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All-electron product basis set: Application to plasmon anisotropy in simple metals
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An efficient basis set for products of all-electron wave functions is proposed, which comprises plane waves
defined over the entire unit cell and orbitals confined to small nonoverlapping spheres. The size of the set and the
basis functions are, in principle, independent of the computational parameters of the band-structure method.
The approach is implemented in the extended linearized augmented plane wave method, and its properties
and accuracy are discussed. The method is applied to analyze the dielectric response of the simple metals Al,
Na, Li, K, Rb, and Cs with a focus on the origin of the anisotropy of the plasmon dispersion in Al and Na.
The anisotropy is traced to tiny structures of the one-particle excitation spectra of Al and Na, and relevant
experimental observations are explained.
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I. INTRODUCTION

The microscopic dielectric function (DF) ε(r, r′; ω) is a
key ingredient in the theory of the ground state [1], quasiparti-
cles [2,3], optical [4], and plasmonic [5–8] excitations as well
as in the electron spectroscopies where the microscopic elec-
tric field in the solid is a crucial aspect: photoemission at low
photon energies [9], laser-assisted time-resolved spectroscopy
[10], or the theory of energy losses by quantum particles [11].
The variety of applications and the growing demand for a
detailed description of the DF calls for the development of
an efficient basis set to express the relevant operators in order
to facilitate ab initio calculations of the DF.

A general and rigorous analysis of the basis set prob-
lem was presented by Harriman [12], and various practi-
cal schemes have been implemented. The simplest case are
pseudopotential methods [13,14], where the plane-wave (PW)
basis for the Bloch wave functions ψk

λ is ideally suited for
the Fourier representation of the dielectric matrix εGG′ (q, ω),
which immediately follows from the Fourier expansion of the
products ψk∗

λ′ ψ
k−q
λ . Furthermore, the accuracy of both ψk

λ and
ε(r, r′; ω) is consistently controlled by a cutoff in the recipro-
cal space. Another obvious choice is a real-space grid [15,16];
however, the experience with the projected augmented wave
method shows that atomic-orbital basis is computationally
more efficient [17]. Typical implementation of the orbital
basis in the context of pseudopotentials and accompanying
approximations are discussed in Refs. [18,19]. The problem
becomes nontrivial in all-electron methods, where the basis
functions have complicated shapes, and their products are un-
wieldy. In addition, the resulting product set is nonorthogonal
and overcomplete, and there is no a priori criterion to reduce
the set and to control its convergence. For orbital basis sets,
methods of numerical elimination of redundant products were
suggested by Aryasetiawan and Gunnarsson [20] for muffin-
tin orbitals and by Foerster [21] for atomic orbitals. The most

accurate wave functions are provided by the augmented plane
wave (APW) formalism, where the basis functions are still
more complicated [22–26]. In the LAPW-based (linear APW)
codes [27–29], criteria similar to those of Refs. [20,21] are
applied to obtain a reduced set from the products of APWs.
However, no attempt has been made to construct a universal
basis to parametrize the products.

Here, we propose a basis set to calculate the ε matrix
out of all-electron wave functions, which is suitable for (but
not limited to) the APW representation. The product basis
set consists of plane waves that are defined throughout the
unit cell (not just in the interstitial region, in contrast to
Refs. [27–31]) and orbitals centered at atomic sites and con-
fined to small nonoverlapping spheres. We refer to the latter
as island orbitals (IOs) to distinguish them from the localized
orbitals (LOs) of the extended LAPW methods [25,26]. The
basis functions are derived from an approximation to the
all-electron wave functions, which also has the PW + IO
structure, and whose accuracy is regulated by the angular-
momentum cutoff of the orbital part and by the |k + G| cutoff
of the plane-wave part. Owing to the orthogonality of the
plane waves and to the finite domain of the orbitals, the
basis set provides an efficient scheme for the matrix elements
〈k + qλ′| exp[i(q + G) · r]|kλ〉. Thus, the Fourier represen-
tation εGG′ (q, ω) is readily obtained, which is convenient, in
particular because the Coulomb interaction becomes diago-
nal and because the reciprocal-lattice vector G is a natural
cutoff parameter to systematically refine the accuracy of the
DF.

To demonstrate the viability of the method we address
the q-dependent longitudinal DF of simple metals, focusing
on the anisotropy of the plasmon dispersion. We analyze the
similarities and differences in the anisotropy scenarios in Al
and Na and explain the experimentally long-known opposite
behavior of the anisotropy of the Drude plasmon relative to
the low-energy zone-boundary collective state (ZBCS) [32] in
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the two metals. Furthermore, we compare Al and Na with the
less free-electron-like alkali metals Li, K, Rb, and Cs.

The paper is organized as follows: In the next section we
describe the PW + IO representation of the wave functions
and the resulting formalism for the DF. The accuracy and
convergence of the product basis are analyzed in Appendix
A. Computational aspects not related to the new method
are presented in Sec. III. In Sec. IV, plasmon dispersion in
aluminum and alkali metals is discussed. Appendix B presents
an analysis of the effect of the semi-core polarization on the
plasmon energy.

II. FORMALISM

Of all the band-structure methods, the formalism of aug-
mented plane waves introduced by Slater [22] has the least
limitations regarding the accuracy of the wave functions.
Here, we consider an implementation for a basis of energy-
independent APWs [23,24] extended by localized orbitals
[25,26].

