

Immediately, the second-order distribution function is
therefore

δ f (2)
p = 1

2

{[
(eτE · vp)2 + (εp − εF )2

(
τvp · ∇T

T

)2

− 2(εp − εF )(eτE · vp)

(
τvp · ∇T

T

)]
∂2 f 0

p

∂ε2
p

+
[

2(εp − εF )

(
τvp · ∇T

T

)2

− 2(eτE · vp)

×
(

τvp · ∇T

T

)]
∂ f 0

p

∂εp

}
. (22)

Obtained in this way, δ f (2)
p is not required to satisfy

the Boltzmann transport equation since its derivation is not
associated with an evaluation of the collision integral. In
the degenerate Fermi gas approximation, the only term in
Eq. (21) that does not cancel is the one proportional to both
electric field and temperature gradient. Evaluating the current
integrals requires the Sommerfeld algorithm for all of the
remaining cases.

Moreover, the nth-order deviation from equilibrium in-
duced by an applied electric field is, in contrast with

Eq. (9),

δ f n
p = 1

n!
(eτE · vp)n

∂n f 0
p

∂εn
p

. (23)

III. SPIN CURRENTS

Using the second-order distribution function derived
above, we calculate the quadratic spin currents driven by an
electric field and a temperature gradient in a quantum well
with arbitrary Rashba and Dresselhaus interactions.

A. Single-particle Hamiltonian

We consider a 2D electron system in a [100] quantum well
described in a system of reference with the ŷ perpendicular on
the plane. The x̂-ẑ in-plane axes are rotated by π/4 from the
usual directions such that x ‖ [110] and z ‖ [11̄0] [15]. This
choice of axes takes advantage of the existence of a privileged
in-plane direction ẑ, which becomes the quantization axis of
Sz when α = β. When α < 0, this system of coordinates is ro-
tated by π/2, such that when α + β = 0, the spin quantization
occurs along the new ẑ axis.

The single-particle Hamiltonian of an electron of mo-
mentum p = (p cos ϕ, 0, p sin ϕ), spin σ = (σx, σy, σz ), and
effective mass m∗ is written as

H = p2

2m∗ − (α + β )pxσz + (α − β )pzσx. (24)

The eigenvalues of the Hamiltonian are

ε± = p2

2m∗ ± p, (25)

where

 =
√

(α + β )2 cos2 ϕ + (α − β )2 sin2 ϕ. (26)

The associated eigenstates are, respectively,

ψ+ = cos
�

2
|↑〉 + sin

�

2
|↓〉,

(27)

ψ− = − sin
�

2
|↑〉 + cos

�

2
|↓〉,

where

tan � = − (α − β )

(α + β )
tan ϕ. (28)

The Fermi energy of the system is reached in each subband
at maximum values of the momenta given by

pF± =
√

2m∗εF + (m∗)2 ∓ m∗ (29)

if εF > 0, the standard case in a 2D electron system.
The Fermi energy of the system is established by the

number of particles since

n =
∑
ξ=±

∑
p

θ (p − pξ ) = 1

(2π h̄)2

∑
ξ=±

∫ 2π

0
dϕ

∫ pFξ

0
p d p

= m∗εF

π h̄2 + (m∗)2

π h̄2 (α2 + β2), (30)
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where θ (pF − p) is the Heaviside distribution in the momen-
tum space. Consequently,

εF = nπ h̄2

m∗ − m∗(α2 + β2). (31)

In a typical GaAs quantum well with particle density n =
7 × 1015 m−2 and β = 4.77 × 102 m/s [9], the condition
εF > 0 is satisfied up to αmax = 2.5 × 105 m/s, a limit much
larger than one of the highest achieved values, α = 1.6 × 104

m/s (or equivalently h̄α = 0.1 eV Å) [16]. The variation of
α is possible on account of its dependence on the potential
applied across the well, while β is a characteristic of the actual
structure since it is roughly proportional to the square inverse
width of the quantum well multiplied by the bulk Dresselhaus
constant [9].

