
PHYSICAL REVIEW B 99, 245150 (2019)

Finite-temperature charge dynamics and the melting of the Mott insulator
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The Mott insulator is the quintessential strongly correlated electronic state. We obtain complete insight into
the physics of the two-dimensional Mott insulator by extending the slave-fermion (holon-doublon) description to
finite temperatures. We first benchmark its predictions against state-of-the-art quantum Monte Carlo simulations,
demonstrating quantitative agreement. Qualitatively, the short-ranged spin fluctuations both induce holon-
doublon bound states and renormalize the charge sector to form the Hubbard bands. The Mott gap is understood
as the charge gap renormalized downward by these spin fluctuations. As temperature increases, the Mott gap
closes before the charge gap, causing a pseudogap regime to appear naturally during the melting of the Mott
insulator.
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I. INTRODUCTION

The Mott insulator [1] and its associated metal-insulator
transition (MIT) [2–4] are phenomena generic to strongly cor-
related electron systems. The discovery [5] of high-Tc super-
conductivity in a class of quasi-two-dimensional (quasi-2D)
doped Mott insulators [6] triggered an enduring experimental
and theoretical quest to understand the many anomalous prop-
erties of cuprates, including the strange metal, the pseudogap
[7–9], and indeed the superconductivity itself, in a complete
and correct description of the Mott insulator.

In Mott’s original proposal [10], the insulating state arises
due to the strong on-site Coulomb interaction, U , and has
no explicit relation to symmetry breaking (usually magnetic
order). Hubbard [11] obtained the incoherent upper and lower
Hubbard bands and considered the interaction-driven MIT,
while Brinkman and Rice associated the MIT with a diverging
quasiparticle mass [12]. These seminal results do not, how-
ever, include the spin fluctuations and their influence on the
charge dynamics. In experiment, most Mott insulators possess
antiferromagnetic (AFM) long-range order at low tempera-
tures [4]. In 2D, where order is forbidden at T > 0, the low-
energy physics is dominated by short-ranged spin fluctuations
[13–18]. On the scale of U , charge fluctuations create empty
sites (holons) and doubly occupied sites (doublons), whose
tendency to form bound states has been proposed as the key to
the high-energy physics of the Mott insulator [19–26]. Clearly,
a full description requires a proper account of both charge
and spin fluctuations [27]. While progress has been made in
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this direction through the development of many sophisticated
numerical methods [28], a physical understanding remains far
from complete.

Here we provide this insight by treating the half-filled
Hubbard model within a slave-fermion formulation, in which
the charge degrees of freedom are represented by fermionic
holons and doublons, while the spin degrees of freedom
are bosonic. To demonstrate that this framework provides
quantitatively accurate resuls at the mean-field level for
all temperatures, we perform detailed determinantal quan-
tum Monte Carlo (QMC) simulations for benchmarking pur-
poses. The key capability of our analytical approach is
that it treats both the low- (spin) and high-energy (charge)
degrees of freedom consistently, thereby capturing quali-
tative effects that arise due exclusively to their interplay,
which to date have been accessible only by numerical
methods.

By inspecting the physical content of the holon-doublon
description, we are able to unveil the phenomenology of the
Mott-insulating state. Our primary conclusions are as follows.
Long-ranged AFM order is not required because short-ranged
spin fluctuations induce holon-doublon bound states. These
fluctuations renormalize the charge sector to produce a Mott
gap that is smaller than the charge gap. This reconstruction of
the electronic states produces a quasiparticle, the “generalized
spin polaron,” at the Hubbard-band edges, while most of the
composite states lie higher in energy. The differing thermal
evolution of the two gaps explains the origin of the pseudogap
in the Mott insulator, which is a generic property at half-filling
as well as at finite doping. The mixing of energy scales long
observed to be at the heart of the complications endemic to a
theoretical treatment of the Mott-insulating state is shown to
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be a “leverage” effect intrinsic to the convolution of charge
and spin sectors that forms the reconstruction process.

The structure of this paper is as follows. In Sec. II, we
introduce the slave-fermion description we use to analyze
the Hubbard model at finite temperatures. In Sec. III, we
present details of our QMC techniques and apply these to
benchmark our holon-doublon calculations. Having achieved
a quantitative validation of its relevance, in Sec. IV we use
the slave-fermion framework to deconstruct the single-particle
excitations of the Mott insulator into their charge and spin
components and to investigate their reconstruction over the
full range of temperatures. In Sec. V, we discuss the emer-
gence of the pseudogap regime from the slave-fermion anal-
ysis and extract the intrinsic physics of the Mott insulator in
terms of quasiparticle reconstruction and energy-scale lever-
age. Section VI contains a short summary and perspective.

II. HUBBARD MODEL: SLAVE-FERMION FORMALISM
WHEN T > 0

The Hamiltonian for the one-band Hubbard model is

H = −t
∑
〈i, j〉σ

c†
iσ c jσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c†
iσ creates an electron with spin σ on site i and 〈i, j〉

indicates only nearest-neighbor hopping, whose amplitude,
t = 1, sets the unit of energy. In the large-U limit, the half-
filled Hubbard model can be mapped to the AFM Heisenberg
model [29], HS = J

∑
〈i, j〉 Si · S j , and we assume that the spin

dynamics are governed by this model also at finite U , taking
J = 4t2/U .

The application of slave-particle decompositions to the
Hubbard model [Eq. (1)] has a long history, which is reviewed
briefly in Ref. [26]. While, in general, the attribution of
fermionic or bosonic statistics to the charge and spin com-
ponents of the electron is arbitrary, for studies constrained to
and about the mean-field level it was found shortly after the
discovery of high-temperature superconductivity in cuprates
[5] that the slave-fermion decomposition is more appropriate
for the low-doped regime dominated by magnetic order (or
correlations), while the superconducting and strange-metal
regime is better described by the slave-boson decomposition
[6]. For the present purposes, the magnetic fluctuations of the
S = 1/2 square-lattice antiferromagnet are significantly better
described by Schwinger bosons [30] and the charge sector,
which is expected to undergo a holon-doublon binding anal-
ogous to the electron binding in Bardeen-Cooper-Schrieffer
(BCS) superconductivity, by fermionic statistics.