A. Filtering the all-electron wave function

The wave function ψk
λ for the Bloch vector k and band

number λ is a sum of Nξ APWs ξ (r) and Nζ localized orbitals
ζ (r). For one atom per unit cell located at r = 0 it reads

ψk
λ (r) =

Nξ∑
G

pλk
G ξk

G(r) +
∑
lm

ν̄l∑
ν

qλk
νlmζlν (r)Ylm(r̂). (1)

Here p and q comprise the set of variational coefficients,
p being coefficients of the APWs and q of the LOs, and
G are reciprocal-lattice vectors. The APW ξk

G is smoothly
continuous everywhere in the unit cell, and outside the muffin-
tin (MT) spheres it coincides with the plane wave exp[i(k +
G) · r]. The LOs vanish with their radial derivatives at the
muffin-tin sphere and remain zero in the interstitial region.
Subscript ν indicates the radial part of the local orbital, so
Nζ = ∑

l ν̄l (2l + 1).
In the sphere the angular-momentum expansion of the

APW of a wave vector K = k + G reads

ξk
G(r) =

∑
lm

[Alm(K)φl (r) + Blm(K)φ̇l (r)]Ylm(r̂), (2)

where φl is a solution of the radial Schrödinger equation and
φ̇l is its energy derivative [23,24]. Coefficients Alm and Blm

are determined from the condition that the APW be smoothly
continuous at the sphere boundary, r = S. Thus, for each l
the radial basis comprises n̄l = ν̄l + 2 functions uln, where
ul1 = φl , ul2 = φ̇l , and the radial part of the LO is a linear
combination of three functions: ζlν = ul (ν+2) + alνφl + blνφ̇l .
Usually, ul (ν+2) are also radial solutions for different energies,
although in some applications they may be more complicated
functions [33,34].

A straightforwardly constructed set of products of N =
Nξ + Nζ functions would comprise N (N + 1)/2 terms, of
which a much smaller number are linearly independent and
physically relevant. There is no universal recipe to a priori
select the optimal subset—without reference to the specific
shape of the APWs—although some intuitive criteria and
practical schemes were suggested in Refs. [20,27]. Here we

0 1 2 3 4 5

r φ
(r

)

r φl(r)
γ (r) r φl(r)
[ 1 - γ (r) ] r φl(r)

0

1

γ (r)

0 1 2 3 4 5
r (a.u.)

r φ
(r

)

0

1

γ (r)

(a)

(b)

FIG. 1. γ partitioning in the sphere of Cs for (a) Sγ = 2 a.u. and
(b) Sγ = 4 a.u: radial solution (thick light-blue line) is multiplied by
γ (r) (thick red line). The gouging radii Sγ are indicated by vertical
dashed lines, and the MT radius is 5.02 a.u. The radial function is for
l = 0, and energy is at the Fermi level.

develop an approach that avoids an explicit construction of the
products of the APWs, but instead employs an approximate
(filtered) representation of the wave functions to generate the
product basis. This approximate representation has the prop-
erty that both the accuracy of the filtered wave functions and
the completeness of the product basis are naturally controlled
by a spatial resolution criterion, i.e., by the G-vector cutoff of
the PW set and by the lm cutoff of the IO set.

To arrive at the optimal partitioning between the PW and
IO components of the filtered wave function, we first modify
the original wave function ψ by damping its rapid oscillations
in the vicinity of the nuclei: within a sphere of radius Sγ

(smaller than the muffin-tin radius, see Fig. 1) we multiply
ψ by a function γ (r) that is zero at r = 0 and steadily grows
to reach unity at r = Sγ :

γ (r) =
{

1
2

(
1 − cos πr

Sγ

)
for r � Sγ

1 for r > Sγ .
(3)

The gouged function γψ has a rapidly convergent plane-wave
expansion [35,36], which constitutes the Fourier part ψF of
the filtered wave function:

ψ = γψ + (1 − γ )ψ ≈ ψF + (1 − γ )ψ ≈ ψF + ψ I. (4)

Here ψ I is an approximation to (1 − γ )ψ obtained by trun-
cating the angular-momentum expansion of ψ . It consists of
isolated islands around the nuclei, and the smaller the radius
Sγ of the island the faster converges the lm series of ψ I

and the slower does the PW series of ψF. For sufficiently
small γ spheres, ψ I can be completely neglected to a good
approximation [35,36]. In Appendix A, we present a detailed
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study of the convergence and accuracy of the ψF + ψ I repre-
sentation.

