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In the presence of crystalline symmetries, certain topological insulators present a filling anomaly: a mismatch
between the number of electrons in an energy band and the number of electrons required for charge neutrality. In
this paper, we show that a filling anomaly can arise when corners are introduced in Cn-symmetric crystalline
insulators with vanishing polarization, having as a consequence the existence of corner-localized charges
quantized in multiples of e

n . We characterize the existence of this charge systematically and build topological
indices that relate the symmetry representations of the occupied energy bands of a crystal to the quanta of
fractional charge robustly localized at its corners. When an additional chiral symmetry is present, e

2 corner
charges are accompanied by zero-energy corner-localized states. We show the application of our indices in
a number of atomic and fragile topological insulators and discuss the role of fractional charges bound to
disclinations as bulk probes for these crystalline phases.
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Topological crystalline insulators (TCIs) [1–7] are known
to exhibit a variety of quantized electromagnetic phenomena.
They host bulk dipole moments that lead to surface charge
densities quantized in fractions of the electronic charge e
[8–13]. Recently, it was found that TCIs can also host higher
bulk multipole moments that manifest lower-order moments
bound to their boundaries [14,15]. For example, a quadrupole
insulator in two dimensions has edge-bound dipole moments
and corner-bound charges, while an octupole insulator in
three dimensions has surface-bound quadrupole moments,
hinge-bound dipole moments, and corner-bound charges. Just
as in the case of insulators with symmetry-protected dipole
moments, crystalline symmetries quantize the boundary sig-
natures in quadrupole or octupole TCIs. Indeed, TCIs with
quantized multipole moments are symmetry protected topo-
logical phases of matter; their quantization is robust and can
change only in discrete jumps at phase transitions [14,15],
unless the protecting symmetries are broken.

A salient property of TCIs with quantized higher mul-
tipole moments is that some of their protected observables
at the boundary are at least two dimensions less than the
protecting bulk. This property has now been extended to a
broader family of TCIs, broadly referred to as higher-order
topological insulators [15–41]. In this paper, we focus on two-
dimensional (2D) higher-order TCIs having zero-dimensional
topological signatures. A number of studies have recently
shown examples of such TCIs which exhibit in-gap corner-
localized states [15,21–27], some of which have been related
to fractionally quantized corner charges [15,22,23,27]. Inter-
estingly, many such TCIs have these corner signatures in spite
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of vanishing quadrupole moments, and their mechanisms of
protection and associated topological invariants are still not
completely elucidated.

In this paper we systematically study 2D second-order
TCIs in class AI (spinless and time-reversal symmetric in-
sulators) protected by Cn symmetry and find the topological
indices that connect the bulk topology of these TCIs with
corner or defect-bound fractional charges. We show that the
fractional quantization of corner charge arises from a filling
anomaly: a topological property of the occupied energy bands
of a TCI that keeps track of the mismatch between the number
of electrons required to simultaneously satisfy charge neu-
trality and the crystal symmetry. This mismatch exists even
in first-order TCIs with quantized dipole moments—giving
rise to quantized fractional charge at edges [10,12,42–44]—
and we discuss this type of filling anomaly to introduce the
concept. Our focus, however, is on a refined form of a filling
anomaly that originates only when corners are created in a
lattice. Such corner-induced filling anomalies are particular of
higher-order topological phases. We build topological indices
that allow us to identify the cases in which the filling anomaly
arising from edges is avoided, but the filling anomaly due to
corners is not. Given the set of rotation topological invariants
for a particular Cn symmetry (extracted from the representa-
tions of the little groups of the occupied bands at the high
symmetry points of the Brillouin zone), the topological in-
dices we derive relate the set of rotation topological invariants
to the quanta of the corner-bound charge. We show that in ob-
structed atomic insulators, i.e., insulators that admit a Wannier
representation [45], the filling anomaly is intimately related
to the locations of the Wannier centers of the electrons in the
bulk of the crystal. However, the index theorems apply even
for crystalline insulators that are not Wannier representable,
as we will show by providing examples for the quantization
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FIG. 1. Quantized fractional corner charge in Cn-symmetric
TCIs. The plots show the total (electronic and ionic) charge den-
sity of two-dimensional TCIs. (a) a C4-symmetric TCI with corner
charge 3|e|

4 , (b) a C4-symmetric TCI with corner charge |e|
2 , (c) a

C6-symmetric TCI with corner charge |e|
6 , and (d) a C3-symmetric

TCI with corner charge |e|
3 . In all cases, the bulk and edges are

neutral. These charge patterns are obtained by stacking the primitive
generator models as described in Sec. V.

of charge fractionalization at the corners of fragile topological
crystalline phases [46–49].

The paper is organized as follows. In Sec. I, we first
classify Cn-symmetric TCIs in terms of rotation topological
invariants which we define (see Refs. [23,50–53] for other
related invariants and classifications). In Sec. II, we present
model Hamiltonians that constitute primitive generators of
these classifications. All of our generators are Wannier rep-
resentable [45,54–57] and have the property that they can
be combined to span the entire set of phases in these clas-
sifications. The Wannier representability of our generators is
advantageous because it transparently connects the Wannier
centers of the electrons in the bulk and boundaries of a lattice
to the filling anomaly and consequently to the edge and corner
charge. Additionally, because of their simple structure and our
choice of the AI symmetry class, all of our generator models
can be straightforwardly constructed in metamaterial contexts
through the evanescent coupling of waveguide or resonator
modes. This will allow for the immediate realization of our
predictions in experiments.

After introducing the generators, in Secs. III and IV we
describe the mechanism that gives rise to the edge and corner
filling anomalies, respectively, and how they relate to edge
and corner fractional charges. In Sec. V we apply our insights
from the previous sections to identify the boundary charges
in the primitive generators, which we then use to build index
theorems for the filling anomaly and corner fractional charge
of any Cn-symmetric higher-order TCI in class AI. We find
that TCIs in a lattice with a global Cn-symmetry host corner-
localized charges that, when added within a spatial sector
subtended by an angle of 2π

n from the center of the lattice,
are quantized in multiples of e

n . In particular, if each 2π
n sector

has only one corner, the charge is fractionally quantized at
each corner of the lattice, as shown in Fig. 1.

After the construction of the topological indices, in Sec. VI
we provide examples of the fractional quantization of charge
in TCIs without a Wannier representation, and in Sec. VII we
apply our theory to show that higher-order TCIs bind frac-
tional charge at the core of certain topological defects. Finally,
we present a discussion and our conclusions in Sec. VIII.