Thus we employ a slave-fermion formalism [31] in which
the electron operator is expressed as

ciσ = s†
iσ di + σe†

i siσ , (2)

where ei and di are fermionic operators denoting the charge
degrees of freedom, respectively holons and doublons, and siσ

are bosonic operators describing the spins, with σ = 1(−1)
for spin ↑ (↓). The physical Hilbert space is established by
the constraint d†

i di + e†
i ei + ∑

σ s†
iσ siσ = 1, which for an ana-

lytical treatment is satisfied only globally rather than locally.

The Hubbard model [Eq. (1)] now takes the form

H = −t
∑
i,δ,σ

[(d†
i+δdi − e†

i+δei )s
†
i,σ si+δ,σ + H.c.]

− t
∑
i,δ,σ

[(d†
i e†

i+δ + e†
i d†

i+δ )σ si,σ̄ si+δ,σ + H.c.]

+ 1

2
U

∑
i

(
d†

i di + e†
i ei − 1

2

)
, (3)

where δ denotes lattice vectors (a, 0) and (0, a), with a the
lattice constant. The first two lines make clear that the spin
and charge degrees of freedom are intertwined, whence AFM
fluctuations cause a holon-doublon pairing interaction. In our
previous work [26], we studied the physical content of this
formalism at T = 0, where the long-ranged magnetic order is
described by the condensation of a single bosonic spin opera-
tor, 〈s†

i,σ 〉 �= 0. At T > 0, only short-range AFM fluctuations
are present and these are well described at the mean-field level
by two-operator condensation of the form

∑
σ 〈σ si,σ̄ si+δ,σ 〉 �=

0 (while 〈s†
i,σ 〉 = 0) on the bonds connecting all sites i to their

nearest neighbors. In a recent study of the doped Hubbard
model [32,33], which also used an ansatz with fermionic
charge, this short-range-correlated spin state was described by
an SU(2) gauge theory with a finite Higgs (amplitude) field but
no orientational order.

Taking the bosonic spin degrees of freedom, si, to be
governed by the Heisenberg model, we follow the treatment
of Arovas and Auerbach [30]. Replacing

∑
σ 〈σ si,σ̄ si+δ,σ 〉 by

its mean value decouples the second line of Eq. (3), allowing
us to calculate the holon and doublon Green functions within
the self-consistent Born approximation (SCBA) [26]. By in-
troducing the bond operator

Qi,δ = si,↑si+δ,↓ − si,↓si+δ,↑, (4)

one may reformulate the Heisenberg model as

HS = −1

2
J

∑
i,δ

(
Q†

i,δQi,δ − 1

2

)
. (5)

We take the mean-field parameter to be uniform and static,

Q = − 1
2 J〈si,↑si+δ,↓ − si,↓si+δ,↑〉 (6)

for all i and δ, and release the constraint on the slave-
boson sector, s†

i↑si↑ + s†
i↓si↓ = 1 [30], replacing it by the

constraint d†
i di + e†

i ei + ∑
σ s†

iσ siσ = 1 appropriate to the full
slave-fermion problem [26]. The constraint acts to provide
an additional and self-consistent coupling of the spin and
charge degrees of freedom. In principle, the corresponding
two-operator expectation value P = 〈s†

i,↑si+δ,↑ + s†
i,↓si+δ,↓〉 is

also finite in the coupled problem, but we find from the three-
parameter mean-field solution that its value is sufficiently
small, at all temperatures, for its neglect to be fully justified in
the treatment to follow.

The mean-field Hamiltonian can be expressed as

HS =
∑

k

(s†
k,↑ s−k,↓)

(
λ zQηk

zQη∗
k λ

)(
sk,↑

s†
−k,↓

)

+ Nz|Q|2
J

− 2λN + λ
∑

i

(d†
i di + e†

i ei ), (7)
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where z = 4 is the coordination number and ηk = 1
2 i(sin kx +

sin ky). The Bogoliubov transformation(
sk,↑

s†
−k,↓

)
=

(
uk vk
v∗

k u∗
k

)(
αk

β
†
−k

)
,

with

|uk|2 = 1

2
+ λ

2�k
, |vk|2 = −1

2
+ λ

2�k
,

ukvk = − zQηk

2�k
, �k =

√
λ2 − 4Q2(sin kx + sin ky)2,

(8)

diagonalizes the Hamiltonian to yield the form

HS =
∑

k

�kα
†
kαk +

∑
k

�kβ
†
kβk +

∑
k

�k

+λ
∑

i

(d†
i di + e†

i ei ) + NzQ2

J
− 2Nλ, (9)

where λ is the Lagrange multiplier associated with the con-
straint. The mean-field equations for any temperature, T , are
given by

J

N

∑
k

z(sin kx + sin ky)2

�k

(
nk + 1

2

)
= 1, (10)

1

N

∑
k

λ

�k

(
nk + 1

2

)
= 1 − 1

2N

∑
i

(d†
i di + e†

i ei ), (11)

where nk = 1/(e�k/T − 1) is the Bose distribution function.
Self-consistent solution of these equations yields temperature-
dependent mean-field parameters, λ(T ) and Q(T ), whose
effect is to increase the excitation gap of the effective spin dis-
persion relation of the thermally disordered magnetic system.
It is important to note that the gap in the spin spectrum re-
mains significantly smaller than T at all relevant temperatures
[30].

