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In the search for more efficient thermoelectric materials, scientists have placed high hopes in the possibility
of enhancing the power factor using resonant states. In this paper, we investigate theoretically the effects of
randomly distributed resonant impurities on the power factor. Using the Chebyshev polynomial Green’s-function
method, we compute the electron transport properties for very large systems (∼107 atoms) with an exact
treatment of disorder. The introduction of resonant defects can lead to a large enhancement of the power
factor together with a sign inversion in the Seebeck coefficient. This boost depends crucially on the position
of the resonant peak, and on the interplay between elastic impurity scattering and inelastic processes. Strong
electron-phonon and electron-electron scatterings are found detrimental. Finally, the robustness of our results is
examined in the case of anisotropic orbitals and two-dimensional confinement. Our findings are promising for
the prospect of thermoelectric power generation.
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I. RESONANT STATES IN THERMOELECTRIC
MATERIALS

Over the past decades, the increasingly pressing need for
clean energy sources and the realization that a huge proportion
of the energy used worldwide is wasted in heat [1] have
prompted great interest in the prospect of developing efficient
thermoelectric generation modules [2–5]. The currently avail-
able devices, mainly based on (Bi,Sb)2Te3, PbTe or Si-Ge
alloys, are not efficient enough to be used industrially on a
large scale [6]. The efficiency of a thermoelectric module is
limited by the temperature-averaged figure of merit zT of both
the n and p legs of the module [7–9], with

zT = σS2

κ
T,

in which σ is the electrical conductivity, S is the Seebeck
coefficient, and κ is the thermal conductivity, often dominated
by phonons in doped semiconductors. The use of thermoelec-
tric devices on a large scale would require a figure of merit
of at least 2 to 3, depending on the application area [10,11].
The thermal averaging must be done between the temperature
of the heat source and that of the heat sink, meaning that
the materials composing the legs should have a good figure
of merit in a wide range of temperatures. Additionally, the
efficiency and reliability of the device are partly determined
by the compatibility between the two legs, so ideally they
should be made of similar compounds, such as a single
semiconductor host with a different doping [10,12].

So far, most progress in boosting the thermoelectric figure
of merit has been accomplished by lowering the thermal
conductivity [13,14]. Enhancing the power factor (PF) σS2
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is a much more formidable challenge due to the interplay
between the electrical conductivity and the Seebeck coeffi-
cient. To go beyond the rigid-band doping optimum, vari-
ous band engineering strategies have been proposed, such
as band convergence [15–17] and dimensional confinement
of the electron gas [18–21]. Another promising method to
boost the PF consists in using resonant states [22–24]. The
concept is illustrated in Fig. 1. Dopants introduce impurity
states inside the conduction band that hybridize with the
extended states. This way, a sharp peak in the density of
states (DOS) of the host compound is created, which alters
the electronic transport properties when the Fermi level lies in
its vicinity. An enhancement of the thermoelectric properties
through resonant impurity states has been claimed in various
compounds, such as Tl-doped PbTe [25], Sn-doped Bi2Te3

[26], In-doped SnTe [27], Al-doped PbSe [28], or Sn-doped
β-As2Te3 [29]. The case of Tl-doped PbTe is controversial
since first-principles calculations reproduced the experimental
values for the Seebeck coefficient with a simple rigid-band
shift of the pristine material [30]. Subsequently, numerical
studies using the coherent potential approximation (CPA)
coupled with first-principles calculations [31] have been con-
ducted to investigate the effects of random Tl doping in PbTe
[32–34]. However, transport properties were calculated in the
absence of electron-phonon scattering, and the treatment of
disorder by CPA methods is known to ignore the vertex cor-
rections and thus localization effects [35]. More importantly,
no clear improvement in the PF over a rigid-band shift of
the Fermi level was shown for Tl-doped PbTe. As it stands,
there is still no consensus in the literature whether actual
resonant enhancement of the thermoelectric properties has
been observed experimentally.