I. CLASSIFICATION

Two-dimensional TCIs in class AI [58–60] preserve time-
reversal symmetry (TRS), having Bloch Hamiltonians satis-
fying h(k) = h∗(−k). These systems have a vanishing Hall
conductance, indicated by a zero Chern number. The presence
of additional Cn symmetry, however, allows for a finer classi-
fication of topological phases in these insulators [2,23,50–53]
(see Appendix A in Ref. [61] for the detailed construction
of the classification). These classes can be most directly
distinguished by the value of their polarization [8–11,62–64]

P(n) = p1a1 + p2a2, (1)

where the superindex n labels the Cn symmetry of the classi-
fication, a1 and a2 are primitive unit lattice vectors, and the
components p1 and p2 are topological indices that correspond
to quantized Berry phases along the noncontractible loops
of the Brillouin zone (BZ) [8,12,13,50]. We take a1 and a2
to be a1 = x̂, a2 = ŷ in C4 and C2-symmetric lattices, and
a1 = x̂, a2 = 1

2 x̂ +
√

3
2 ŷ in C6 and C3-symmetric lattices (note

that we have set all lattice constants to unity). As reviewed in
Appendix B in Ref. [61], the values of the polarization P form
a Z2 index in C4-symmetric TCIs as it can only take the values
p1 = p2 ∈ {0, e

2 }, a Z2 × Z2 index in C2-symmetric TCIs
with values p1, p2 ∈ {0, e

2 }, and a Z3 index in C3-symmetric
TCIs with values p1 = p2 ∈ {0, e

3 , 2e
3 }; while in C6-symmetric

TCIs the polarization always vanishes.
More generically, we can distinguish nontrivial topological

classes arising from the Cn symmetry through the symmetry
representations that the occupied energy bands take at the high
symmetry points of the BZ (HSPs) [2,45,50,52,53,65,66].
Consider Cn-symmetric Bloch Hamiltonians, which obey
r̂nh(k)r̂†

n = h(Rnk), where r̂n is the n-fold rotation operator
obeying r̂n

n = 1, and Rn is the n-fold rotation matrix acting
on the crystal momentum k. We denote the HSPs as �(n).
These are defined as the special points in the BZ which
obey Rn�

(n) = �(n) modulo a reciprocal lattice vector. Ro-
tation symmetry then implies that [r̂n, h(�(n) )] = 0. Thus,
the energy eigenstates of the Bloch Hamiltonian at HSPs are
also eigenstates of the rotation operator. Let us denote the
eigenvalues of r̂n at HSP �(n) as

�(n)
p = e2π i(p−1)/n, for p = 1, 2, . . . n, (2)

(see a complete list of HSPs in Appendix A in Ref. [61]).
Given a subspace of energy bands, we can compare these
rotation eigenvalues at the various HSPs. If the eigenvalues
change at different HSPs, the energy bands have nontrivial
topology. Accordingly, we use the rotation eigenvalues at �(n)

compared to a reference point � = (0, 0) to define the integer
topological invariants[

�(n)
p

] ≡ #�(n)
p − #�(n)

p , (3)
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where #�(n)
p is the number of energy bands below the (in-gap)

Fermi level with eigenvalue �(n)
p . Not all these invariants

are independent, however. First, rotation symmetry can force
representations at certain HSPs to be the same. C4 symmetry
forces the representations at X and X′ in the BZ to be equal,
while C6 symmetry forces equal representations at M, M′, and
M′′, as well as at K and K′. Furthermore, there are redundan-
cies in the invariants due to: (i) the fact that the number of
bands in consideration is constant across the BZ, from which it
follows that

∑
p #�(n)

p = ∑
p #�(n)

p , or
∑

p[�(n)
p ] = 0, and (ii)

the existence of TRS, which implies that rotation eigenvalues
at �(n) and −�(n) are related by complex conjugation, from
which it follows that [M (4)

2 ] = [M (4)
4 ], [K (3)

2 ] = [K
′(3)
3 ], and

[K (3)
3 ] = [K

′(3)
2 ]. Dropping the redundant invariants due to

these constraints, the resulting topological classes of TCIs
with TRS and Cn symmetry are given by the indices χ (n), as
follows,

χ (4) = ([
X (2)

1

]
,
[
M (4)

1

]
,
[
M (4)

2

])
χ (2) = ([

X (2)
1

]
,
[
Y (2)

1

]
,
[
M (2)

1

])
χ (6) = ([

M (2)
1

]
,
[
K (3)

1

])
χ (3) = ([

K (3)
1

]
,
[
K (3)

2

])
. (4)

The C2 invariants of a C4-symmetric insulator obey [X (2)
1 ] =

[Y (2)
1 ] and [M (2)

1 ] = −2[M (4)
2 ], and the C3 invariants of a

C6-symmetric insulator obey [K (3)
1 ] = [K (3)

2 ]. Cn-symmetric
TCIs with different χ (n) belong to different topologi-
cal classes, as they cannot be deformed into one an-
other without closing the bulk energy gap or breaking
the symmetry [52,53,60,67]. Not all possible values of
χ (n) correspond to insulating phases; some points in these
classification spaces are forced to be gapless by symmetry
(e.g., when in χ (2) we have [X (2)

1 ] + [Y (2)
1 ] + [M (2)

1 ] = 1 mod
2 the crystal is gapless) [66]. Nevertheless, all Cn symmetric
TCIs do have a corresponding point in its χ (n) classification
space.

Having identified the rotation invariants that distinguish the
Cn protected topological phases, we can apply the algebraic
method developed in Refs. [52,53] to connect these invari-
ants to physical properties. The topological classification χ (n)

forms a free Abelian additive structure. Two Cn-symmetric
TCIs with Hamiltonians h(n)

1 and h(n)
2 , in classes χ

(n)
1 and

χ
(n)
2 , and having rotation operators r̂n and r̂′

n, respectively,
can be stacked leading to a third Cn-symmetric insulator
with Hamiltonian h(n)

3 = h(n)
1 ⊕ h(n)

2 and with rotation operator
r̂′′

n = r̂n ⊕ r̂′
n. The resulting insulator is in class χ

(n)
3 = χ

(n)
1 +

χ
(n)
2 . Thus, given a Cn symmetry which classifies TCIs using

N topological invariants, all topological classes—and their
topological observables—can be accessed by a set of N prim-
itive generators: a set of Cn-symmetric TCIs having invariants
represented by vectors χ (n) which are linearly independent to
one another. From the classifications in Eq. (4), it follows that
all of our topological classes can be accessed by combinations
of three primitive generators for each of C4 and C2-symmetric
TCIs, and by two primitive generators for each of C6 and
C3-symmetric TCIs.