The symmetrized spin-velocity operator is given by ˆ̃v j
i =

( ∂H
∂ pi

σ j + σ j
∂H
∂ pi

)/2, where the lower index i corresponds to the
direction of propagation, while the upper index j indicates
the polarization direction. Its matrix elements are evaluated
immediately using Eq. (27),

ṽx
x = 〈±|vxσx + σxvx

2
|±〉 = ± px

m∗ sin �, (32a)

ṽz
x = 〈±|vxσz + σxvx

2
|±〉 = ± px

m∗ cos � − (α + β ), (32b)

ṽx
z = 〈±|vzσx + σxvz

2
|±〉 = ± pz

m∗ sin � + (α − β ), (32c)

ṽz
z = 〈±|vzσz + σzvz

2
|±〉 = ± pz

m∗ cos �. (32d)

The spin currents are obtained by summing all the spin
velocities multiplied by δ f (2)

p for all values of the momentum
in both minibands,

δ jx
x = h̄

2

∑
ξ=±

∑
p

ξ
px

m∗ sin �δ f (2)
p , (33a)

δ jz
x = h̄

2

∑
ξ=±

∑
p

[
ξ

px

m∗ cos � − (α + β )

]
δ f (2)

p , (33b)

δ jx
z = h̄

2

∑
ξ=±

∑
p

[
ξ

pz

m∗ sin � + (α − β )

]
δ f (2)

p , (33c)

δ jz
z = h̄

2

∑
ξ=±

∑
p

ξ
pz

m∗ cos �δ f (2)
p . (33d)

B. Electric-field-driven spin currents

In the presence of an electric field E, the second-order
distribution function is, from Eq. (22),

δ f (2)
p = 1

2kBT
(eτE · vp)2 tanh

εp − εF

2kBT

(
−∂ f 0

p

∂εp

)
. (34)

For an electric field aligned with the system axes, the spin
currents are polarized perpendicular to the direction of prop-
agation. In this case, the general computational algorithm of
a spin current jμ̄μ driven by an electric field Eν using δ f (2)

p is,

from Eqs. (33) and (34),

δ jμ̄μ = (eτEν )2

16kBT π2h̄

∑
ξ=±

∫ 2π

0
dϕ

∫ ∞

0
dεξ

[
p

d p

dεξ

ṽ
μ̄
ξ ,μ(vξ,ν )2

× tanh
εξ − εF

2kBT

](
−∂ f 0

ξ

∂εξ

)

= (eτEν )2kBT

96h̄

∑
ξ=±

∫ 2π

0
dϕ

d2

dε2
ξ

[
p

d p

dεξ

ṽ
μ̄
ξ ,μ(vξ,ν )2

× tanh
εξ − εF

2kBT

]
εξ =εF

= (eτEν )2

96h̄

∑
ξ=±

∫ 2π

0
dϕ

d

dεξ

[
p

d p

dεξ

ṽ
μ̄

ξ ,μ(vξ,ν )2

]
εξ =εF

,

(35)

where in deriving the last two lines we used the Sommerfeld
algorithm to evaluate the integrals over the energy.

Thus we obtain

δ jz
x = ±(α + β )(α − β )2 (eτEx(z) )2

48h̄

∫ 2π

0
dϕ

sin2 2ϕ

2

= ±π (α + β )(α − β )2 (eτEx(z) )2

48h̄ max(α2, β2)
. (36)

Similarly,

δ jx
z = ±π (α − β )(α + β )2 (eτEx(z) )2

48h̄ max(α2, β2)
. (37)

The polarization of these currents is positive if driven by Ex

and negative if driven by Ez.
When α � β, both currents have the same amplitude,∣∣δ jμ̄μ

∣∣ = απ (eτEν )2/48h̄, (38)

a value that represents only about 60% of previous estimates
for the same system parameters [13]. The currents cancel
when α = β, a result of the paramagnetic nature of the
electron system that is spin-polarized along the ẑ axis by the
combined spin-orbit interaction, which behaves like a de facto
magnetic field of magnitude proportional with α + β [17].

When the electric field has components along both x̂ and ẑ
directions, Ex and Ez, respectively, the second-order distribu-
tion function symmetry permits the existence of spin currents
whose polarization is along the direction of propagation. We
use the general algorithm in Eq. (35) to compute δ jz

z and jx
x .

We obtain

δ jz
z = π (α + β )e2τ 2ExEz

12h̄

[
1 − α2 + β2

2 max(α2, β2)

]
,

δ jx
x = −π (α − β )e2τ 2ExEz

12h̄

[
1 − α2 + β2

2 max(α2, β2)

]
. (39)

When β = 0, the currents are

δ jz
z = −δ jx

x = α(eτ )2ExEz

24h̄
, (40)

twice as large as that obtained when the field acts along a
single axis. When α = β, the currents cancel.
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FIG. 1. The spin currents expressed in units of h̄E/2e are plotted
against the ratio α/β for an intensity of the applied electric field of
104 V/m. The linear Dresselhaus coefficient β is 477 m/s.