To combine the spin degrees of freedom with the charge,
the mean-field solution for the Heisenberg model is substi-
tuted into Eq. (3). The most important term is the replacement
of (si,↓si+δ,↑ − si,↑si+δ,↓) in the quadratic decoupling of the
second line by its mean value, 2Q/J . Together with the third
line, this term forms an effective unperturbed Hamiltonian
for the charge dynamics, while the remaining terms describe
interactions. With this separation, Eq. (3) can be expressed as

H =
∑

k

ψ
†
k ε̃kψk +

∑
k,q,l

ψ
†
kM(k, q, l)ψk−q+l, (12)

where ψ
†
k = (d†

−k, ek ) is the Nambu spinor for the charge
degrees of freedom,

ε̃k =
(

U/2 2tzQηk/J
−2tzQηk/J −U/2

)
(13)

and

M(k, q, l) = − tz

N

∑
σ

(
γk+l 0

0 γk−q

)
s†

q,σ sl,σ , (14)

FIG. 1. Feynman diagrams for the self-consistent Born approxi-
mation. Fermion (holon-doublon) and boson (magnon) propagators
are represented, respectively, by the straight and wavy lines.

in which γk = 1
2 (cos kx + cos ky). The first term of Eq. (12)

describes the charge dynamics in the absence of spin renor-
malization, with holon-doublon binding appearing in the off-
diagonal part of the matrix. The second term incorporates
all the interactions between the charge and spin degrees of
freedom, which in contrast to the T = 0 case [26] contains
two spin bosons and requires a sum over three free momenta.

We define the full charge, or holon-doublon, Matsubara
Green function as

F(k, τ ) = −〈Tτψk(τ )ψ†
k (0)〉 (15)

and calculate this within the SCBA. The corresponding Feyn-
man diagrams, shown in Fig. 1, are the bare term, F(0), and the
first loop, in which the magnon Green function is also a 2 × 2
matrix,

D(k, τ ) = −
(

〈Tτ sk,↑(τ )s†
k,↑(0)〉 〈Tτ s†

−k,↓(τ )s†
k,↑(0)〉

〈Tτ sk,↑(τ )s−k,↓(0)〉 〈Tτ s†
−k,↓(τ )s−k,↓(0)〉

)
.

At this level we obtain the self-consistent Dyson equation for
the Matsubara Green function of the charge sector,

F(k, iωn) = 1

iωn − ε̃k − �(k, iωn)
, (16)

whence the retarded Green function is obtained by the analytic
continuation iωn → ω + iη. This η term denotes a broadening
of the peaks in the spectral response and is set to η = 0.1
throughout our calculations; a smaller value would be of little
physical meaning because of the finite system sizes in the
calculations to follow.

We comment that, despite the simplicity of the AFM
Heisenberg model, there is no exact solution for the S =
1/2 case on the square lattice [34]. The study of the two-
dimensional (2D) quantum AFM Heisenberg model is of great
importance in its own right as a fundamental problem in
quantum magnetism. To date, the most definitive analytical
results for the low-temperature regime were obtained by
two-loop renormalization-group calculations on the quantum
nonlinear σ model (NLσM) [35]. It has also been shown
[36,37] that spin fluctuations in the 2D Hubbard model at low
temperature can be described by the quantum NLσM for any
value of the Coulomb repulsion, U . The accuracy of these
results notwithstanding, an integration of the NLσM into the
present analysis is not straightforward, and we will show that
the holon-doublon framework with mean-field decoupling is
already sufficient to gain semiquantitative accuracy.
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III. BENCHMARKING SCBA: QUANTUM MONTE CARLO

We investigate the half-filled 2D Hubbard model by deter-
minantal QMC. The quartic term in Eq. (1), U (ni↑ − 1

2 )(ni↓ −
1
2 ), is decoupled by Hubbard-Stratonovich transformation to
a form quadratic in (ni↑ − ni↓) = (c†

i↑ci↑ − c†
i↓ci↓) [38–40],

which introduces an auxiliary Ising field on each lattice site.
The QMC procedure obtains the partition function of the
underlying Hamiltonian in a path-integral formulation in a
space of dimension N = L × L and an imaginary time τ up
to β = 1/T . All of the physical observables are measured
from the ensemble average over the space-time (Nβ) config-
urational weights of the auxiliary fields. As a consequence,
the errors within the process are well controlled; specifi-
cally, the (�τ )2 systematic error from the imaginary-time
discretization, �τ = β/M, is controlled by the extrapolation
M → ∞ and the statistical error is controlled by the central-
limit theorem (simply put, the larger the number of QMC
measurements, the smaller the statistical error).

The QMC algorithm is based on Ref. [38] and has been
refined by including global moves [41] to improve ergodicity
and delay updating of the fermion Green function, which
increases the efficiency of the QMC sampling. Details con-
cerning the QMC simulation code are provided in Ref. [42].
We have performed simulations for system sizes L = 4, 8, 10,
12, 14, and 16. The interaction, U , is varied from 2 to 12
in units of the hopping strength, which is set to t = 1, and
for each U we simulate temperatures from T = 0.0625 to 1
(inverse temperatures β = 1 to 16).

The QMC simulations give direct access to the imaginary-
time fermion Green function

Gσ (k, τ ) = − 1

N

∑
i, j

eik·(ri−r j )〈ciσ (τ )c†
jσ (0)〉, (17)

where i, j ∈ [1, N] are site labels, τ ∈ [0, β] is the imagi-
nary time, and 〈. . . 〉 is the Monte Carlo expectation value.
Concerning the spin index, σ , in the half-filled Hub-
bard model G(k, τ ) = G↑(k, τ ) = G↓(k, τ ). While the slave-
fermion treatment of Sec. II offers a specific calculation based
on certain uncontrolled (but demonstrably justified) approxi-
mations, the quantity G(k, τ ) obtained from QMC is exact on
a finite-size system and has controlled errors.