II. PRIMITIVE GENERATORS

The primitive generators we consider are illustrated in
Figs. 2(c)–2(f) and 3(c)–3(f). The shaded squares and
hexagons delimit the unit cells. Within each unit cell, the black
dots represent its degrees of freedom; for example, they could
represent different ions—each hosting an electronic orbital—
or different orbitals generated by a single ion [45]. Although
the ionic charges do not enter the tight-binding Hamiltonians
represented in this lattice, our formulation requires that each
unit cell contains an integer ionic charge. In all our models, we
assume the center of all the positive ionic charge is localized
at the maximal Wyckoff position a of the unit cell (see
Appendix C in Ref. [61] for a description of ionic positions
and choices of unit cells) [black dots in Figs. 2(a), 2(b), 3(a),
and 3(b)]. All the generators are TCIs that admit a Wannier
representation [68,69] of their occupied bands.

The χ (n) invariants of these generators are indicated in
Table I. In the bulk, they are Wannier representable [68,69],
with Wannier centers pinned, by symmetry, to maximal Wyck-
off positions other than at the center of the unit cell. In
contrast, trivial bands, in class χ (n) = 0, will necessarily have
Wannier centers at the center of the unit cell, coinciding with
the position of the ionic centers. Our primitive generators
are in obstructed atomic limits [45,57], because a connection
to the trivial atomic limit χ (n) = 0 is not allowed unless
a gap-closing phase transition occurs or the symmetry is
broken.

We present the generators in Figs. 2 and 3 in a simple limit
without hopping terms within unit cells to allow a pictorial
identification of the Wannier centers. Their topological classes
are stable to the addition of intracell hopping terms or any
other symmetry-preserving terms that do not close the bulk
gap. In Appendix D in [61], we detail how adding intracell
hopping terms can transition our models into a variety of
classes in their χ (n) classifications. Since our generators are
spinless and only require real-valued hoppings (i.e., without
any phase factors), they are easy to fabricate in a variety of
metamaterials. Indeed, the lattices presented in Refs. [21,24]
and [26] coincide with the generators shown in Figs. 2(c),
3(d), and 3(f), respectively. A first instance of a possible
solid state material realization of one of these primitive gen-
erators is detailed in Ref. [22] for the generator shown in
Fig. 3(f).

We use the notation that a generator h(n)
mW is Cn symmetric,

has m filled bands, and has Wannier centers at the maximal
Wyckoff positions W shown in Figs. 2(a), 2(b), 3(a), and 3(b).
The classification of C4-symmetric TCIs has three generators:
h(4)

1b , h(4)
2b , and h(4)

2c [Figs. 2(c), 2(d), and 2(e)]. All of them have
four energy bands. The lattice model in Fig. 2(c) has a gap
that separates the first and the second bands, and another gap
that separates the third and fourth bands. We take the first
generator h(4)

1b to occupy only the lowest band, i.e., 1
4 filling.

The generators h(4)
2b and h(4)

2c are gapped at half filling; hence,
we take both of these generators to occupy the lowest two
bands. As indicated by their labels, the first two generators
have one and two Wannier centers at position b, respectively
[red dot in Fig. 2(a)], while the third generator has Wannier
centers at the two inequivalent positions c and c′ [blue dots
in Fig. 2(a)].
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FIG. 2. (a), (b) Maximal Wyckoff positions for (a) C4- and
(b) C2-symmetric unit cells. (c)–(e) Lattices for the three primitive
generators that span the classification of C4-symmetric TCIs. The
lattices for the primitive generators for the classification of C2-
symmetric TCIs are those in (c), (e), and (f).

The classification of C2-symmetric TCIs also requires three
generators. We choose the first two of them to be h(4)

1b and
h(4)

2c [Figs. 2(c) and 2(e)]. The generator h(4)
2b is not inde-

pendent because its C2 invariants are given by the vector
χ (2) = (2, 2, 0), which is linearly proportional to the invari-
ant vector of h(4)

1b , χ (2) = (−1,−1, 0). The third generator
is a two-dimensional version of the Su-Schrieffer-Heeger
(SSH) model [70], labeled as h(2)

1d and shown in Fig. 2(f)
in its extremely dimerized limit. As the label indicates, it
is an obstructed atomic limit with one Wannier center at
position d .

The classification of C6-symmetric TCIs requires two gen-
erators. We take them to be h(6)

4b and h(6)
3c [Figs. 3(c) and 3(d)].

Both of them have six energy bands. h(6)
4b is taken to occupy

the lowest four bands and has a pair of Wannier centers at each
of the Wyckoff positions b and b′ [orange dots in Fig. 3(a)],
while h(6)

3c is taken to occupy the lowest three bands, and has
its three Wannier centers at positions c, c′, and c′′ [blue dots
in Fig. 3(a)].

The classification of C3-symmetric TCIs requires two gen-
erators. We take them to be h(3)

2b and h(3)
2c [Figs. 3(e) and 3(f)],

which are related to each other by a π rotation. Each of
these generators has three energy bands with a degeneracy
in the lowest two bands protected by C3 symmetry and TRS
at the � point. We therefore take these two models to occupy
the lowest two energy bands. h(3)

2b has its two Wannier centers
at the Wyckoff position b [orange dot in Fig. 3(b)], while h(3)

2c
has them at position c [cyan dot in Fig. 3(b)]. In Appendix E
in Ref. [61] we induce the representations for Wannier orbitals
at all maximal Wyckoff positions for all the Cn-symmetric
configurations, and by comparing these representations with
those of our primitive generators, show that they have the
Wannier centers described in this section.

FIG. 3. (a), (b) Maximal Wyckoff positions for (a) C6- and (b) C3-
symmetric unit cells. (c), (d) Primitive generators that span the
classification of C6-symmetric TCIs. (e), (f) Primitive generators for
the classification of C3-symmetric TCIs.

III. FILLING ANOMALY AND CHARGE
FRACTIONALIZATION: POLARIZATION

Due to the crystalline symmetry of a TCI, it may be
impossible to maintain the number of electrons required for
charge neutrality. To illustrate the simplest case in which this
happens, consider the SSH model [70], which has the Bloch
Hamiltonian

hSSH (k) =
(

0 t0 + t1eik

t0 + t1e−ik 0

)
. (5)