B. Density matrix elements

Let us consider the operator ô = exp(iQ · r), where Q =
q + G. Using the notation ψλ = 〈r|ψλ〉, ψF

λ = 〈r|Fλ〉, and
ψ I

λ = 〈r|Iλ〉 for the approximate wave functions ψλ = ψF
λ +

ψ I
λ given by Eq. (4) we write the matrix element 〈ψλ|ô|ψμ〉

as a sum of an integral over the entire unit cell 〈Fλ|ô|Fμ〉 and
three integrals over the small γ spheres:

〈ψλ|ô|ψμ〉 = 〈Fλ|ô|Fμ〉 + 〈Fλ|ô|Iμ〉 + 〈Iλ|ô|Fμ〉 + 〈Iλ|ô|Iμ〉.
(5)

The first term on the right-hand side is readily calculated
via plane waves, and the integrals over the γ spheres can be
calculated in the angular-momentum representation in view
of the relation ψF ≈ γψ ; see Eq. (4). Their sum reduces to
〈ψλ|ô|ψμ〉γ − 〈Fλ|ô|Fμ〉γ , where the subscript γ indicates that
the integration is limited to the γ spheres. The computational
efficiency of this scheme stems from the following properties:
First, the lm series converges fast because the γ spheres are
small, and it is helpful that the coefficients are the same for
the wave function ψ and for its Fourier-filtered part ψF. Sec-
ond, the plane-wave expansion of γψ contains a reasonable
number of plane waves because—in contrast to the energy-
eigenvalue problem—a high accuracy close to the nucleus
is not needed (see Appendix A). Note that the approximate
function (4) is smoothly continuous by construction at any l
cutoff, whereas in the original APW representation one has to
include rather high angular momenta to achieve the continuity.
This property is important, in particular for the construction
of the effective potentials from orbital-dependent functionals
[37].

The operator exp[i(q + G) · r] is diagonal in the PW basis,
so the first term in Eq. (5) is easy to calculate. Let F kλ

G
be the coefficients of the plane waves exp[i(k + G)r] in the
expansion of the PW part of the filtered wave function in
Eq. (4). Then the first term on the right-hand side of Eq. (5) is〈

F k+q
λ′

∣∣ei(q+G)·r∣∣F k
λ

〉 = V
∑
G′

[
F k+qλ′

G′+G

]∗
F kλ

G′ . (6)

The contribution from the islands is obtained from the
angular-momentum decomposition of the wave functions in-
side the muffin-tin spheres:

ψk
λ (r) =

lmax∑
l

n̄l∑
n

l∑
m=−l

Ckλ
lnmuln(r)Ylm(r̂) (7)

using the Rayleigh expansion of exp(iQ · r):〈
ψ

k+q
λ′

∣∣eiQ·r∣∣ψk
λ

〉
γ

− 〈
F k+q

λ′
∣∣eiQ·r∣∣F k

λ

〉
γ

=
lmax∑
ll ′

∑
nn′

∑
mm′

[
Ck+qλ′

l ′n′m′
]∗

Ckλ
lnm

×
l ′′max∑
l ′′

T l ′′
ll ′mm′ (Q̂)

∫ Sγ

0
jl ′′ (Qr)Ull ′nn′ (r)dr, (8)

where the angular integration yields

T l ′′
ll ′mm′ (Q̂) = 4π il ′′Y ∗

l ′′m′′ (Q̂)
∫

Y ∗
l ′m′Yl ′′m′′Ylm d r̂. (9)

Here lm and l ′m′ refer to the angular-momentum decom-
position of ψk

λ and ψ
k+q
λ′ , respectively, and l ′′ refers to the

Rayleigh expansion of exp(iQ · r). The radial functions

Ull ′nn′ (r) = ul ′n′ (r)uln(r)[1 − γ (r)2]r2 (10)

are products of the radial parts of APWs multiplied by the
confining function [1 − γ (r)2]r2. Because the radii Sγ are
independent of the other computational parameters they can
be chosen rather small, typically 1 to 2 a.u., so that the
angular-momentum sums can be truncated at rather low l , as
will be demonstrated in the next section. To summarize, the
PW + IO product basis set consists of plane waves exp[i(q +
G) · r] and island orbitals Uln(r)Ylm(r̂) whose radial shape is
given by Eq. (10) and angular part by Eq. (9). The matrix
element of exp[i(q + G) · r] is a sum of expressions (6) and
(8).

The size of the set scales linearly with the size of the unit
cell, and the IO part can be further reduced by removing
the linearly dependent IOs [20,21,27,28,38]. According to
Eq. (10), for each pair of l and l ′ the set of radial products
comprises n̄l × n̄l ′ functions, and large n̄l may be needed to
describe a wide energy interval. For example, in order to
achieve convergence of the GW method with respect to the
number of unoccupied states it may be necessary to include
up to n̄l = 8 radial functions per lm channel [29,31,39]. A
straightforward inclusion of all the products ul ′n′uln may lead
to an excessively large and linearly dependent basis set. Here,
we can take advantage of the fact that Ull ′nn′ (r) are restricted
to a close vicinity of the potential singularity, where the radial
solutions change very slowly with energy [23,34], so the
number of physically relevant uln is much smaller. Moreover,
their shape is determined by the potential singularity, and it
is practically independent of the crystal potential. Thus, for
a given Sγ , the functions Ull ′nn′ (r) can be tabulated for each
element.