We illustrate our results in the case of a GaAs quantum
well with electron density n = 7 × 1015 m−2, β = 4.77 × 102

m/s, and τ = 2.6 × 10−12 s [9]. The currents are plotted in
units of Eh̄/2e, since the remaining quantity has dimensions
of an electric conductivity, measured in �−1. Of course, the
resulting spin-conductivity coefficient is a linear function of
the electric field, so it scales proportionally with it. In Fig. 1
we plot the currents as a function of the α/β ratio for an
electric field of 104 V/m. When α = 1.6 × 104 m/s and β =
4.77 × 102 m/s, the nonlinear spin-conductivity in Eq. (37)
is 3.33 × 10−9E �−1. For an electric field of 105 V/m, it
becomes 3.33 × 10−4 �−1.

In the limit α � β, the ratio of a nonlinear spin conductiv-
ity σ 2

s to the usual charge conductivity σ (1)
c = ne2/m∗ can be

written as, with input from Eq. (30),

σ (2)
s

σ
(1)
c

= η
eτEα

εF + m∗α2/2
, (41)

where η is a numerical coefficient equal to π2/48 for spin
currents polarized perpendicular to the direction of propaga-
tion and to π2/24 for those polarized along the direction of
propagation. For the same system characteristics as above and
for a field of 1 × 105 V/m, the ratios of the two conductivities
are 2.7 × 10−2 and 5.4 × 10−2, respectively.

C. Thermoelectric spin currents

If the temperature gradient and the electric field are applied
along perpendicular directions, the angular symmetry of the
second-order distribution function allows the existence of
quadratic spin currents whose polarization is parallel to the
direction of propagation.

In a geometry with the electric field parallel to the x̂
axis and the temperature gradient parallel to ẑ, δ f (2)

p is

FIG. 2. The spin currents expressed in units of h̄E/2e are plotted
against the ratio α/β for an applied temperature gradient ∇T/T of
104 m−1. The linear Dresselhaus coefficient β is 477 m/s.

given by

δ f (2)
p = (eExτ )(τ∇zT/T )

[
1 − 1

kBT
(εp − εF ) tanh

εp − εF

2kBT

]

×
(

−∂ f 0
p

∂εp

)
. (42)

In this case, the only spin currents that can be driven are
jz
z and jx

x from Eqs. (33d) and (33a). Using the same general
algorithm as in Eq. (35), we obtain

δ jz
z = −

(
π

12
− 1

2π

)
εF (α + β )(eτEx )(τ∇zT/T )

h̄

×
{

1 − α2 + β2

2 max(α2, β2)

[
1 − m∗(α2 − β2)2

2εF

]}
,

δ jx
x =

(
π

12
− 1

2π

)
εF (α − β )(eτEx )(τ∇zT/T )

h̄

×
{

1 − α2 + β2

2 max(α2, β2)

[
1 − m∗(α2 − β2)2

2εF

]}
. (43)

In Fig. 2 we plot the ẑ-direction spin-current that can
be driven by an electric field and temperature gradient ap-
plied along perpendicular directions for the same system
parameters as before. In the limit of α = β, the current
cancels.

For α = 1.6 × 104 m/s and β = 4.77 × 102 m/s, the
spin-conductivity for the thermoelectric effect is −2.85 ×
10−9∇T/T �−1. The second type of thermoelectric spin cur-
rents are those driven by the quadratic temperature gradient.
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From Eq. (21),

δ f (2)
p = 1

2kBT
(εp − εF )2 tanh

εp − εF

2kBT

(
−∂ f 0

p

∂εp

)

− (εp − εF )

(
τvp · ∇T

T

)2
(

−∂ f 0
p

∂εp

)
. (44)

As before, the evaluation of current integral kernels has to pro-

ceed in the Sommerfeld algorithm. Since
∂2 f 0

p

∂εp
∼ (εp − εF ),

there is no contribution from the first term in (44).
Expressions for the spin-currents driven by temperature

gradients applied along the system axes are derived following
the general algorithm described in Eq. (35),

δ jz
x = ∓π

(α + β )(α − β )2(kBτ∇x(z)T )2

12h̄ max(α2, β2)
,

(45)

δ jx
z = ∓π

(α − β )(α + β )2(kBτ∇x(z)T )2

12h̄ max(α2, β2)
,

where the spin polarization is negative when the currents are
driven by temperature gradients applied along the x̂ direction
and positive when the temperature gradients are along the ẑ
direction.