This model has a reflection symmetry,

M̂hSSH (k)M̂−1 = hSSH (−k), M̂ =
(

0 1
1 0

)
,

that protects two gapped phases separated by a gapless point
at t0 = t1. We consider this insulator with electrons occupying
only the lowest energy band. At this filling, and with periodic
boundary conditions, each unit cell has only one electron. To
have a neutral insulator, each unit cell in the crystal has one
positive ion with charge |e|. When we open the boundaries
(with edge terminations that do not cut inside unit cells), on
the other hand, the number of electrons is different at each
phase. When t0 > t1, hSSH (k) is in the trivial atomic limit and
its Wannier centers are as shown in Fig. 4(a). In the other
phase, t0 < t1, hSSH (k) is in an obstructed atomic limit with
Wannier centers as shown in Fig. 4(b). Notice that in the trivial
phase there is charge neutrality: For N ions in the crystal (one
per unit cell), there are N electrons and the configuration is
reflection symmetric. On the other hand, in the obstructed
atomic limit, charge neutrality is lost: For N ions, there
are either N − 1 or N + 1 electrons. Reflection symmetry in
hSSH (k) guarantees pairwise degeneracies in the energies of
the electronic states at the boundaries. Thus, raising the Fermi
level can transition from N − 1 to N + 1 electrons but not
from N − 1 to N which would be needed for neutrality.
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FIG. 4. Filling anomaly in the reflection symmetric Su-
Schrieffer-Hegger model with the Bloch Hamiltonian of Eq. (5)
and open boundaries. (a) Trivial atomic limit. Charges are balanced.
(b) Obstructed atomic limit. Positive and negative charges are unbal-
anced. For N positive ions, there are N − 1 electrons (left) or N + 1
electrons (right). Solid (dimmer) circles represent bulk (boundary)
Wannier centers.

More generically, for a preserved crystalline symmetry
that divides a lattice into n symmetry-related sectors, we can
define a filling anomaly to be

η = #ions − #electrons mod n. (6)

Thus, in the case of reflection symmetry, which divides the
lattice into left and right halves, the filling anomaly (defined
modulo 2) captures the parity of charge imbalance. Reflection
symmetry guarantees that any extra charge due to charge
imbalance in the obstructed atomic limit is distributed equally
among the two halves of the lattice. Thus, when the charge
imbalance is odd we will have fractional charge e

2 modulo
|e| in each sector. This happens for the obstructed atomic
limit, which has a dipole moment of p = e

2 ; hence, the filling
anomaly due to edges is a manifestation of the bulk-boundary
correspondence for polarization.

We now extend the formulation of the filling anomaly to
TCIs with dipole moments in two dimensions. Let us consider
vertically aligned SSH chains having Ny unit cells along y. We
stack Nx such chains along the x direction as in h(2)

1d [Fig. 2(f)]
to form a two-dimensional lattice with open boundaries along
y. To avoid introducing corners, we impose periodic boundary
conditions along x. The charge imbalance in the obstructed
atomic limit will be Nx. Following the analysis for the one-
dimensional case, we can define the charge density at each of
the (upper or lower) halves of the lattice per unit cell along x
by

ρ = #ions − #electrons

2Nx
|e| mod |e|, (7)

where the denominator has a factor of 2 due to the two
symmetry-related halves and a factor of Nx to determine the
charge per unit length. The charge density in Eq. (7) captures
the usual fractionalization of edge charge density due to a bulk
polarization that is quantized under symmetries [8,10,12,13].
It is useful to note that the filling mismatch associated with
polarization scales with the system size along x, Nx. The
definition of charge density in Eq. (7) also provides us with
a microscopic picture of charge fractionalization; in the ex-
tremely dimerized limits we are considering, the fractional
boundary charge can be pictorially determined by counting
the fraction of bulk Wannier orbitals that fall into the boundary

unit cells modulo |e| [e.g., only half of a bulk Wannier orbital
falls into the boundary unit cell in Fig. 4(b), right].

In previous work, the polarization components pi=1,2

[Eq. (1)] of reflection or inversion symmetric TCIs were
related to the inversion or reflection symmetry eigenvalues
that the occupied states take at the HSPs [12,13]. Extending
this approach to Cn symmetries [50], the values of polarization
in terms of the invariants of Eq. (4) (detailed in Appendix B
in Ref. [61]) are

P(4) = e

2

[
X (2)

1

]
(a1 + a2)

P(2) = e

2

([
Y (2)

1

] + [
M (2)

1

])
a1 + e

2

([
X (2)

1

] + [
M (2)

1

])
a2

P(6) = 0

P(3) = 2e

3

([
K (3)

1

] + 2
[
K (3)

2

])
(a1 + a2), (8)

all of which are defined modulo e. These indices can be
directly applied to our primitive generators to determine their
polarizations. Furthermore, the surface charge theorem imme-
diately relates the bulk polarization to a surface charge density
and, for our Cn protected TCIs, yields a quantized fractional
charge per edge unit cell. The values of polarization for our
primitive generators are indicated in Table I.

IV. FILLING ANOMALY AND CHARGE
FRACTIONALIZATION: CORNER CHARGE

When a TCI has two open edges that intersect to form a
corner, a filling anomaly arising from the corner itself may
occur. This filling anomaly lies at the heart of higher-order
topological insulators in two dimensions. In the initial study
of topological quadrupole insulators, for example, there was a
recognition that an overall charge imbalance exits in the sub-
space of occupied bands [14,15], which has later been found
in other higher-order topological phases [27,40,41]. The work
by Song et al. [17] additionally identified that, in higher-order
TCIs that allow a Wannier representation, a mismatch exists
between the Wannier centers of the occupied bands and the
atomic positions in the crystal. Here, we connect the notion
of Wannier center mismatch with the overall deficit of charge
in energy bands by considering the bulk and edge electrons in
real space representations of higher-order topological bands.
This will allow us to put forward a formal definition of
the filling anomaly in two dimensions and to relate all the
possible filling anomalies to topological indices [Eq. (11)]
written in terms of the topological invariants defined in
Eq. (4).

For this purpose, we will use of our primitive genera-
tors defined in Sec. II. The connection between real space
and crystal momentum space via our Wannier-representable
primitive generators will make evident the connection be-
tween this higher-order filling anomaly and the quantization
of fractional corner charge. Our topological indices, how-
ever, are more general than the primitive generators they
are derived from, and are valid also for TCIs that are not
Wannier representable, as we will show for fragile phases in
Sec. VI.
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FIG. 5. Filling anomaly in the C4-symmetric insulator of Eq. (9).
(a) A unit cell with charge 3|e| at position 1a and three electrons with
Wannier centers at positions b (red circle) and c, c′ (blue circles).
(b) A 4×4 lattice formed by tiling the unit cell shown in (a) along
x and y. The configuration is neutral but breaks C4 symmetry. (c) A
deformation of (b) as an attempt to restore C4 symmetry along the
edges; symmetry is still broken at corners. (d),(e) Two choices that
restore full C4 symmetry in the lattice by either removing three corner
electrons (d) or adding one (e); in either case, charge neutrality is lost.