To obtain real-frequency data, it is necessary to perform
analytic continuation of the imaginary-time data. For this
purpose, we have employed stochastic analytic continuation
(SAC) [43,44], by which the spectral function, A(k, ω), is
obtained from the Green function, G(k, τ ), by a stochastic
inverse Laplace transformation,

G(k, τ ) =
∫

dω
e−ωτ

e−βω + 1
A(k, ω). (18)

The most recent implementation of the SAC method re-
produces the spectral function using a large number of δ-
functions sampled at locations in a frequency continuum and
collected in a histogram [44–46]. From the spectral function,
it is straightforward to obtain the local density of states (DOS),
ρ(ω) = ∫

k∈BZ dkA(k, ω). Other static physical observables,
such as the average double site occupancy, D = 1

N

∑
i〈ni↑ni↓〉,

are also measured readily in QMC.

FIG. 2. QMC and analytic continuation at low temperatures:
(a) imaginary-time Green function, Gii(τ ) = 1

N

∑
k∈BZ Gσ (k, τ ), at

U = 8 and β = 8 (T = 0.125) for L = 4, . . . , 16. The logarithmic y
axis makes clear that L = 8, 12, and 16 give the same slope in the
imaginary-time decay, which ensures high-quality results on analytic
continuation. (b) Local density of states, ρ(ω), obtained from SAC
of the imaginary-time Green function in panel (a). Results in the
gap region have clearly converged for L = 8, 12, and 16 at this
temperature.

To access the single-particle gap, i.e., the Mott gap (�Mott)
in what follows, one may attempt to read it directly from the
gap in ρ(ω). From the robust exponential decay of Gii(τ )
in imaginary time at lower temperatures, shown for β = 8
in Fig. 2(a), the analytic continuation is straightforward and
yields high-quality results for ρ(ω) [Fig. 2(b)]. We find in
this temperature regime that the DOS is well characterized
by a single gap, �Mott = 3.2(3). However, it becomes more
difficult to extract an accurate value for the Mott gap as the
temperature increases. Figure 3 shows Gii(τ ) and ρ(ω) at
U = 8 but for β = 4 (T = 0.25). Although the imaginary-
time decay of Gii(τ ) has converged for L = 8, 12, and 16
[Fig. 3(a)], the finite-T broadening that affects the Green
function around τ = β/2 makes the fit to an exponential
decay less accurate. From ρ(ω) [Fig. 3(b)], it remains clear
at a qualitative level that the spectrum has a gap, and that
simulations for L = 8, 12, and 16 converge to the same curve,
but it is no longer clear how to ascribe this behavior to
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FIG. 3. QMC and analytic continuation at high temperatures:
(a) imaginary-time Green function, Gii(τ ) = 1

N

∑
k∈BZ Gσ (k, τ ), at

U = 8 and β = 4 (T = 0.25) for L = 4, . . . , 16. Again the L =
8, 12, and 16 data provide converged values for the imaginary-time
decay, but an exponential form is no longer clear. (b) Local density
of states, ρ(ω), obtained from SAC of the imaginary-time Green
function in panel (a). The gap no longer follows a single-exponential
form, making it difficult to extract a reliable value of �Mott at this
temperature.

a specific value of �Mott. We discuss systematic ways of
extracting lower and upper bounds on the Mott gap from ρ(ω)
in Sec. IV C.

For a quantitative benchmarking of our SCBA results, we
apply both methods on systems of size 16 × 16. Figure 4
shows the U dependence of the double occupancy at a temper-
ature T = 0.125. D reflects the extent of charge fluctuations
due to quantum and thermal effects. D is suppressed as U
increases, and we find excellent (percent-level) agreement
of SCBA and QMC. Also shown in Fig. 4 are extrapolated
DCA results [28], which confirm not only the SCBA and
QMC results but also their convergence to the thermodynamic
limit. The inset of Fig. 4 shows D(T ) computed at fixed
U = 6. The weak dip is a sensitive feature that has been
the subject of extensive debate [47–51]. Our slave-fermion
approach provides a straightforward understanding of pos-
sible nonmonotonic behavior in terms of the competition

FIG. 4. Double occupancy, D, calculated as a function of U at
T = 0.125. SCBA (red) and QMC (blue) results for 16 × 16 systems
are compared with infinite-system results extrapolated from the
dynamical cluster approximation (DCA) [28] (green). Inset: D(T )
at U = 6 from SCBA.

between weakening spin-fluctuation-induced holon-doublon
stabilization and strengthening thermal fluctuations.

In the slave-fermion framework, the electron Green func-
tion, G(k, iωn), is the convolution of the charge (holon-
doublon) and spin propagators. Its calculation gives di-
rect access to the electron spectral function, A(k, ω) =
− 1

π
Im GR(k, ω + iη), and the DOS, ρ(ω) = 1

N

∑
k A(k, ω).

Figure 5(a) shows the SCBA and QMC DOS for U = 8 at
T = 0.125 and 0.25. Three features are evident immediately.
(i) Despite the absence of AFM order, ρ(ω) shows a clear
Mott (single-particle) gap. �Mott, marking a region of strongly
suppressed DOS, survives to T > 0.25, its decrease with T
signaling a “melting” of the Mott insulator. (ii) The sharp
peak at the Hubbard-band edge indicates the emergence of
a well-defined quasiparticle due to mutual charge and spin
renormalization. Following the discussion of a hole moving in
an ordered AFM [52–54], we name this feature a “generalized
spin polaron” and find that it loses coherence (as thermal fluc-
tuations exceed spin fluctuations) toward T = 0.25. (iii) At
T = 0.125, ρ(ω) shows an obvious peak-dip-hump structure
above the Mott gap, a much-debated feature not captured in
early QMC simulations [55] but clearly reproduced here by
both SCBA and QMC.

Figures 5(b) and 5(c) show, respectively, the SCBA and
QMC spectral functions across the Brillouin zone for U = 8.
The results are again quantitatively similar in line shapes and
positions, albeit with differences in peak intensities and a
small but systematic discrepancy in gaps. The larger SCBA
gaps may reflect an overestimate of spin-fluctuation effects at
intermediate T values.