To demonstrate how a relevant set can be selected out of
a full set of functions Ull ′nn′ (r), let us take the MT sphere
of Cu as an example and consider the contribution of the d
orbitals to the spherical part l ′′ = 0 of Eq. (8). The 3d band
is described by the radial solution at the energy E = −3 eV
relative to the Fermi level and by its energy derivative. The
radial set is extended by a 4d and a 5d function at E = 40
and 133 eV, respectively. This gives rise to NU = 10 functions
Ullnn′ (r) with l = 2. We now diagonalize the overlap matrix
of the functions Ullnn′ (r) and retain only the eigenvectors
of eigenvalues larger than some predefined ε. The number
Nε of the retained functions is smaller for smaller gouging
radius Sγ . We then fit the NU original functions with the Nε

orthogonal functions and in Fig. 2(a) present the maximal
error ‖δ(Nε, Sγ )‖ as a function of Sγ . Figure 2(b) shows the
performance of the orthogonal set in the sphere of Cs for
four p orbitals comprising φ and φ̇ at the 5p branch and two
φ functions at the 6p and 7p branches. Thus, the accuracy
with which the radial part of the product set is represented is
flexibly adjusted by the gouging radius and by the number of
the orthogonal basis functions.
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FIG. 2. Accuracy of the representation of the radial density ma-
trix Ull ′nn′ (r) by a reduced orthogonal basis set; see last paragraph of
Sec. II B. The error ‖δ(Nε, Sγ )‖ is shown for the products of (a) the
d orbitals of Cu and (b) the p orbitals of Cs. The overlap eigenvalue
cutoff is ε = 0.0001.

The data on the accuracy of the product-set expansion
regarding the number of PWs in ψF and IOs in ψ I, Eq. (4),
as well as on the l ′′ convergence of the exp(iq·r) operator,
Eq. (8), are given in Appendix A. To verify the applicabil-
ity of Eq. (8) to larger wave vectors, which appear in the
nondiagonal elements of the microscopic DF, we show in
Fig. 8 the data for q up to 4 Å−1. For sufficiently large Sγ

the number of PWs may be chosen comparable to the number
of APWs, while a reduction of Sγ significantly accelerates the
angular-momentum convergence.

III. CALCULATION OF PLASMON ENERGY

In this work we are mainly interested in the plasmon
dispersion in Al and Na, where the plasmon energy is well
above the intense interband transitions and, at the same time,
it is well below the onset of semi-core excitations, 65 eV in Al
and 25 eV in Na. In such cases the local fields can be neglected
to a good approximation [40–42], and DF reduces to the
following expression within the random-phase approximation
(RPA) [43]:

ε(q, ω) = 1 − 8π

q2V

∑
λλ′k

|〈λ′k + q| exp (iq·r)|λk〉|2
Eλ′k+q − Eλk − h̄ω + iη

, (11)

where the summation is over occupied states |λk〉 and un-
occupied states |λ′k + q〉. The imaginary part ε2(q, ω) is
calculated in the limit η → 0 with the linear tetrahedron
interpolation in k space [44], and the real part is obtained
via the Kramers–Kronig relation. (The ε2 spectrum cutoff was
chosen so as to include the transitions from the semi-core
states.) The convergence of the plasmon energies with respect
to the k-point sampling is rather slow: For example, for Al,
ψk

λ are calculated on a 71 × 71 × 71 mesh in the reciprocal-
lattice cell, of which the irreducible k points are selected
depending on the symmetry of the vector q. For q‖ [100] this
yields 47 286 irreducible k points and 273 492 irreducible
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FIG. 3. Real ε1 and imaginary ε2 parts of the DF and loss
function L = −Im(1/ε) of Al for (a), (b) q = 0.5 Å−1, and (c),
(d) 0.75 Å−1,. Full lines are for q‖ [100] and dashed lines for
q‖ [110]. Vertical arrows marked ZB[110] indicate a zone-boundary
gap, and �[110] indicates a maximum at the high-energy slope of
the spectrum; see Sec. IV and Fig. 5.

tetrahedra. The complex DF of Al for q‖ [100] and q‖ [110]
is shown in Fig. 3 for q = 0.5 and 0.75 Å−1. The spectra
agree well with the pseudopotential calculations by Lee and
Chang [49]. Figure 3 also shows a high-energy part of the
loss function L(q, ω) = −Im[1/ε(q, ω)], whose maximum
above the intense interband transitions is referred to as the
Drude plasmon because it can be related to the jellium model
[50]. The ε2(ω) spectrum is seen to be strongly anisotropic:
a zone-boundary gap (ZB) is very pronounced for q‖ [100]
and is much weaker for q‖ [110]. For q‖ [100] this structure
gives rise to a very sharp low-energy peak in the loss function,
see Fig. 4(c). This is the well-known zone-boundary collective
state first predicted for simple metals by Foo and Hopfield
[32].

The dispersion ωp(q) of the Drude plasmon is shown in
Fig. 4(a) for q‖ [100] and q‖ [110]. Let us extrapolate the
dispersion curves to q = 0 by fitting the calculated ωp(q)
points with a Lindhard-like function ωp(q) = ωp(0) + αq2 +
βq4; see Table I. For Al we obtain ωp(0) = 15.02 eV, which is
in accord with the measured value ωp(0) = 15.01 ± 0.01 eV
[46] but strongly deviates from the value of 15.28 eV
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FIG. 4. Plasmon dispersion in Al (left column) and Na (right
column). (a), (b) Dispersion of the Drude plasmon for q‖ [110] (full
black circles) and q‖ [100] (open red circles) within the RPA and
with the XC correction [45] (large blue circles). (c), (d) Dispersion
of ZBCS for q‖ [100] for Al and for q‖ [110] for Na. (e), (f)
Anisotropy of the Drude plasmon. Crosses show the measurements
of Refs. [46]a, [47]b, and [48]c (extracted from graphical data).

calculated in Ref. [49]. The main reason for this is the neglect
of the core polarization in the pseudopotential calculation of
Ref. [49]; see Appendix B. For Na the agreement is equally
good: ωp(0) = 5.75 eV in our theory and 5.76 ± 0.02 eV in
experiment [47] (extracted from graphical data).