Let us first illustrate the existence of a corner-induced
filling anomaly with an example. Consider Fig. 5, which
shows the Wannier centers of the C4-symmetric crystalline
insulator with the Bloch Hamiltonian

h(4) =
(

h(4)
1b γc

γ †
c h(4)

2c

)
. (9)

This is an eight-band TCI formed by stacking the primitive
generators h(4)

1b and h(4)
2c . γc represents any C4 symmetry-

preserving couplings between the generators that do not close
the energy band gap. We will enforce a global C4 symmetry
in the lattice of Fig. 5, and consider the four quadrants—each
having one corner—as our four symmetry-related sectors. At
3
8 filling, each unit cell has a positive ionic charge of 3|e|,
and its electrons have Wannier centers at the three maximal
Wyckoff positions b, c, and c′. For the choice of Wannier
centers at each unit cell shown in Fig. 5(a), a lattice of 4×4
unit cells is shown in Fig. 5(b). Now we show that this TCI
must have a charge imbalance caused by the presence of
corners if it is to preserve C4 symmetry: The configuration
in Fig. 5(b) preserves C4 symmetry in the bulk but not at the
edges. This configuration, of course, is incompatible. Hence,
we deform the edge electrons to procure the preservation of
the overall C4 symmetry, as in Fig. 5(c). We find, however,
that C4 symmetry at the edges can be achieved only at the
expense of breaking C4 symmetry at the corners. To restore the
overall C4 symmetry, we need to cause a charge imbalance by
either removing three electrons [Fig. 5(d)] or adding one
[open green circle in Fig. 5(e)]. This argument holds for
any other choice of deformation of the edges. We conclude
that it is not possible to have any choice of Wannier center

assignment that preserves charge neutrality and C4 symmetry
simultaneously. The filling anomaly in this case is η = 3 or
η = −1, and only η mod 4 = 3 is well defined [cf. Eq. (6)].
Since by symmetry the charge has to be equally distributed
over each of the four sectors, there has to be a total charge
per sector modulo |e| of Qcorner = 3|e|

4 . A plot of the charge
density for this insulator (with added intracell hopping terms
as detailed in Appendix F in Ref. [61]) is shown in Fig. 1(a).
There, we verify that each quadrant has a charge of 3|e|

4 and
that the charges in each quadrant exponentially localize at the
corners of the lattice. A more rigorous demonstration of the
exponential localization of the corner charge can be found in
Appendix H in Ref. [61].

TCIs with P �= (0, 0) will have more edge states than
the number of edge electrons needed for charge neutrality,
with the number of extra edge states scaling with N . As a
consequence, a neutral TCI with P �= (0, 0) has electrons that
delocalize along the boundary in a metallic state and, being
gapless, the notion of a corner filling anomaly is lost. Only
if P = (0, 0), will both the bulk and the edges be generically
insulating (Appendix F in Ref. [61] shows this characteristic
in the simulation of the Hamiltonian in Eq. (9)) allowing
for a well-defined corner filling anomaly and consequently
well-defined corner charges. Neutrality is then achieved only
up to the corner filling anomaly (that does not scale with N).
Although each of the generators h(4)

1b and h(4)
2c has P = ( e

2 , e
2 ),

the combined TCI in Eq. (9) has P = (0, 0), and therefore its
edges are also insulating, leading to the well-defined corner
charge of Fig. 1(a).

To generalize the properties illustrated in this example,
consider a Cn-symmetric TCI with vanishing polarization
forming a lattice in the shape of a regular polygon having m
corners, where m is a multiple of n. The vanishing polarization
will ensure that all the bulk and edge energy bands below the
Fermi level are completely filled. When the filling anomaly is
zero, the TCI is neutral, but if it is not, there will be a charge
imbalance that localizes at corners. In this second case, the
Cn symmetry of the lattice enforces the existence of at least
one set of n-fold degenerate states localized at corners. Since
the degenerate corner states can be above or below the Fermi
level, the total charge imbalance is not unique. We can say at
most that the amount of charge robustly protected by the bulk
phase is η modulo n [Eq. (6)]. This charge is distributed in
equal parts in each of the symmetry-related sectors. Sectors
subtended by an angle of 2π

n rad in our lattices will then have
a total (electronic and ionic) charge of

Qsector = η

n
|e|, (10)

which is well-defined only modulo |e|. We more generically
refer to sectors instead of corners because, depending on the
chosen global geometry of the lattice, the charge on a single
corner may not be quantized. For example, if a C2- (C3-)
symmetric bulk Hamiltonian is put on a rectangular (hexag-
onal) lattice, only the sum of the charges in two adjacent
corners will be fractionally quantized. Also, see Ref. [71] for a
concrete example of an insulator that has zero filling anomaly
and consequently zero total charge at each symmetry-related
sector but nevertheless has small residual charges at each
corner of opposite sign.
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Just as in the case of polarization, the corner filling
anomaly comes from the bulk of the crystal. This allows us
to also develop a microscopic picture that relates the corner
fractional charge in a 2π

n sector to the local distribution of
Wannier centers around corner unit cells. In the extremely
dimerized limits (as in the case of our generators, Figs. 2
and 3), the Wannier orbitals are cut in equal parts by the
unit cell’s boundaries. The fractional number of electrons in
a 2π

n sector (modulo 1) can then be obtained by counting
the portion of bulk Wannier orbitals falling into the corner
unit cells at that sector. Adding symmetry-preserving hopping
terms to the Hamiltonian that take it away from the extremely
dimerized limit can modify the distribution of Wannier centers
in the lattice, with the most dramatic change happening at the
corners, and the least change happening near the center of
the lattice. This results in the spreading of the corner charge
into the bulk with exponentially decreasing amplitude away
from the corners (see Appendix H in Ref. [61]). The integrated
charge over the 2π

n sector, however, remains quantized.
This microscopic picture explains the lack of quan-

tization at individual corners—but the strict quantization
over symmetry-related sectors—by taking into account the
shape of the Wannier orbital. This is discussed in detail in
Appendix G in Ref. [61]. Remarkably, this microscopic pic-
ture also stipulates the existence of particular cases of C2-
symmetric TCIs that, when put in lattices with four corners,
exhibit strict quantization of fractional charge at each individ-
ual corner. This is the case of generator h(6)

3c when put in a
parallelogram lattice, as shown in Appendix G in Ref. [61].
Finally, the microscopic method allows us to assign fractional
corner charge even in TCIs with nonvanishing polarization.
These corner charges are not physically meaningful on their
own, but their value is useful because they can result in well-
defined corner charge in combination with other TCIs that
make the total polarization vanish. We denote these ill-defined
corner charges as nominal corner charge; i.e., they are corner
charges in systems that also have a bulk polarization. These
corner charge values will be useful for the construction of
the index theorems for corner charge in Sec. V but cannot be
observed unless the polarization is ultimately removed.