Extensive calculations of the type illustrated in Figs. 4
and 5 verify that the SCBA results are completely consistent
with QMC over the full range of intermediate U and T . Thus
it is safe to conclude that the holon-doublon formulation and
SCBA treatment do incorporate correctly the interactions and
mutual renormalization between the charge and spin sectors.
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FIG. 5. (a) Electronic DOS, ρ(ω), computed for U = 8 by SCBA (red) and QMC (blue) for T = 0.125 (upper panel) and T = 0.25 (lower).
Green dashed lines indicate the holon-doublon gap. (b) Spectral function, A(k, ω), for U = 8 and T = 0.125, computed by SCBA and (c) by
QMC. (d) Path X → � → M → X → S of high-symmetry directions in the Brillouin zone.

Hence the qualitative physics underlying the key features of
the Mott insulator, including the quasiparticle dynamics, Mott
gap, and pseudogap, can finally be uncovered.

IV. CONVOLUTION OF CHARGE AND SPIN

More specifically, the slave-fermion framework makes it
possible to separate the contributions of the charge and spin
sectors to the electronic spectral function, which is a convo-
lution of both. Figure 6 presents a schematic illustration of
the situation by showing an electronic excitation in a Mott
insulator. The lower and upper bands in the charge sector
(red) have the holon-doublon gap, �hd. This quantity defines
the high energy scale of the Mott insulator and its origin in
holon-doublon binding gives it a T -dependence analogous
to the BCS superconducting gap. In the spin sector (blue),
low-energy particle-hole excitations exist over a band of width
� ≈ 4J , but only those on an energy scale �(T ), which is
governed by the temperature, are activated. The electronic de-
grees of freedom (purple) are reconstructed as the convolution
of the two sectors and hence their excitations are characterized

FIG. 6. Schematic representation of how the Mott-insulating
state of electrons (purple) is formed by convolution of the charge
(red) and spin (blue) degrees of freedom.

by a gap �Mott(T ) ≈ �hd(T ) − 2�(T ). In contrast to band
insulators, where the gap is largely T -independent [56], the
Mott gap is determined by T -dependent correlation effects. As
T increases, �Mott is driven downward both by the decrease in
�hd(T ) and by the increasing �(T ).

A. Charge Green function

We begin by considering the charge Green function of
Eq. (16) to extract �hd(T ). The dispersion relation, Ek, of the
holon-doublon collective mode is obtained from the poles of
this Green function [57] and the holon-doublon gap is twice
its minimum value, �hd = 2 min |k[|Ek|]. We exploit the fact
that the Pauli matrices, σi (i = 1, 2, 3), and the identity matrix,
I , form a complete basis for all 2 × 2 matrices to reexpress
Eq. (13) as

ε̃k = 1
2Uσ3 − ζkσ2, (19)

where ζk denotes −8itQηk/J . The self-energy of the charge
Green function [Eq. (16)] is a 2 × 2 matrix,

�(k, iωn) = iωn[1 − Z (k, iωn)]I + χ (k, iωn)σ3

+φ1(k, iωn)σ1 + φ2(k, iωn)σ2, (20)

in which Z (k, iωn) is the quasiparticle renormalization factor,
χ (k, iωn) contains the corrections to the dispersion, and the
off-diagonal terms, φ1(k, iωn) and φ2(k, iωn), contain the
effects of the binding interaction [58,59]. Substituting Eq. (20)
into Eq. (16) gives

F−1(k, iωn) =
(

F−
11(k, iωn) −F−

12(k, iωn)

−F+
12(k, iωn) F+

11(k, iωn)

)
, (21)

in which

F±
11(k, iωn) = Z (k, iωn)iωn ± [U/2 + χ (k, iωn)],

F±
12(k, iωn) = φ1(k, iωn) ± i[φ2(k, iωn) − ζk].

By inversion of the matrix, we obtain

F(k, iωn) = 1

|DetF|
(

F+
11(k, iωn) F−

12(k, iωn)

F+
12(k, iωn) F−

11(k, iωn)

)
, (22)
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FIG. 7. Temperature-dependence of the charge (�hd, green) and
Mott (�Mott, red) gaps for the Hubbard model with U = 6, estimated
from the SCBA ρ(ω). Red squares indicate the lower bound on
�Mott. The red star and circle mark, respectively, the lower and
upper bounds on the temperature, T Mott

c , at which �Mott (T ) vanishes.
Dashed red lines indicate extrapolations based on our lower-bound
values.

where

|DetF| = Z2(k, iωn)(iωn)2 − [U/2 + χ (k, iωn)]2

−φ2
1 (k, iωn) − [φ2(k, iωn) − ζk]2 (23)

= R(k, ω)[ω − Ek + i�(k, ω)]

× [ω + Ek + i�(k, ω)]. (24)

We have calculated F(k, iωn) numerically, which gives access
to its component parts Z (k, iωn), χ (k, iωn), φ1(k, iωn), and
φ2(k, iωn). By reexpressing the denominator in the form given
in Eq. (24), we derive the effective holon-doublon quasipar-
ticle dispersion, Ek, and the corresponding scattering rate,
�(k, ω) [57]. We obtain the result for �hd(T ) shown as the
green curve in Fig. 7.