Apart from fundamental approximations, the theoretical
results suffer from the computational uncertainty of ε(ω).

TABLE I. Fitting the plasmon dispersion in Al with the function
ωp(q) = ωp(0) + αq2 + βq4. XC indicates that a static exchange-
correlation correction is included.

ωp(0) (eV) α (eV Å2) β (eV Å4)

This work q‖ [100] 15.02 2.81 0.38
This work q‖ [110] 15.02 2.80 0.50
This work q‖ [100] (XC) 15.02 2.12 0.50
This work q‖ [110] (XC) 15.02 2.10 0.69
Experiment [46] 15.01 2.27 0.65
Theory [49] (XC) 15.28 2.13 0.58

Indeed, the plasmon energy is determined by the condition
ε1(ωp) = 0, and for a small slope dε1(ω)/dω it becomes
very sensitive to small errors in ε1(ω). The most important
source of error is the inaccuracy of the wave functions 〈r|λk〉,
which results in an error in the numerator of Eq. (11). This is
an inevitable shortcoming of the variational wave functions,
which stems from the incompleteness of the basis set. Its
effect on the accuracy of ωp can be estimated by comparing a
numerical q → 0 limit by Eq. (11) with the calculation in the
optical limit q = 0. In the latter case the intraband part λ = λ′
acquires the Drude form ε1(ω) = 1 − ω2

0/ω
2. For a cubic

crystal, ω2
0 is the diagonal element of the plasma frequency

tensor ω0 = ωxx = ωyy = ωzz given by the integral over the
Fermi surface

ω2
μν = 1

π2

∑
λ

∫
vμ(λk)vν (λk)

|v(λk)| dSF, (12)

where μ and ν indicate Cartesian components of the group
velocity v(λk) in the state |λk〉. For λ 	= λ′ the numerator of
Eq. (11) reduces to the squared modulus of the momentum
matrix element 〈λ′k|p̂|λk〉:

lim
q→0

〈λ′k + q| exp (iq·r)|λk〉 = h̄

m

〈λ′k|q · p̂|λk〉
Eλ′k − Eλk

. (13)

In the optical limit we obtain for Al ω
opt
p = 14.92 eV and

for Na ω
opt
p = 5.72 eV, i.e., the uncertainty of ωp amounts to

0.10 eV in Al and 0.03 eV in Na. According to our analysis,
most of the error comes from the numerator of the interband
term in Eq. (11), and there are two reasons whyit is larger
in Al than in Na. First, the slope of the ε1(ω) curve at ωp is
much smaller in Al than in Na: dε1(ω)/dω = 0.13 eV−1 in Al
and 0.35 eV−1 in Na. Second, at q → 0 interband transitions
play much larger role in Al than in Na. In Al, the intrinsic
uncertainty in ε1(ωp) is 0.013, which is ∼4% of the interband
contribution. The error stems from the inaccuracy of the ψk

λ

themselves, and it far exceeds the error due to the approximate
treatment of the products ψk∗

λ′ ψ
k−q
λ with a computationally

reasonable product basis set, as we show in Appendix A.

IV. ANISOTROPY OF PLASMON DISPERSION

The basic aspects of the DF of nearly free-electron metals
can be understood from the Lindhard formula for jellium [50],
but the band-structure effects have long been realized to be
important [51]. In particular, zone-boundary collective states
were identified in Al [52] and in Li and Na [53]. The relation
between the underlying band structure and the energy-loss
function was analyzed for Al [49,54,55] and for alkali metals
[40,41,56–59], also under pressure [60–66]. In cesium, the
interband transitions were found to cause a negative plasmon
dispersion [40,41]. Many works addressed the role of the
crystal local field and exchange and correlation (XC) in the
dielectric response: the effect of the many-body interactions
on the plasmon dispersion was studied for Al and for alkalis
in Refs. [40–42,57–59,61,65,67–69]. It was concluded that the
local field effects are almost negligible unless the semi-core
states are involved [40–42].

Obviously, the anisotropic band structure should lead
to the anisotropy of the loss function. The directional
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FIG. 5. Energy-momentum map of the anisotropy of ε2: left
graph shows ωε

[100]
2 − ωε

[110]
2 for Al and right graph shows ωε

[110]
2 −

ωε
[100]
2 for Na. White circles show the location of the Drude plasmon.

dependence of the plasmon dispersion was studied experimen-
tally in Al [46,70,71], Na [47], and Li [72] and theoretically
analyzed by using model approaches [51,53,73] and from
first principles [49,57,58,67,69]. In Al and Na the anisotropy
of the Drude plasmon is rather subtle: experimentally, the
difference �ωp = ω[110]

p − ω[100]
p reaches ≈0.05 eV around

1 Å−1 [46,47]; see Figs. 4(e) and 4(f). The theoretical esti-
mates based on a local pseudopotential model of Bross [51]
and on the ab initio pseudopotential study by Lee and Chang
[49] gave �ωp = 0.2 and 0.25–0.30 eV, respectively. On the
contrary, in the ab initio pseudopotential calculation by Quong
and Eguiluz [57] no anisotropy was resolved.