V. CONSTRUCTION OF THE TOPOLOGICAL INDICES
FOR ELECTRONIC CORNER CHARGE

In Secs. III and IV we saw that the fractionalization of
edge and corner charges proceeds from a filling anomaly that
is intimately related to the positions of the Wannier centers
in Cn-symmetric TCIs. Furthermore, we also saw that the
fractional boundary electronic charges can be captured by
inspection if we consider electronic configurations in the zero-
correlation length limit because then the bulk Wannier centers
are located at maximal Wyckoff positions of the lattice even
with open boundary conditions.

In order to construct topological indices for the electronic
corner charge [akin to those in Eq. (8) for edge charge], we
first consider all possible Wannier configurations that respect
Cn symmetry in the zero-correlation length limit. This is
shown in Fig. 6. The electronic edge and corner charge can
then be derived from Fig. 6 pictorially by counting the fraction
of Wannier orbitals falling in each unit cell. This information,

FIG. 6. Edge and corner fractional charges for TCIs with Wan-
nier centers at maximal Wyckoff positions for (a), (b) C4-symmetric,
(c), (d) C6-symmetric, and (e), (f) C3-symmetric lattices. (a) One
electron at position b of each unit cell. (b) Two electrons at positions
c and c′. (c) Two electrons at positions b and b′. (d) Three electrons at
positions c, c′, and c′′. (e) One electron at position b. (f) One electron
at position c. Solid colored circles represent bulk electrons; dimmed
colored circles represent boundary electrons for a particular choice
of Cn-symmetry breaking; white circles represent atomic ions. Bulk
unit cells are always neutral. Electronic charges at edge and corner
unit cells after the removal of the symmetry breaking electrons are
indicated mod 1 (in units of the electron charge e).

along with the Wannier center description of the primitive
generators defined in Sec. II, allows us to then extract both the
electronic edge and corner charges of each generator, which
we will need to construct the topological indices for the quanta
of charge at corners.

In what follows, we consider all minimal and inequivalent
Wannier configurations given a Cn crystalline symmetry (by
minimal we mean that we will put only one Wannier orbital
at each Wyckoff position). In C4-symmetric TCIs, there are
two possible Wannier configurations, one with one Wannier
orbital at Wyckoff position b [Fig. 6(a)] and a second one
with two Wannier orbitals, one at c and another one at c′
[Fig. 6(b)]. Both configurations have polarization P = ( e

2 , e
2 ),

leading to the fractional charge on the edges. However, when
we consider corners, a crucial distinction emerges; Wannier
orbitals at Wyckoff positions b have fractional corner charge
of e

4 , while those at positions c, c′ have no expected fractional
corner charge. For C2-symmetric TCIs, in addition to the
two configurations allowed for C4-symmetric TCIs, there is
a third configuration having one Wannier orbital at Wyckoff
positions d (not pictured), which render e

2 edge charge along
one pair of edges due to P = (0, e

2 ), but no corner charge.
For C6-symmetric TCIs, there are two configurations, both
having P = (0, 0), and consequently leading to a vanishing
edge charge. At corners, however, the charge is fractional-
ized. The first configuration has two Wannier orbitals, one at
Wyckoff positions b and another one at b′ [Fig. 6(c)]. This
configuration leads to corner charge in multiples of 2e

3 . The
second configuration has three Wannier orbitals, each of them
at Wyckoff positions c, c′ and c′′, respectively [Fig. 6(d)]. This
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TABLE I. Topological invariants, polarization P, and nominal
electronic corner charge of the primitive generators that span the
classifications of Cn-symmetric TCIs. The values of P = p1a1 +
p2a2 are given in pairs (p1, p2). The unit lattice vectors are a1 = x̂,
a2 = ŷ for C4 and C2-symmetric lattices, and a1 = x̂, a2 = 1

2 x̂ +
√

3
2 ŷ

for C3 and C6-symmetric lattices.

Symm. Generator Invariants P Qcorner

[X (2)
1 ] [M (4)

1 ] [M (4)
2 ]

h(4)
1b −1 1 0 ( e

2 , e
2 ) e

4

C4 h(4)
2b 2 0 0 (0,0) e

2

h(4)
2c 1 1 −1 ( e

2 , e
2 ) 0

[X (2)
1 ] [Y (2)

1 ] [M (2)
1 ]

h(4)
1b −1 −1 0 ( e

2 , e
2 ) e

2

C2 h(4)
2c 1 1 2 ( e

2 , e
2 ) 0

h(2)
1d 0 1 1 (0, e

2 ) 0

[M (2)
1 ] [K (3)

1 ]

h(6)
4b 0 2 (0,0) e

3C6
h(6)

3c 2 0 (0,0) e
2

[K (3)
1 ] [K (3)

2 ]

h(3)
2b 1 −1 ( e

3 , e
3 ) 2e

3C3
h(3)

2c 1 0 ( 2e
3 , 2e

3 ) 0

second configuration leads to corner charge in multiples of
e
2 . The combination of these two systems can consequently
give rise to corner charge in multiples of e

6 . In C3-symmetric
TCIs, there are also two configurations: one with one Wannier
orbital at Wyckoff positions b [Fig. 6(e)] and a second one
with Wannier orbital at c [Fig. 6(f)]. They have polarizations
of P = ( 2e

3 , 2e
3 ) and P = ( e

3 , e
3 ), respectively. Both configu-

rations then give rise to the edge charge. At corners, how-
ever, the configuration with one Wannier orbital at Wyckoff
position b does not have fractional charges, while the one hav-
ing the Wannier orbital at c does. By these considerations, the
nominal electronic corner charge for the primitive generators
are found to be those in Table I.

This information characterizes the corner properties of
TCIs in class AI having additional Cn symmetry and hence
allows us to build index theorems that determine the fractional
electronic corner charge. This relies on the fact that for
a Hamiltonian h(n)

3 = h(n)
1 ⊕ h(n)

2 , (i) its boundary electronic
charge is Q3 = Q1 + Q2 (mod e) and (ii) its invariants are
χ

(n)
3 = χ

(n)
1 + χ

(n)
2 . The index for the electronic corner charge

of a Cn-symmetric insulator is then given by a linear combi-
nation of the invariants that form the vector χ (n). For exam-
ple, C4-symmetric TCIs have three invariants. The electronic
corner charge is given by Q(4)

corner = α1[X (2)
1 ] + α2[M (4)

1 ] +
α3[M (4)

2 ]. To find the coefficients αi=1,2,3, we solve for Qi =
χ

(4)
i j α j , where Qi is the ith element in the vector of corner

charges formed by the last column in Table I, and χ
(4)
i j is the

(i, j)th element in the matrix formed by the three columns
labeled [X (2)

1 ], [M (4)
1 ], and [M (4)

2 ] in Table I. This approach

gives

Q(4)
corner = e

4

([
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
mod e

Q(2)
corner = e

4

(−[
X (2)

1

] − [
Y (2)

1

] + [
M (2)

1

])
mod e

Q(6)
corner = e

4

[
M (2)

1

] + e

6

[
K (3)

1

]
mod e

Q(3)
corner = e

3

[
K (3)

2

]
mod e, (11)

where the superindex n in Q(n)
corner labels the Cn symmetry. In

the Cn-symmetric classification, Q(n)
corner is a Zn topological

index. We could refer to the indices in Eq. (11) as secondary
topological indices because they require the primary topolog-
ical index—the polarization P—to vanish in order to give a
protected, corner-localized quantized feature.