B. Electron spectral function

By contrast, �Mott(T ) is the single-particle gap and is
smaller than �hd(T ) due to the spin-renormalization of the

charge sector [Fig. 6]. This renormalization is contained in
the slave-fermion formulation within the convolution making
up the electron Green function, which, if vertex corrections
are neglected, [60,61] may be expressed as

Gσ
i j (τ ) = −〈Tτ ciσ (τ )c†

jσ (0)〉
= −〈Tτ (s†

iσ (τ )di(τ ) + σe†
i (τ )siσ (τ ))

× (d†
j (0)s jσ (0) + σ s†

jσ (0)e j (0))〉
� −〈Tτ di(τ )d†

j (0)〉〈Tτ s†
iσ (τ )s jσ (0)〉

− 〈Tτ e†
i (τ )e j (0)〉〈Tτ siσ (τ )s†

jσ (0)〉
− σ 〈Tτ di(τ )e j (0)〉〈Tτ s†

iσ (τ )s†
jσ (0)〉

− σ 〈Tτ e†
i (τ )d†

j (0)〉〈Tτ siσ (τ )s jσ (0)〉. (25)

In momentum space, it is given by

Gσ (k, iωn)

= 1

N

∑
q

(∫ ∞

−∞
dε

U †
q A(k + q, ε)Uq

iωn + �q − ε
[ f (ε) + nq]

+
∫ ∞

−∞
dε

V †
q A(k + q, ε)Vq

iωn − �q − ε
[1 − f (ε) + nq]

)
, (26)

with

Uq =
(

uq
v∗

q

)
and Vq =

(
vq
u∗

q

)
, (27)

whose components are given in Eq. (8), and

A(k + q, ε) = − 1

π
Im FR(k + q, ε + iη)

=
(

A11(k + q, ε) A12(k + q, ε)
A21(k + q, ε) A22(k + q, ε)

)
, (28)

which expresses the holon-doublon spectral function corre-
sponding to the retarded charge Green function; f (ε) is the
Fermi-Dirac distribution function for holon-doublon quasipar-
ticles and nq the Bose-Einstein distribution for the spinons.

The corresponding electron spectral function is

Ãσ (k, ω) = − 1

π
Im GR

σ (k, ω) = 1

N

∑
q

∫ ∞

−∞
dεU †

q A(k + q, ε)Uq[ f (ε) + nq]δ(ω + �q − ε)

+ 1

N

∑
q

∫ ∞

−∞
dεV †

q A(k + q, ε)Vq[1 − f (ε) + nq]δ(ω − �q − ε), (29)

whence the electronic DOS is

ρ(ω) = 1

N

∑
k,σ

ρσ (k, ω) =
∑

q

a(ω, q)
∫ ∞

−∞
dερ1

hd(q, ε)δ(ω + �q − ε)

+
∑

q

b(ω, q)
∫ ∞

−∞
dερ2

hd(q, ε)δ(ω − �q − ε), (30)
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in which

ρ1
hd(q, ε) = U †

q Aq(ε)Uq, ρ2
hd(q, ε) = V †

q Aq(ε)Vq

and

a(ω, q) = 1

N
[ f (ω + �q) + nq],

b(ω, q) = 1

N
[1 − f (ω − �q) + nq],

where �q is the dispersion relation of the spin excitations.
The quantities ρ1

hd(q, ε) and ρ2
hd(q, ε) contain the holon-

doublon DOS appearing in Aq(ε), with nontrivial quantitative
modification by the spin part (contained in Uq and Vq). The
temperature-dependence is contained within the occupation
functions in a(ω, q) and b(ω, q). The renormalization of the
holon-doublon gap to the Mott gap is contained within the
integrals over the two energy δ-functions in Eq. (30), δ(ω ±
�q − ε), which mathematically effect the convolution with
the spin spectral function at the SCBA level and physically
specify how the lower and upper Hubbard bands are produced
from holon-doublon bound states dressed by the emission and
absorption of low-energy spin fluctuations.

C. Extraction of the Mott gap

Unlike �hd(T ), the accurate extraction of �Mott(T ) from
the electron Green function is complicated by the lack of
a single-particle dispersion relation, and hence no analytical
means of finding the poles in the self-energy. However, as
noted in Sec. III, it is even more difficult to read �Mott from
QMC for temperatures in excess of approximately 0.15. Thus
we revert to a detailed consideration of the SCBA electronic
DOS, ρ(ω, T ) [Fig. 8], to estimate �Mott(T ) by a procedure
of assuming an effective gap and modeling its “filling.” We
apply two types of analysis to obtain (1) a lower bound on
�Mott (T ), using a quantitative fitting process which in essence
neglects thermal fluctuations, and (2) an upper bound on the
temperature, T Mott

c , at which �Mott (T ) = 0, based on a clear
qualitative feature of ρ(ω, T ).

FIG. 8. ρ(ω) in the gap region at all temperatures, computed
from SCBA with U = 6 and η = 0.1; results are normalized to a
peak height of 1 in order to highlight the emerging ω = 0 peak.

FIG. 9. ρ(ω) in the gap region for a number of temperature
values, computed by QMC with U = 6.

1. Lower bound on �Mott (T )

Except at the highest temperatures, all of the DOS func-
tions we calculate by SCBA show the clear presence of a gap
which, however, is partially filled. This finite DOS at small ω

is a consequence of two effects, the (finite-size) Lorentzian
broadening, η, and the temperature, whose effects appear
as exponential activation over an effective T -dependent gap.
A qualitative indication of the differing nature of the two
contributions can be obtained by comparing ρ(ω, T ) from
SCBA, shown in Fig. 8, with the results from QMC, which
we show in Fig. 9: η effects, which cause ρ(ω) to become
more “V-shaped” within the gap, are stronger in the SCBA
data. However, we are constrained by finite-size effects not to
reduce η in our calculations. Because the Lorentzian contribu-
tion is much stronger, we proceed by neglecting the thermal
activation contribution, i.e., the direct effects of T , and thus
obtain a lower bound for �Mott(T ). Thus the problem of
finding the Mott gap, meaning the gap in the reconstructed
(spin-charge-recombined) spectrum at any given T , is reduced
to a deconvolution removing η.