In this paper, we aim to clarify the general conditions
required for a boost of the PF using resonant substitution
impurities, all with a full treatment of the disorder and
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FIG. 1. Sketch of the density of states as a function of energy
corresponding to a conduction band in the presence of resonant
states. Inset: Illustration of the Hamiltonian terms.

resonant scattering. In particular, we will investigate the in-
fluence of the impurity concentration x and the effects of
inelastic scattering, and finally we will examine the case of
anisotropic orbitals.

II. DISORDERED MODEL HAMILTONIAN
AND METHODOLOGY

To keep the conclusions as general as possible, we consider
a single-orbital tight-binding Hamiltonian featuring hopping
terms t between nearest neighbors on a cubic lattice. Here the
charge carriers are electrons (n type), but because of electron-
hole symmetry our results are valid for p-type materials as
well. The resonant impurities are modeled by an on-site
potential ε on the defect sites and a hybridization V between
the host and impurity sites. The positions of the defects are
chosen randomly. Hence, the Hamiltonian, as illustrated in the
inset of Fig. 1, reads

Ĥ = −t
∑
〈i,j〉,σ

(c†
i,σ cj,σ + c†

j,σ ci,σ )

+ ε
∑
m,σ

c†
m,σ cm,σ − V

∑
〈i,m〉,σ

(c†
i,σ cm,σ + c†

m,σ ci,σ ), (1)

where i runs over host sites, m runs over impurity sites, σ is
the electron spin, and the brackets denote nearest neighbors
only. Since the transport properties do not depend explicitly
on t , we express the other parameters in units of t (see below).

The electrical conductivity and the Seebeck coefficient at
electron density n and temperature T are written [36,37]

σ (n, T ) =
∫

dE

(
− ∂ f

∂E

)
�(E ), (2)

and

S(n, T ) = − 1

eT σ

∫
dE

(
− ∂ f

∂E

)
(E − μ) �(E ), (3)

with f (E , μ, T ) the Fermi distribution. The chemical poten-
tial μ is set to give the correct electron density when the DOS
ρ(E ) is integrated. �(E ) is the so-called transport distribu-

tion function (TDF), which gives access to all the electronic
transport properties and is therefore the key quantity to be
calculated. σ is the thermal average of � around the Fermi
level μ, while S is basically the logarithmic derivative of
� around μ [38]. Therefore, high Seebeck coefficients arise
from strong, sharp variations in the TDF (i.e., large values
of | d�

dE |). Most theoretical studies of doped thermoelectric
materials compute the TDF within the framework of the
Boltzmann transport equation with the relaxation-time ap-
proximation [36]. They either consider impurity scattering to
be negligible compared to electron-phonon scattering [39–43]
or estimate the electron-impurity scattering rate by second-
order perturbation theory, i.e., Fermi’s “golden rule” (FGR),
using a model description for the impurity scattering [44–46].
This is reasonable when the doping does not significantly
alter the electronic structure and causes only weak electron-
impurity scattering, as is the case of La- or Nb-doped SrTiO3,
for instance [47]. But the whole point of resonant states is
that they distort the band structure of the host material and
introduce strong scattering. Therefore, in this paper, we go
beyond the semiclassical Boltzmann formalism to incorporate
the full effects of disorder and multiple resonant scattering.
We use the Kubo formula expressed in terms of the Green’s
function Ĝ of the system [48–51]

�(E ) = h̄e2

π

〈Tr[ImĜ(E ) v̂x ImĜ(E ) v̂x]〉, (4)

where brackets denote disorder averaging, 
 is the total
volume, v̂x = it

h̄

∑
〈i,j〉,σ (xi − xj)(c

†
i,σ cj,σ − c†

j,σ ci,σ ) is the ve-
locity operator along the transport direction x, and the Green’s
function is written