As an example of the application of the indices in Eq. (11),
let us return to the eight-band model considered above in
Eq. (9), which has electronic corner charge of e

4 , and a total
(electronic and ionic) charge density shown in Fig. 1(a).
By itself, the model h(4)

1b at 1
4 filling that forms one block

of the eight band system has edge states owing to its P =
( e

2 , e
2 ) polarization. Not all the edge states can be occupied

at this filling while preserving the symmetry, however, and
the edge is generically metallic (see Appendix F in Ref. [61]
for details). We can remove the polarization by the addition
of h(4)

2c , the second block of the eight band model, which
at 1

2 filling also has P = ( e
2 , e

2 ). Under any C4 symmetry-
preserving coupling terms γc that keep the energy gap open,
the primary index of the combined insulator [Eq. (9)] at 3

8
filling is P = (0, 0), but its secondary index is Q(4)

corner = e
4

[first equation in Eq. (11)]. To confirm that this charge is
generically stable, we add general random hopping terms to
the Hamiltonian up to nearest-neighbor unit cells that preserve
only TRS and C4 symmetry and numerically verify that the e

4
electronic charge remains strictly quantized (see Appendix F
in Ref. [61]). In contrast, if we add perturbations that break
C4 symmetry down to C2 symmetry (C2 symmetry keeps bulk
polarization quantized to zero), the quantization of charge
at each corner in the lattice is lost. However, the sum of
electronic corner charge of two adjacent corners (i.e., in a
region covering half the lattice) is e

2 , in agreement with the
value predicted by the secondary index in the second equation
of Eq. (11).

The indices in Eq. (11) can be used to generate other corner
charges. The total (ionic and electronic) fractional charge of
|e|
2 in Fig. 1(b) was obtained with a Hamiltonian deformable

to h(4)
1b ⊕ h(4)

1b at 1
4 filling, while the corner charges of |e|

6 and
|e|
3 in Figs. 1(c) and 1(d) were obtained by Hamiltonians

deformable to h(6)
4b ⊕ h(6)

3c at 7
12 filling and to h(3)

2b ⊕ h(3)
2c at

2
3 filling, respectively. In all cases, the polarization of the
Hamiltonians is P = (0, 0), and the electronic corner charge
indices in Eq. (11) give Qcorner = e

2 , 5e
6 , and 2e

3 , respectively.
The total charge density, which takes into account the ionic
contributions, results in the fractional charges shown in Fig. 1.
Since the electronic charge fractionalization is a property
of the bulk, a fast way to determine the filling anomaly
is to remove all boundary Wannier centers in the lattice
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TABLE II. Charge imbalance (upon removal of all boundary
Wannier centers), filling anomaly η [Eq. (6)], and total sector charge
Q [Eq. (10)] for some models having vanishing bulk polarization.
Calculations are assuming that Cn-symmetric Bloch Hamiltonians
are put in Cn-symmetric lattices, respectively. N is the number of
unit cells per edge.

Insulator Charge imbalance η Qsector

h(4)
1b ⊕ h(4)

2c 4N − 1 3 3|e|
4

h(4)
1b ⊕ h(4)

1b 4N − 2 2 |e|
2

h(6)
4b 6N − 4 2 |e|

3

h(6)
3c 6N − 3 3 |e|

2

h(3)
2b ⊕ h(3)

2c 6N − 2 1 |e|
3

(e.g., removing all dimmed circles in Fig. 5). The resulting
charge imbalance mod n then gives the filling anomaly. Ta-
ble II shows the charge imbalance by removal of all boundary
Wannier centers, filling anomalies, and total (electronic and
ionic) corner charge values over 2π

n spatial sectors for Cn-
symmetric TCIs used in the simulations in Fig. 1.

VI. FRACTIONAL CORNER CHARGE IN TCIS
WITHOUT A WANNIER REPRESENTATION

The secondary index theorems in Eq. (11) were derived
using a basis of primitive generators that admit Wannier
representations. We chose that basis to make transparent
the derivation of the indices. However, the indices them-
selves transcend the basis and indicate the fractionalization
of electronic corner charge even in TCIs that are not Wan-
nier representable, for example, in fragile TCIs [46–49].
Recently, corner states and corner fractional charges have
been found in fragile TCIs [27,33,40,41], and the existence
of this fractionalization has been associated with quantized
nested Berry phases [27,33,40,41] originally proposed in
Ref. [14] for the characterization of corner charges in quan-
tized quadrupole insulators. Unlike atomic insulators, frag-
ile TCIs do not admit the construction of Wannier centers.
However, they have the property that upon the addition
of atomic TCIs, the combined system becomes Wannier
representable. We can write this relation as HAI2 ∼ HFT ⊕
HAI1 , where AIi=1,2 are atomic TCIs and FT is the frag-
ile TCI. The electronic corner charges of these TCIs must
then obey QAI2 = QFT + QAI1 , which implies that, since both
QAI1 and QAI2 are quantized, QFT will also be quantized.
Moreover, due to the algebraic structure of our classifica-
tion [52,53], it follows that the classes of these TCIs in their
Cn classification obey χ

(n)
AI2

= χ
(n)
FT + χ

(n)
AI1

. The same algebraic
structure stipulates that the secondary indices must obey
Q(n)

corner (χ
(n)
AI2

) = Q(n)
corner (χ

(n)
FT ) + Q(n)

corner (χ
(n)
AI1

). Since for the

atomic TCIs we know that Q(n)
corner (χ

(n)
AIi

) = QAIi , for i = 1, 2,

it follows that Q(n)
corner (χ

(n)
FT ) = QFT . Thus, our indices in

Eq. (11) correctly determine the quantization of electronic
fractional charge in fragile phases. A concrete example of
the corner charge in a fragile phase is shown in Appendix I
in Ref. [61] for one of the phases described in the recent

FIG. 7. Quantized fractionalization of charge at the core of
disclinations. (a) Disclination in the lattice of primitive generator
h(6)

3c . (b) Wannier centers for the lattice in (a). There is an overall
fractional electronic charge (each hollow circle contributes e

2 charge)
within the region of darker unit cells which enclose the core of the
disclination. (c) Charge density for the disclination in (a). All corners
and the core of the disclination have charges of |e|

2 . The simulation
is done over 276 unit cells with added intra-unit cell hoppings
between nearest neighbors of 1

4 the amplitude of the interunit cell
hoppings.

preprint of Ref. [72]. There, we (i) calculate the indices
from a decomposition into atomic TCIs, (ii) directly evaluate
the secondary index from the topological invariants of the
fragile phase, and (iii) compare these results with numerical
simulations.