It is tempting to relate the anisotropy of ωp(q) to the most
conspicuous anisotropic feature of the ε2(q, ω) spectrum, the
zone-boundary gap; see Fig. 3. However, obviously, this fea-
ture cannot explain the observation. First, both experimentally
and theoretically, Al and Na behave oppositely with respect to
the ZBCS: in Al, ZBCS occurs for q‖ [100] and in Na for
q‖ [110], whereas both in Al and in Na it is ω[110]

p > ω[100]
p .

Second, �ωp grows with increasing q, whereas the influence
of the ZB gap decreases, as illustrated by the difference
ε

[100]
2 − ε

[110]
2 for Al (and opposite function for Na) shown in

Fig. 5. The energy-momentum distributions of the anisotropy
are seen to be very similar in Al and Na, with Na[110]
playing the role of Al[100] and Na[100] the role of Al[110].
In Al, the ε2 spectrum for q‖ [110] has a more complicated
structure than for q‖ [100]: apart from the low-energy gap
(denoted ZB[110] in Figs. 3 and 5), at larger q there emerges
a maximum (denoted �[110]) at the high-energy slope of the
spectrum. Its contribution to ε1(ωp) grows with q, and because
it appears below ω[110]

p it shifts ω[110]
p to higher energies. A

similar picture takes place for Na, only there is an additional
dip-peak structure between ZB[100] and �[100], see Fig. 5.
However, the effect is the opposite: in Na the �[100] peak
occurs above the plasmon energy, so that it shifts ω[100]

p to
lower energies.

Thus, the opposite behavior of the anisotropy of the Drude
plasmon relative to ZBCS in Al and Na is explained by the
different location of the uppermost structure � relative to ωp.
Furthermore, Fig. 5 explains why both in Al and in Na the
anisotropy is negligible below and rapidly grows above q =
0.5 Å−1; see Figs. 4(e) and 4(f). It is at this wave vector that

FIG. 6. Calculated energy-loss spectra of Li, Na, K, Rb, and Cs
for q‖ [100], q‖ [110], and q‖ [111]. White squares are experimental
data of Refs. [72,74] for Li and of Ref. [47] for Na, K, Rb, and
Cs. Black circles show the plasmon location, i.e., ε1(q, ω) = 0. The
vertical arrows indicate the critical q values of the Lindhard model.
Note the scale change indicated by the horizontal white line.

the � structure appears in the spectrum. Within the RPA, the
difference between the measured and the calculated energies
of the Drude plasmon is of the same order of magnitude in
Al and Na. The discrepancy is largely due to the neglect of
exchange and correlation. These effects can be approximately
included by a static local field correction function G(q) using
the parametrization of Utsumi and Ichimaru [45]:

ε(q, ω) → 1 + ε(q, ω) − 1

1 − G(q)[ε(q, ω) − 1]
. (14)
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FIG. 7. (a)–(d) Convergence of MME with the angular-momentum cutoff lmax. (e), (f) Convergence of MME with the number of plane
waves. (a), (b) For Cs, k-averaged MME R(ω) are shown in logarithmic scale for (a) Sγ = 3 a.u. and (b) Sγ = 5 a.u. The Fourier part
comprises 229 PWs. Vertical arrows in the upper ω axes mark the onset of the semi-core transitions. For Cu, Sγ = 1.2 a.u. in panels (c) and (e)
and Sγ = 2.4 a.u. in panels (d) and (f). In panels (c) and (d), the Fourier part comprises 459 PWs. In panels (e) and (f), the convergence with
the number of PWs is for lmax = 4. The cutoff energy |G|2 is given in parentheses.

The XC correction brings the plasmon dispersion in Na into
excellent agreement with the experiment over the interval up
to q = 0.75 Å−1; see Fig. 4(b). For Al, the XC correction
transforms the ωp(q) curve in a similar way, see Fig. 4(a), but
the parameter α is strongly underestimated, see Table I.

In contrast to Al and Na, in alkali metals Li, K, Rb, and
Cs the interband transitions around the plasmon energy are
rather intense; see Fig. 6. Their strong energy dependence
causes more-or-less pronounced irregularities in the plasmon
dispersion accompanied by a strong damping (large spectral
width) of the plasmon. Also the anisotropy of ε2(ω) is very
strong, which leads to a rather different shape of the plasmon
dispersion curve for different directions of q; see Fig. 6.

Figure 6 show the loss function of alkali metals for
q‖ [100], q‖ [110], and q‖ [111] in comparison with the ex-
periment. In Li, we again observe both the Drude plasmon at

ωp(0) = 6.72 eV and the ZBCS. For q‖ [110], in our calcula-
tion two ZBCS branches are resolved. In K, the plasmon peaks
are much sharper than in Li, but the band-structure effects
are, evidently, very strong: the plasmon dispersion is far from
parabolic, and its shape is considerably different for different
directions. For q‖ [110], the agreement with the experiment
[47] is rather good. (In contrast with Al and Na, in K the
experimental curve lies slightly above the theoretical one.)
In Rb and Cs, the unoccupied 3d states come closer to the
Fermi level, and the strong dipole transitions to these states are
responsible for the pronouncedly non-free-electron behavior
of the DF [40]: in Rb the plasmon disperses only weakly, and
in Cs the function ωp(q) is nonmonotonic, with a minimum at
∼0.5 Å−1 in agreement with the experiment [47]. Our result
is in good agreement with the pseudopotential calculation of
Ref. [41].