Ĝ(E ) = 1

E − Ĥ + i γin

2

. (5)

A constant imaginary part has been introduced in the de-
nominator of Ĝ(E ) to account for the presence of inelastic-
scattering mechanisms in the system, such as electron-phonon
(e-ph) or electron-electron (e-e) collisions. This will be further
discussed below. � can be expressed in terms of the adimen-
sioned TDF �̃, with � = e2

ah̄ �̃, and likewise for the power

factor PF = k2
B

ah̄ P̃F. For definiteness, we set a = 4 Å, which
gives the same volume per atom as in Si or PbTe, leading to
e2

ah̄ = 6.08 × 103 S/cm and k2
B

ah̄ = 45.18 μW cm−1 K−2.
The exact diagonalization of the Hamiltonian (1) would

drastically limit the system sizes that could be studied with
a reasonable amount of memory and computational time.
Therefore, a good alternative to compute �(E ) exactly, fully
including vertex corrections, is the Chebyshev polynomial
Green’s-function method (CPGF) [52,53]. It is a real-space
approach particularly suitable for addressing the physics in
disordered systems. A brief overview of the method follows.
The Green’s function Ĝ(E ) is expanded on the Chebyshev
polynomials basis:

Ĝ(Ẽ ) =
∞∑

n=0

gn(z̃)Tn( ˜̂H ), (6)

where z̃ = Ẽ + iγ̃in/2 with Ẽ and γ̃in/2 rescaled in the en-
ergy interval [−1, 1], Tn( ˜̂H ) are the Chebyshev polynomials
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calculated by the recursion relation Tn+1( ˜̂H ) = 2 ˜̂HTn( ˜̂H ) −
Tn−1( ˜̂H ), and gn(z) are known complex functions given by

gn(z) = −i(2 − δn,0)
(z − i

√
1 − z2)n

√
1 − z2

. (7)

Inserting Eq. (6) into Eq. (4) yields

�(Ẽ ) = h̄e2

π


∑
n,n′

μn,n′ Imgn(z̃) Imgn′ (z̃), (8)

with

μn,n′ = 〈Tr[Tn( ˜̂H ) ˜̂vx Tn′ ( ˜̂H ) ˜̂vx]〉. (9)

The quantities μn,n′ are called the moments and are calcu-
lated by iterative multiplications of the Hamiltonian matrix
operator. Due to the superior convergence properties of the
Chebyshev polynomials [54] and to the presence of the in-
elastic self-energy, only a finite number of terms in Eq. (6)
need to be computed in order to obtain the exact Green’s
function of the system. Around 1800 × 1800 moments are
sufficient for the TDF to fully converge. Periodic boundary
conditions are used to reach the thermodynamic limit more
easily. Here, we compute the TDF on systems of size N =
1200 × 200 × 200 (48 × 106 sites); this slab geometry allows
faster convergence. The trace in Eq. (9) is evaluated efficiently
by a stochastic method involving random vectors as described
in Refs. [52,53]. When calculating the TDF for such a large
system size, only a few random vectors and disorder config-
urations are necessary. We have checked that the clean limit
is perfectly recovered for both open and periodic boundary
conditions.

Regarding γin in Eq. (5), it can be interpreted as the
inelastic contribution to the electron relaxation time [55]. In
thermoelectric materials, scattering rates at room temperature
typically range from 1 to 100 meV. In certain half Heuslers
such as ZrNiSn, for instance, particularly weak e-ph cou-
plings lead to inelastic-scattering rates varying between 1 and
20 meV [56] while strong e-e scattering in SrTiO3 leads to γin