The retarded Green function can be represented by

GR(ω + iη) =
∫ ∞

−∞
dε

ρ̃(ε)

ω − ε + iη
, (31)

where ρ̃(ε), the intrinsic DOS, is expected to vanish below
�Mott/2. We need consider only the imaginary part of GR(ω +
iη), which is the observed DOS:

ρ(ω) = 1

π

∫ ∞

−∞
dε

η

(ω − ε)2 + η2
ρ̃(ε). (32)

If η is infinitesimal, at T = 0 and when the energy interval
is continuous, one has ρ̃(ω) = ρ(ω). In our calculations,
however, η is finite and we have used an energy interval dω =
0.02, on top of which we wish to demonstrate that the effect
of finite temperatures on the spectral function is equivalent to
that of a T -dependent effective Mott gap, �Mott (T ).

As noted above, for a Mott insulator with no thermal
fluctuations, one expects that ρ̃(ω) = 0 in the energy interval
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[−�Mott/2,�Mott/2], whence

ρ(ω) = 2

π

∫ ∞

�Mott/2
dε

η

(ω − ε)2 + η2
ρ̃(ε). (33)

The process of using ρ(ω), as calculated by SCBA at each
value of T , to extract the underlying function ρ̃(ε) and
the single constant �Mott (T ) is analogous to an analytic
continuation. Although a full SAC treatment of the SCBA
data is complicated by a lack of statistical errors, a more
straightforward procedure is sufficient in the present case.
Borrowing from the structure of the SAC method of Sec. III,
we construct a minimization based on linear regression to
achieve the decomposition of Eq. (33). We parametrize

ρ̃(ε) =
Nε∑

i=1

aiδ(ε − εi ) (34)

using Nε equally spaced δ functions, whose weights {ai} are
the free parameters. By inserting Eq. (34) into Eq. (33), we
obtain the function

ρ ′(ω) = 1

π

Nε∑
i=1

dε

[
η

(ω − εi )2 + η2
+ η

(ω + εi )2 + η2

]
ai,

(35)
by which we approximate the SCBA ρ(ω). We define the
goodness-of-fit parameter

χ2 =
Nω∑
i=1

(ρ(ωi ) − ρ ′(ωi ))
2, (36)

whose minimization by a linear regression method determines
the values {ai}. Because the number, Nε, of data points in ε

in Eq. (34) can only be equal to or smaller than the number,
Nω = 600, of points in the SCBA ρ(ω), such a minimization
can always be achieved.

Two examples of the intrinsic DOS functions, ρ̃(ε), un-
derlying our computed SCBA functions, ρ(ω), are shown in
Fig. 10, where we have chosen U = 6 and the temperatures
T = 0.125 [Fig. 10(a)] and T = 0.25 [Fig. 10(b)]; in both
cases, we used Nε = 300. The ρ̃(ε) functions show a clear
suppression of the DOS at low frequencies, with the reap-
pearance of this weight occurring primarily around the peaks.
These intrinsic functions also show the clear presence of addi-
tional states building systematically into the zero-temperature
gap as T is increased.

To extract the effective Mott gap from ρ̃(ε) at each tem-
perature, we define �Mott (T ) as the frequency at which the
weights ai in ρ̃(ε) start to rise from zero. More precisely,
we use the criterion that ai should be less than 1% of the
average DOS at the band center, ρ(ω) ≈ 0.1, i.e., ai < 0.001.
As shown in the insets of Figs. 10(a) and 10(b), this criterion
appears to offer a reliable means of distinguishing real recon-
structed finite-T features from thermal and numerical noise.

By applying these considerations at U = 6, we obtain the
data shown in Fig. 7, with a well-defined lower bound from
T = 0.0625 to T = 0.2857. At our next higher temperature,
T = 0.333, ai > 0.001 even at ω = 0, and thus the lower
bound has become zero; we estimate the temperature at which
this occurs to be T ≈ 0.31, and represent this by the dashed
line in Fig. 7. We conclude that these results can be taken to

FIG. 10. Deconvolution of Lorentzian broadening in the SCBA
DOS (a) Comparison of the functions ρ(ω), calculated by SCBA,
and ρ̃(ε), obtained from it by linear regression, for U = 6 at tem-
perature T = 0.125. (b) The same comparison at T = 0.25. Clearly,
ρ̃(ε) reveals additional intrinsic features of the spectral function by
removing the Lorentzian broadening and hence allows an estimate of
�Mott. We comment that the SCBA data for ρ(ω) contain Nω = 600
frequency points and the linear regression is performed to obtain a
data set ρ̃(ε) containing Nε = 300 points. The dashed lines show the
criterion ρ̃(ε) < 0.001, on the basis of which we take the spectral
weight to vanish and thus define �Mott.

provide an accurate lower bound for �Mott (T ), and that the
closing of the Mott gap by this estimate provides the lower
bound, T Mott

c,l ≈ 0.31, for the associated temperature.

2. Upper bound on T Mott
c

A qualitatively different approach to the Mott transition is
provided by the fact that, as Figs. 8 (SCBA) and 9 (QMC)
make clear, ρ(ω) changes from a low-T form with an absolute
minimum at ω = 0 to a high-T form with a peak at ω = 0.
This peak grows in size and spectral weight as a function
of temperature beyond a given T value. The emergence of
this quasiparticle peak in the single-particle response indicates
unambiguously that the lower and upper Hubbard bands have
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overlapped, and thus that the Mott gap has closed. In prac-
tice, �Mott may have vanished before the peak can emerge
as a feature stronger than the DOS at neighboring nonzero
frequencies, and hence this temperature, T Mott

c,u , can be taken
as an upper bound for the closing of the Mott gap. At U = 6
we find, as shown in Fig. 7, that T Mott

c,u ≈ 0.4. Thus both
T Mott

c,l and T Mott
c,u lie well below the closing temperature of the

holon-doublon gap, T hd
c � 0.45. While the QMC results differ

from SCBA in quantitative details, the qualitative picture of
the two gaps remains robust.