FIG. 8. Convergence of the Rayleigh expansion of exp(iq·r) for Cs for q‖ [100] for q = 0.5, 1.0, 2.0, and 4.0 Å−1 for (a)–(d) Sγ = 3 a.u.
and (e)–(h) Sγ = 5 a.u. The lowest row shows the reference spectrum R̄(q, ω) calculated with l ′′

max = 4; see Eq. (8). The upper rows show
k-averaged values of the error �R(l ′′

max) = |R(l ′′
max) − R̄| with lmax = 0 to 3 [in percent relative to the average value of R̄(q, ω) over the

spectrum; note the logarithmic scale]. The Fourier part comprises 959 PWs.
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V. SUMMARY

We have developed a product basis set to represent re-
sponse functions within an all-electron framework. The pro-
posed basis set consists of plane waves defined over the whole
space and spatially restricted orbitals, with the spatial depen-
dence of the response function being smoothly continuous
by construction. It has a number of physically appealing and
computationally convenient properties. In particular, it can
be defined universally, without regard to the computational
parameters of the band-structure method (such as muffin-tin
radii, energy parameters, and number of APWs in LAPW).
Consequently, the accuracy with which the physically relevant
response is represented can be set a priori and balanced
with the intrinsic accuracy of the underlying band-structure
calculation. Depending on the specific application, the basis
set can be optimized by tuning the relative weight carried by
PWs and IOs.

We have implemented the scheme into the extended LAPW
method and studied both the accuracy of the representation
of the dielectric function and the intrinsic accuracy of the
underlying wave functions.

We have applied the new method to the dielectric function
of cubic sp metals Al, Li, Na, K, Rb, and Cs with the aim
to understand what can be learned from the anisotropy of
their bulk loss function. In the non-free-electron-like metals
Li, K, Rb, and Cs the anisotropy of the plasmon dispersion is
rather irregular due to the vicinity of the intra- and interband
transitions to the plasmon. In contrast, in Al and Na, the
plasmon occurs well above the intense interband transitions,
and their effect is much tinier. We have reproduced the sign
and the qualitative trend of the q dependence of the anisotropy
in both metals, although the absolute values are substantially
overestimated in the calculation. We revealed a strong similar-
ity of the structure of the particle-hole transitions in Al and Na
and traced the plasmon anisotropy to the energy location of the
plasmon relative to very subtle features of the imaginary DF,
which are barely visible in the ε2(ω) spectrum. Our analysis
demonstrates that the electron energy loss spectroscopy ex-
periment is sensitive to subtle details of the unoccupied bulk
band structure and may give access to features not reachable
with angle-integrated (optics) or surface-sensitive electron
spectroscopies.
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APPENDIX A: ACCURACY AND CONVERGENCE

Let us study the properties of the product basis set regard-
ing the plane-wave cutoff of ψF and the angular-momentum
cutoff of ψ I, see Eq. (4). We first consider the momentum
operator p̂ = −ih̄∇, which is related to the q → 0 limit of
the operator exp(iq · r)/q; see Eq. (13). This will give the
idea of the accuracy of the filtered wave functions because
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FIG. 9. Effect of the semi-core excitations on the plasmon en-
ergy for Al, Li, Na, K, Rb, and Cs for q = 0. (a) Dependence
of the plasmon energy shift due to the semi-core excitations on
the binding energy of the semi-core band. (b) Plasmon sensitivity
[dε1(ω)/dω]−1. (c) Semi-core contribution to ε1(ωp).

the operator p̂ itself is treated exactly, and the result can be
compared with the exact value calculated from the complete
APW representation of the wave function. To have an idea of
the accuracy of the momentum matrix elements (MMEs), let
us consider its k-averaged value, which we define as the ratio
of the absorption probability

W (ω) =
∑
mn

∫
BZ

dkPk
mnδ

(
Ek

n − Ek
m − h̄ω

)
(A1)

to the joint density of states J (ω), which is obtained by setting
the transition probability Pk

mn in Eq. (A1) to unity,

R(ω) = W (ω)/J (ω). (A2)

The sum in Eq. (A1) runs over all occupied states |nk〉
and unoccupied states |mk〉. For a cubic crystal the dipole
transition probability is Pk

mn = 1
3 |〈mk|p̂|nk〉|2.

It follows from the dipole selection rules that, for reason-
ably small values of Sγ , the lmax cutoff in Eq. (8) does not
need to exceed the highest angular momentum of the atomic
valence shell plus one. This is illustrated for Cs in Figs. 7(a)
and 7(b) and for Cu in Figs. 7(c) and 7(d). Surprisingly, for Cs,
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not only for a moderate Sγ = 3 a.u. but also for a very large
Sγ = 5 a.u. at lmax = 2 the error is negligible. Note that the
results with the smaller Sγ are slightly more accurate although
a larger part of the wave function is described by plane
waves. While for Cs the challenging aspect is the angular-
momentum expansion of ψ I in a large sphere, for Cu it is the
plane-wave expansion of ψF. Figures 7(e) and 7(f) show the
PW-convergence of the momentum matrix elements (MMEs)
for Sγ = 1.2 and 2.4 a.u., respectively. Note that, for Sγ =
2.4 a.u., which is close to the MT radius, R(ω) converges
already at 89 PWs, which equals the number of APWs needed
to obtain the band structure. The obvious advantage of the new
basis is that PWs are orthogonal and the momentum operator
is diagonal.