ranging from 50 to 200 meV and even higher [47]. In between,
scattering rates vary from 10 to 100 meV in Si [46,57,58] or
from 20 to 60 meV in pristine and doped SnSe [59]. From the
bandwidth in these compounds, we estimate t ranging from
0.3 to 1 eV, therefore we will consider 0.02 t � γin � 0.2 t .
This corresponds to γin ranging from 10 to 200 meV and
mean free paths between 50 Å and 500 Å in the pristine case,
which is well in line with calculated values in PbTe [40], for
instance. As we will see shortly, a small inelastic scattering is
most favorable for resonant enhancements of the PF, therefore
we set γin = 0.02 t unless specified otherwise. The choice of
a constant γin preserves the generality of this investigation,
since incorporating energy and temperature dependences re-
quires a material-specific study. Note also that computations
for smaller γin would imply a strong increase in the number of
calculated moments before convergence is reached.

III. NUMERICAL RESULTS AND DISCUSSION

In what follows, we consider the set of values ε = −4 t
and V = 0.3 t that were found optimal in a previous study

FIG. 2. (a) Transport distribution function �(E ) and density of
states ρ(E ) (inset) for five impurity concentrations, from x = 0%
(reference, black dashed line) to x = 5%. A vertical dashed line
marks the position of the resonant peak. (b) �(E ) and its derivative
(inset) for x = 1% calculated exactly (CPGF) and by second-order
perturbation theory (FGR).

that completely ignored disorder [60]. Unless specified oth-
erwise, the electronic properties will be calculated using these
values. Figure 2(a) shows the TDF and the DOS (inset)
for different impurity concentrations x = Nimp

N , with Nimp the
number of randomly distributed defects. Five concentrations
are considered, from x = 0% (the pristine reference case) to
x = 5%. The defects introduce a local peak in the DOS, which
is considered the main signature of resonant states in the
literature, and the mechanism by which the transport prop-
erties are enhanced. The higher the impurity concentration,
the bigger and sharper the peak, so we would expect the best
thermoelectric performances from the highest concentrations.
As we will see shortly, this is not the case. The resonant
peak gives rise in the TDF to a sharp, asymmetrical dip,
as the extended states acquire a more localized character by
hybridizing with impurity states. At high defect concentra-
tions, electron transport is more suppressed across the whole
energy range so the variations of the TDF are gentler (| d�

dE |
is reduced as x increases). We compare in Fig. 2(b) the
TDF and d�

dE calculated by CPGF and by the often used
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FIG. 3. (a) Electrical conductivity σ and (b) Seebeck coefficient
S as a function of the electron density n for five impurity concentra-
tions, from x = 0 to 5%.

FGR. Matthiessen’s rule states that the total scattering rate is
γtot = γimp + γin with γimp the impurity scattering rate. FGR
leads to γimp(E ) = 2πxε2ρ0(E ), ρ0(E ) being the DOS of
the clean system. The FGR transport distribution function is
given by �FGR(E ) = γin

γtot
�(0)(E ) where �(0)(E ) is the pristine

TDF. Notice that the exact �(E ) cannot be cast into such
an analytical form. Clearly, the FGR approach completely
fails to give the correct dependance of the TDF. In particular,
the dip is entirely absent. The discrepancy is even worse
for the derivatives, which are directly linked to the Seebeck
coefficients. Therefore, when resonant states are involved,
second-order perturbation theory breaks down.

From the results of Fig. 2(a) and Eqs. (2) and (3), we
compute the room-temperature electrical conductivity σ and
Seebeck coefficient S, as plotted in Fig. 3 as a function
of the electron density n. T is set to 0.025 t , which corre-
sponds to room temperature if t ≈ 1 eV. σ is reduced by
the disorder and still exhibits the same features as �(E ) (T
being relatively small). This reduction would be detrimental
to the PF, but the sharp variations in the TDF lead to a
boost of the Seebeck coefficient that overcompensates the
suppression of σ . This is accompanied by a sign inversion
of S around n = 0.1 electrons/cell. Thus, S can change sign
in the disordered systems, while it remains n type in the
absence of resonant states. This interesting feature opens the
possibility of changing the thermoelectric material from n
type to p type just by introducing the appropriate impurity
or dopant. Therefore, one could build a device with both n
and p legs from the same semiconductor host. This would be
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FIG. 4. Power factor σS2 as a function of the electron density
n for five impurity concentrations, from x = 0 to 5%. Inset: PF for
lower electron densities.

advantageous for device performance and reliability, provided
that the PF is sufficiently large.