V. INTERPRETATION

The ω = 0 axis of Fig. 7 can be interpreted as a finite-
temperature phase diagram for the Hubbard model [Eq. (1)].
The low-T regime is fully gapped, not only for bound holons
and doublons but also for electrons, and this is the Mott
insulator. As T is increased, its melting is revealed as a two-
step process. At T Mott

c , the optimal electronic states created by
spin-charge reconstruction, which lie in the low-energy tails
of the Hubbard bands, have touched, creating the ω = 0 peak
in ρ(ω) [Fig. 8]. However, �hd(T ) remains finite and most
electronic states remain gapped; the consequent suppression
of the DOS around the Fermi level makes this a pseudogap
regime. As T approaches T hd

c , the pseudogap fills in with ad-
ditional low-lying electronic states, and only above T hd

c does
the closing of the charge gap make the system fully metallic.

This pseudogap behavior [62] is observed consistently in
many numerical studies of the Hubbard model [28], including
our own (Secs. III and IV C), and is not restricted to finite dop-
ing. The slave-fermion framework captures this phenomenon,
showing how the single-particle gap decreases faster than the
charge gap before the vanishing of both quantities establishes
the two characteristic temperatures, T Mott

c and T hd
c [Fig. 7].

Even at low T , the difference between �hd and �Mott grows
linearly with T , as anticipated in Sec. IV. This difference in
the T dependencies of the two gaps constitutes one crucial
feature of the distinctive low-energy physics intrinsic to the
Mott insulator.

A further piece of essential physics concerns the energy
scales of the spin fluctuations and gap renormalization. En-
ergies in the spin sector are controlled by J , and the relevant
temperatures for a finite (two-spin) magnetic correlation pa-
rameter are a fraction of this. However, charge-sector energies
are of order U , and the renormalization, �(T ), of �hd(T ) is a
fraction of this. From Fig. 7, �(T ) ≈ 5T ≈ UT . This remark-
able “leverage effect,” by which the low-energy spin processes
bring about high energy shifts in the charge processes, lies at
the heart of the energy-scale mixing in the Mott insulator.

Equation (30) quantifies how effectively the spin part mod-
ifies the filling of the charge gap during the reconstruction of
the electronic degrees of freedom, and as such the leverage ef-
fect is not a directly modified energy scale, but rather a strong
amplification of the gap-filling. When this process is modeled
as a thermal filling governed by an effective (Mott) gap for
the electrons (Sec. IV C), one finds the factor of order U that
enters in the difference from the charge gap. Thus the mixing
of energy scales intrinsic to the Mott insulator is revealed

from a set of equations affording physical insight, rather than
“only” as the output from a complex numerical simulation.

These same equations also provide a quantitative
description of the spectral weight in the pseudogap regime.
Although the presence of particularly low-lying reconstructed
electronic states has already closed the Mott gap, these states
constitute only a small fraction of the total available electronic
states, the majority of which still reside above the charge gap.
As a consequence, the electronic DOS in the low-energy
regime remains suppressed, which is the definition of the
pseudogap, and this suppression persists until the temperature
is high enough to close the charge gap. We comment that,
as in Ref. [26], the electronic Green function may also be
used to obtain the Luttinger surface for the insulating regime
and the Fermi surface of the pseudogap and metallic states;
however, because the model we consider is half filled and has
no extended hopping, this surface is precisely the Umklapp
surface (the locus of solutions of cos kx + cos ky = 0) for all
temperatures.

VI. CONCLUDING REMARKS

To place our results in context, all slave-particle decom-
positions involve an uncontrolled assumption, which is justi-
fied post facto. Our QMC simulations reveal that the holon-
doublon approach does an excellent job of representing the
relevant degrees of freedom and of capturing all the important
aspects of their interactions. Further, any mean-field treat-
ment enforces the local constraint only on average, making
its results critically dependent on how well the essential
physics is captured at lowest order. Again the holon-doublon
framework passes this test with distinction, for all values of
U > 2t [Fig. 4] and temperatures T � 0.5J . Unlike some
approaches, our study is general in that the finite-T response
contains no potential pathologies induced by the perfectly
nested noninteracting band.

Experimentally, despite intensive interest in cuprate ma-
terials and Mott physics, detailed studies of undoped Mott
insulators are complicated in that neither angle-resolved pho-
toemission spectroscopy (ARPES) nor scanning tunnelling
spectroscopy (STS) can obtain a signal from a well-gapped
insulator at low T . ARPES on insulating cuprates [7] has
mapped the spectral function [Fig. 5(b)] to observe the Mott
gap and strongly renormalized bands, but lacks the resolution
and temperature-sensitivity to address the filling and closing
of �Mott. STS measures the local DOS [Fig. 5(a)] and recent
studies [63,64] have observed the Mott gap and its persistence
to finite temperatures, albeit in systems that are already lightly
hole doped (which is the next challenge for the slave-fermion
description). Very recently, AFM order has been observed in
ultracold 6Li atoms on an optical lattice, which also realize an
undoped Hubbard model at finite temperatures [65]. Given the
finite nature (of order 100 atoms) of these systems, our SCBA
and QMC techniques are both perfectly suited for calculations
and quantitative comparison with this type of experiment.
In summary, we have shown by analytical SCBA calcula-
tions and unbiased QMC simulations that the slave-fermion
description of the Hubbard model contains all the essential
physics of the Mott insulator. Thus we obtain complete insight
into the underlying physical processes, which emerge from
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high-energy holon-doublon binding mediated by low-energy,
short-ranged spin fluctuations. The spin-renormalization of
the charge sector, which forms the lower and upper Hubbard
(electron) bands, introduces a strong energetic leverage effect.
The Mott gap is smaller than the charge gap and its closure
involves only a fraction of the reconstructed states, giving
a natural explanation of the pseudogap. This unified under-
standing of the dynamics and melting of the undoped Mott
insulator forms a sound basis for investigating both the doped
case and specific cuprate band structures.
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