VII. FRACTIONAL CHARGE AT
TOPOLOGICAL DEFECTS

First-order TCIs manifest fractional charges at disloca-
tions, following the topological index Qdislocation = 1

2π
Gν · B,

where Gν is the weak topological index related to the polariza-
tion P, Eq. (1), and B is the Burgers vector that characterizes
the dislocation [67]. Higher-order TCIs have P = 0 and thus
do not manifest fractional charges at dislocations. In this sec-
tion we will see that instead they manifest fractional charges at
the core of disclinations. Indeed, it is known that topological
disclination defects that induce a curvature singularity in
the lattice of Cn-symmetric topological superconductors can
trap Majorana bound states [52,53]. Here, we find that these
defects also trap fractional charges in higher-order TCIs. In
Fig. 7 we show a disclination with a Frank angle of − 2π

6 rad in
the primitive model h(6)

3c . Inducing such a disclination converts
the hexagon of Fig. 3(d) into the pentagon of Fig. 7(a). The
five corners in the pentagon give rise to an overall corner
charge of 5e

2 . Thus, the core of the disclination must trap a
fractional charge of e

2 . Indeed, the Wannier center configura-
tion shown in Fig. 7(b) for the lattice in Fig. 7(a) reveals that,
for any area comprised of unit cells containing the core of the
disclination, a total fractional number of electrons is enclosed.
Figure 7(c) shows a plot of the charge density for the lattice in
Fig. 7(a) but to which additional hopping terms inside the unit
cell were added of weak enough amplitude so as to not cause a
phase transition. This plot indeed presents the expected charge
distribution. If the intra-unit cell couplings are larger than the
interunit cell couplings, a bulk phase transition occurs, leading
to vanishing corner charges and integer charge at the core of
the disclination.

Generalizing this principle of charge conservation (mod
|e|), our corner charge indices can be immediately used to
generate indices for the fractional charge at the core of
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disclinations in a Cn-symmetric insulator:

Qdisclination = − �

2π/n
Qcorner mod |e|. (12)

We also note that inducing this disclination disrupts the chiral
symmetry in the primitive model h(6)

3c . Thus, although the pris-
tine insulator has zero energy states localized at corners [21],
there are no such states at the core of the disclination. Despite
this, the fractional charge trapped at the core of the defect
is robustly quantized to e

2 , suggesting that disclinations are
bulk probes of TCIs with Q(n)

corner �= 0 [52,53,73–75], just as
dislocations are bulk probes of TCIs with P �= 0 [67,75–81].

VIII. DISCUSSION AND CONCLUSION

In this paper, we have shown that electronic charge frac-
tionalizes in multiples of e

n at the corners of Cn symmetric
TCIs with vanishing polarization. We built topological in-
dices for the quanta of corner charge in terms of the band
representations at high symmetry points of the Brillouin zone.
These constitute secondary topological indices, Eq. (11), that
signal the presence of higher order topology in TCIs with
vanishing polarization. When TCIs admit a Wannier repre-
sentation, we find an clear relation between the existence
of fractional corner charge and the positions of the Wannier
centers in the bulk of the crystal. More generally, however,
a Wannier representation is not guaranteed, but a filling
anomaly can still persist, which in turn robustly protects the
fractionalization of corner charge. Since the fractionalization
of corner charge is ultimately related to the Wannier centers
of the electrons within the crystal, we anticipate that the same
principles derived in this study will lead to the characteriza-
tion of corner charge in other classes of the tenfold classifica-
tion. For example, adding spin will double the corner charge
quantization due to Kramers’ degeneracy. However, deriving
index theorems in these classes will not be as straightforward
because symmetry representations at high symmetry points
do not suffice to determine the Wannier centers in spinful
systems.

In practice, we expect solid state TCIs with nonzero Q(n)
corner

indices to prefer to be neutral. Despite the overall neutrality,
we still expect the corner charges to be observable. The excess
or deficit charge could be compensated for in several ways. In
any realistic crystal, there will be impurities and, since the
filling anomaly due to corners only indicates O(1) uncompen-
sated charges, impurities could absorb the charges needed to
realize neutrality. This will affect the corner charge at most by
an integer when the impurity is localized very near the corner
and thus the fractional part of the charge will be preserved.
Another scenario for localized charges is in TCIs with midgap
topological modes associated with the fractional charge. In
these systems, the symmetry could be mildly broken explicitly

or spontaneously, allowing for a ground state filling of the
midgap modes that is globally neutral. Then, the corner
charges will also be shifted by an integer and the fractional
portion of the charge is undisturbed. If instead there are no
midgap topological or impurity states, we could imagine that
the overall excess charge at the corners can be compensated by
an occupation/de-occupation of eigenstates in the conduction
or valence bulk bands. The resulting effect is a near-to-
quantized corner charge, with a bulk interior containing the
opposite charge, as shown in Appendix J in Ref. [61]. The
corrections to both the corner charge and the background bulk
charge scale as O(1/N2) for a lattice with N unit cells per
side and thus closely approximate exact quantization in the
thermodynamic limit.

While we expect there to be electronic material realiza-
tions of systems with fractional corner charges, we believe
that the most straightforward realization of our models is
in metamaterial systems. Since our classifications are for
spinless systems that preserve time-reversal symmetry, the
hopping terms in the Hamiltonian do not require any ad-
ditional phase factors and can be engineered using only
evanescently coupled modes. Thus, our generators can be
easily implemented in a wide range of metamaterial platforms,
as in the works in Refs. [21,25,26,82–84]. In the experi-
ments in Refs. [21,82–84], the expected corner properties
were observed spectroscopically through the appearance of
corner states protected to be at midgap by chiral symmetry,
�h(k) = −h(k)�, for some chiral operator �. We illustrated
here, however, that the true signature of fractionalization of
corner charge is a bulk topological property of the subspace
of occupied bands, and does not need to manifest in connec-
tion with corner-localized midgap states. In the absence of
midgap states, more sophisticated experiments, for example,
exploring the spatial distribution of all the states in an energy
band, can reveal the fractional signatures at corners even
in metamaterials. Such experiments could easily explore the
properties of disclinations as well by introducing such defects
in resonator arrays or photonic crystals.
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