The PF is plotted in Fig. 4 as a function of n. The pristine
system exhibits a maximum of 6.3 μW cm−1 K−2 around
n = 10−3 electrons/cell, corresponding to a conductivity of
400 S/cm and a Seebeck coefficient of −130 μV/K. Note
that this relatively low value of the power factor is partly
due to the absence of band degeneracy and anisotropy in
our single-band model. The effects of resonant impurities
relative to the pristine case would not be affected by band
degeneracy; the case of anisotropic orbitals will be exam-
ined below. When resonant defects are introduced, the PF is
suppressed at low densities (inset), because multiple impurity
scatterings have a stronger effect on the long-wavelength
carriers. By contrast, around n = 0.1 electrons/cell, the PF
now exhibits a large enhancement due to the boost of the
Seebeck coefficient that overcompensates the drop in con-
ductivity. The largest increase corresponds to x = 1%, for
which the PF reaches its maximum 35.9 μW cm−1 K−2, a
sixfold enhancement compared to that of the clean system.
For x = 5%, the boost is still present but less spectacular (a
ratio less than 2) due to the gentler variations in the TDF. This
is an important and surprising finding: to achieve an efficient
enhancement of the thermoelectric properties with resonant
states, the defect concentration should be kept relatively low,
typically around 1%. From an experimental point of view, that
is favorable, because such concentrations usually lie below
the solubility limit [61]. Codoping with a donor atom acting
as an electron reservoir is necessary to shift the Fermi level
inside the resonant peak, where the PF is enhanced and the
Seebeck inversion occurs. This carrier density optimization
still requires at most 10% codoping, which is reasonable. We
define PFmax as the optimum PF with respect to the carrier
concentration. PFmax values extracted from Fig. 4 are shown
in the first row of Table I.

We now address the influence of both ε and V on the
transport properties. In Fig. 5(a), the DOS and TDF are plotted
for x = 1% resonant impurities with ε = −5.5 t and V =
0.3 t . The increase of the on-site potential shifts the position of
the resonant peak much closer to the bottom of the conduction
band. The resulting TDF also features a much smaller dip
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TABLE I. Room-temperature optimum power factor in
μW cm−1 K−2 for γin = 0.02 t and several values of the on-site
potential and hybridization parameter.

x = 0% 0.5% 1% 2% 5%

ε = −4 t 6.3 30.2 35.9 27.6 8.7
V = 0.3 t

ε = −5.5 t 6.3 1.3 1.7 1.8 1.8
V = 0.3 t

ε = −4 t 6.3 0.01 0.05 0.06 0.05
V = t

in �(E ) at the position of the peak in ρ(E ). Consequently,
| d�

dE | remains quite weak, and so does the Seebeck coefficient.
There is still a sign inversion, but no boost in the PF. Indeed
it is even suppressed by a factor 3–4 with respect to the
reference value of 6.3 μW cm−1 K−2 (see the second row of
Table I). Thus the resonant peak should not be too close to
the band edge, but deep inside the conduction band. We now
focus on the effect of a larger hybridization, which implies
a stronger coupling between conduction and defect states.
Results are depicted in Fig. 5(b). The increase in hybridization
also pushes the resonant states at the very edge of the band,
and severely suppresses the TDF below −5 t (notice the scale
in the inset). There is still a small dip in �(E ) and a sign
inversion of S, but because the carriers are now so localized