An an in-plane temperature gradient with ∇Tx and ∇Tz

components can drive spin-currents polarized along the
direction of propagation,

δ jz
z = −π (α + β )e2τ 2∇Tx∇Tz

3h̄

[
1 − α2 + β2

2 max(α2, β2)

]
,

δ jx
x = π (α − β )e2τ 2∇Tx∇Tz

3h̄

[
1 − α2 + β2

2 max(α2, β2)

]
. (46)

IV. CONCLUSION

In a quadratic expansion of the Fermi distribution func-
tion written for a local energy configuration, we obtain a
second-order correction to the distribution function that is
proportional to the square values of the perturbative fields.
The range of validity of this approximation is set equal to
the distance between two electron collisions, which is pro-
portional to τ , the relaxation time, such that the first-order
correction to the function satisfies the Boltzmann transport
equation. When applied to spin transport in a quantum well
with competing Rashba-Dresselhaus linear interactions, our
formalism generates analytic expressions for the nonlinear
spin currents driven by electric fields and/or temperature
gradients. The magnitude of the spin currents generated by
an electric field is found to be approximately 0.6 of previous
predictions. All currents cancel in the α = β limit.
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[2] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323

(2004).
[3] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.

Lett. 78, 1335 (1997).
[4] S. J. Papadakis, E. P. D. Poortere, H. C. Manoharan,

M. Shayegan, and R. Winkler, Science 283, 2056 (1999).
[5] D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).
[6] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev.

Lett. 89, 046801 (2002).
[7] M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich,

C. Schönhuber, I. Caspers, V. V. Bel’kov, L. E. Golub, D. Weiss,
K. Richter, J. Nitta, and S. D. Ganichev, Phys. Rev. B 86,
081306(R) (2012).

[8] F. Dettwiler, J. Fu, S. Mack, P. J. Weigele, J. C. Egues, D. D.
Awschalom, and D. M. Zumbühl, Phys. Rev. X 7, 031010
(2017).

[9] P. J. Weigele, D. C. Marinescu, F. Dettwiler, J. Fu, S. Mack,
J. C. Egues, D. D. Awschalom, and D. M. Zumbühl,
arXiv:1801.05657.

[10] Y. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
[11] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[12] H. Yu, Y. Wu, G.-B. Liu, X. Xu, and W. Yao, Phys. Rev. Lett.

113, 156603 (2014).
[13] K. Hamamoto, M. Ezawa, K. W. Kim, T. Morimoto,

and N. Nagaosa, Phys. Rev. B 95, 224430
(2017).

[14] J. Rammer, Quantum Transport Theory (Perseus Books,
Reading, MA, 1998).

[15] D. C. Marinescu, Phys. Rev. B 96, 115109 (2017).
[16] R. A. Simmons, S. R. Jin, S. J. Sweeney, and S. K. Clowes,

Appl. Phys. Lett. 107, 142401 (2015).
[17] D. C. Marinescu, Physica E 69, 34 (2015).

245204-7

https://doi.org/10.1103/RevModPhys.89.011001
https://doi.org/10.1103/RevModPhys.89.011001
https://doi.org/10.1103/RevModPhys.89.011001
https://doi.org/10.1103/RevModPhys.89.011001
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1126/science.283.5410.2056
https://doi.org/10.1126/science.283.5410.2056
https://doi.org/10.1126/science.283.5410.2056
https://doi.org/10.1126/science.283.5410.2056
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.89.046801
https://doi.org/10.1103/PhysRevLett.89.046801
https://doi.org/10.1103/PhysRevLett.89.046801
https://doi.org/10.1103/PhysRevLett.89.046801
https://doi.org/10.1103/PhysRevB.86.081306
https://doi.org/10.1103/PhysRevB.86.081306
https://doi.org/10.1103/PhysRevB.86.081306
https://doi.org/10.1103/PhysRevB.86.081306
https://doi.org/10.1103/PhysRevX.7.031010
https://doi.org/10.1103/PhysRevX.7.031010
https://doi.org/10.1103/PhysRevX.7.031010
https://doi.org/10.1103/PhysRevX.7.031010
http://arxiv.org/abs/arXiv:1801.05657
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRevLett.113.156603
https://doi.org/10.1103/PhysRevLett.113.156603
https://doi.org/10.1103/PhysRevLett.113.156603
https://doi.org/10.1103/PhysRevLett.113.156603
https://doi.org/10.1103/PhysRevB.95.224430
https://doi.org/10.1103/PhysRevB.95.224430
https://doi.org/10.1103/PhysRevB.95.224430
https://doi.org/10.1103/PhysRevB.95.224430
https://doi.org/10.1103/PhysRevB.96.115109
https://doi.org/10.1103/PhysRevB.96.115109
https://doi.org/10.1103/PhysRevB.96.115109
https://doi.org/10.1103/PhysRevB.96.115109
https://doi.org/10.1063/1.4932122
https://doi.org/10.1063/1.4932122
https://doi.org/10.1063/1.4932122
https://doi.org/10.1063/1.4932122
https://doi.org/10.1016/j.physe.2015.01.016
https://doi.org/10.1016/j.physe.2015.01.016
https://doi.org/10.1016/j.physe.2015.01.016
https://doi.org/10.1016/j.physe.2015.01.016