FIG. 5. Density of states ρ(E ) (dotted line, right axis) and
transport distribution function �(E ) (left axis) for x = 1% with
(a) ε = −5.5 t , V = 0.3 t and (b) ε = −4 t , V = t . Inset: Zoom on
the bottom of the conduction band; notice the different scales for the
TDF.
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FIG. 6. Optimum power factor as a function of temperature for
five impurity concentrations, from x = 0 to 5%.

in this energy range the PF shrinks by at least two orders of
magnitude compared to that of the reference. For x = 1%,
PFmax is now 0.05 μW cm−1 K−2 (see the third row of Table I
for the other concentrations). This suppression of the PF is
entirely due to a huge reduction in the conductivity caused
by multiple scattering events that become important at low
energy in the presence of stronger disorder. These findings are
consistent with the results obtained in Ref. [34] for Tl-doped
PbTe, in which the Tl doping creates a resonant bump at
the edge of the valence band associated with a much higher
resistivity compared to that of Na doping, which behaves as
a reservoir. It should also be mentioned that resonant states
formed by antisites in Fe2VAl have been found to suppress
the PF by more than an order of magnitude while changing the
sign of S [62]. The takeaway to obtain a boost of the PF is that
the substituting element should be suitably selected in order
to create a resonant peak far from the band edge. This could
also explain why many claims of experimental enhancement
of the PF by resonant states remain controversial, and why no
sign inversion of the Seebeck coefficient has been observed
so far. These effects are indeed sensitive to the hybridization,
on-site potential, and position of the Fermi level. Additionally,
it is difficult to rule out other enhancement mechanisms, such
as energy filtering effects resulting from ionized impurity
scattering, for instance.

Since thermoelectric materials are meant to be used in a
wide range of temperature, we now discuss the T dependence
of PFmax. Figure 6 shows PFmax as a function of temperature
for the same impurity concentrations as in Fig. 4. It increases
when the temperature rises, reaching a broad maximum, and
then decreases slowly in the disordered systems. This high-
temperature behavior results from the sharp variations in the
TDF being smoothed out by the thermal average. Accordingly,
at high values of x, the variations in the TDF are broader
and are less sensitive to the thermal average, so the maximum
region is shifted to higher temperatures. An important finding
is that PFmax itself is robust, suggesting that resonant states
could be efficient for both low- and high-temperature power
generation.

We now propose to investigate the role of inelastic scatter-
ing. In Fig. 7(a), we plot PFmax as a function of γin. Clearly, the
PF is completely suppressed if the inelastic scattering is too
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FIG. 7. (a) Optimum power factor as a function of the inelastic
scattering rate γin for five impurity concentrations, from x = 0 to
5%. Inset: Ratio of the optimum power factor with respect to that
of the clean system. (b) �(E ) for x = 1% with γin = 0.02 t , 0.08 t ,
and 0.2 t (left axis). ρ(E ) is also shown (dotted line, right axis). A
vertical dashed line marks the position of the resonant peak. Inset:
The calculated impurity scattering rate along the -X direction as a
function of energy. The dashed curve is a guide to the eye.

strong. This results from the competition between resonant
impurity scatterings (elastic processes) and inelastic scatter-
ings. In Fig. 7(b) is presented the TDF for γin = 0.02 t , 0.08 t ,
and 0.2 t with x = 1%. The inset shows the impurity scatter-
ing rate γimp, extracted from an analysis of the single-particle
spectral function A(q, E ) = − 1

π
〈ImG(q, E )〉. G(q, E ) is the

spatial Fourier transform of the disordered Green’s function
Gij,σ (E ) = 〈iσ |Ĝ(E )|jσ 〉, where |iσ 〉 is the real-space basis
(i runs over the lattice sites). γimp exhibits a nonmonotonic
behavior and large variations across the resonant peak, from
4 × 10−3 t at E = −4.5 t to 2 × 10−1 t at −4 t . At the position
of the dip in the TDF, where the electronic states have a
stronger localized character, transport is not very sensitive
to the strength of γin because γimp ≈ 2 × 10−1 t dominates.
In contrast, if γimp is smaller than γin, which is the case for
states associated with large values of the TDF (γimp ≈ 4 ×
10−3 t at E = −4.5 t), then increasing γin strongly suppresses
�(E ). Thus, large inelastic-scattering rates have the overall
effect of reducing the disparities in the TDF, leading to poor
values of the Seebeck coefficient. If we now consider small
values of γin (below 0.03 t) for x � 2%, we observe a huge
increase of PFmax as γin is reduced. If we extrapolate to
γin � 0.02 t for x = 1%, an enhancement factor of more than
an order of magnitude could even be reached. Hence, due
to the competition between elastic and inelastic scattering,

FIG. 8. Optimum power factor as a function of the anisotropy
ratio t⊥/t for x = 0% (reference) and x = 1%.

the impurity concentration should be tuned with respect to
the inelastic-scattering rate in the host material to reach an
optimal boost of the PF. Compounds exhibiting strong e-ph or
e-e scattering should not be the best candidates for resonant
substitution doping.

Till now, we have been considering an isotropic electronic
structure (s-type orbitals), but it is worth considering the
influence of orbital anisotropy [63,64]. Low-dimensional con-
finement is expected to introduce sharp structures in the DOS
and thus sharp variations in the TDF, thereby boosting the See-
beck coefficient. To evaluate the gain in the PF that could be
obtained from resonant states in anistropic systems, we now
introduce a different hopping t⊥ in a direction perpendicular to
transport. The optimum PF for the reference x = 0% and for
x = 1% is presented in Fig. 8 as a function of t⊥/t . First notice
that the PF of the pristine system strongly increases with
the anisotropy, from 6.3 μW cm−1 K−2 (three dimensions)
to 73.3 μW cm−1 K−2 (two dimensions). This confirms that
two-dimensional confinement in itself does favor good perfor-
mances. The maximum PF (p type) for x = 1% also increases
with the anisotropy, from 35.9 μW cm−1 K−2 (three dimen-
sions) to 74.4 μW cm−1 K−2 (two dimensions). Surprisingly,
for t⊥ = 0 we find no boost in the PF, suggesting that the
presence of resonant states in fully confined systems might
not further enhance the thermoelectric properties. However,
one should emphasize that even for finite but low ratios
t⊥/t (down to 0.05) the PF can be significantly increased by
resonant states. This is promising for bulk systems in which
charge carriers populate highly anisotropic orbitals. This is,
for instance, the case of n-doped SrTiO3, in which the titanium
3d orbitals exhibit a t⊥/t ≈ 0.1 [47,65]. Moreover, using
resonant states in fully confined materials could be interesting
for the sign inversion of S alone.

To conclude, we have used the Chebyshev polynomial
Green’s-function method to address the effects of resonant
impurities on electron transport. Although resonant states sup-
press the electrical conductivity, they may also lead to a boost
and a sign inversion of the Seebeck coefficient. Consequently,
the power factor can increase by one order of magnitude.
However, the resonant peak should be located far from the
band edge, otherwise the thermoelectric performances are
destroyed. Additionally, the optimal boost of the power fac-
tor depends crucially on the interplay between elastic and
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inelastic scattering. Strong electron-phonon and electron-
electron scatterings are found to preclude the possibility
of enhancing thermoelectric transport. Therefore, materials
featuring long electron mean free paths and weak inelastic
scattering, such as PbTe [40], certain half-Heuslers com-
pounds [56], or even graphene [66,67], should be promising
candidates. Finally, the resonant boost of the power factor is

found robust in the case of anisotropic orbitals. This paper
will hopefully contribute to a better understanding of resonant
states in the context of thermoelectric power generation. Our
methodology is very general and can be combined with real-
istic first-principles calculations to guide experimentalists and
pave the way in the search for compounds exhibiting resonant
effects.
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