For the operator exp(iq·r) there arises the question of the
convergence of its Rayleigh expansion, i.e., of the sum over l ′′
in Eq. (8). The convergence of the k-averaged matrix element
|〈mk + q| exp(iq·r)|nk〉|2 is illustrated in Fig. 8 for Cs for
Sγ = 3 and 5 a.u. The role of quadrupole transitions is seen to
increase with q, especially for the larger Sγ . Interestingly, the

quadrupole transitions from the semi-core 5p states are more
intense than from the valence band. Figure 8 demonstrates that
the l ′′ convergence can be accelerated by diminishing the γ

sphere.

APPENDIX B: EFFECT OF SEMI-CORE STATES

The effect of the polarization of localized atomic-like states
on the plasmon energy was considered by Lee and Chang [49]
for Al and by Fleszar, Stumpf, and Eguiluz [41] for Cs. The
results of the present work are shown in Fig. 9. The effect is
seen to diminish monotonically over the series from Cs to Li
as a function of the binding energy, but it grows again for Al;
see Fig. 9(a). The reason for this is the higher sensitivity of
the plasmon energy in Al; see Fig. 9(b) and a higher (relative
to Li and Na) intensity of the semi-core transitions due to
the stronger atomic potential; Fig. 9(c). Our data qualitatively
agree with the estimate of Ref. [49] for Al, �ωp = 0.35 eV,
and of Ref. [41] for Cs, �ωp = 0.5 eV (both estimated from
experimental data).

[1] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid, Masters Series in Physics and Astronomy (Cambridge
University Press, Cambridge, 2005).

[2] L. Hedin, New method for calculating the one-particle Green’s
function with application to the electron-gas problem, Phys.
Rev. 139, A796 (1965).

[3] F. Aryasetiawan and O. Gunnarsson, The GW method, Rep.
Prog. Phys. 61, 237 (1998).

[4] H. Haug and S. Koch, Quantum Theory of the Optical and
Electronic Properties of Semiconductors (World Scientific, Sin-
gapore, 2004).

[5] D. Pines, Elementary Excitations in Solids, Lecture Notes and
Supplements in Physics (Benjamin, New York, 1963).

[6] P. J. Feibelman, Surface electromagnetic fields, Prog. Surf. Sci.
12, 287 (1982).

[7] A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum,
New York, 1997).

[8] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique,
Theory of surface plasmons and surface-plasmon polaritons,
Rep. Prog. Phys. 70, 1 (2007).

[9] E. E. Krasovskii, V. M. Silkin, V. U. Nazarov, P. M. Echenique,
and E. V. Chulkov, Dielectric screening and band-structure
effects in low-energy photoemission, Phys. Rev. B 82, 125102
(2010).

[10] F. Siek, S. Neb, P. Bartz, M. Hensen, C. Strüber, S. Fiechter,
M. Torrent-Sucarrat, V. Silkin, E. Krasovskii, N. Kabachnik,
S. Fritzsche, R. Muiño, P. Echenique, A. Kazansky, N. Müller,
W. Pfeiffer, and U. Heinzmann, Angular momentum-induced
delays in solid-state photoemission enhanced by intra-atomic
interactions, Science 357, 1274 (2017).

[11] V. U. Nazarov, V. M. Silkin, and E. E. Krasovskii, Probing
mesoscopic crystals with electrons: One-step simultaneous in-
elastic and elastic scattering theory, Phys. Rev. B 96, 235414
(2017).

[12] J. E. Harriman, Densities, operators, and basis sets, Phys. Rev.
A 34, 29 (1986).

[13] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.
Joannopoulos, Iterative minimization techniques for ab initio
total-energy calculations: Molecular dynamics and conjugate
gradients, Rev. Mod. Phys. 64, 1045 (1992).

[14] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[15] S. Brodersen, D. Lukas, and W. Schattke, Calculation of the
dielectric function in a local representation, Phys. Rev. B 66,
085111 (2002).

[16] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space
grid implementation of the projector augmented wave method,
Phys. Rev. B 71, 035109 (2005).

[17] J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen,
Linear density response function in the projector augmented
wave method: Applications to solids, surfaces, and interfaces,
Phys. Rev. B 83, 245122 (2011).

[18] X. Blase and P. Ordejón, Dynamical screening and absorp-
tion within a strictly localized basis implementation of time-
dependent LDA: From small clusters and molecules to aza-
fullerenes, Phys. Rev. B 69, 085111 (2004).

[19] P. Umari, G. Stenuit, and S. Baroni, Optimal representation
of the polarization propagator for large-scale GW calculations,
Phys. Rev. B 79, 201104(R) (2009).

[20] F. Aryasetiawan and O. Gunnarsson, Product-basis method
for calculating dielectric matrices, Phys. Rev. B 49, 16214
(1994).

[21] D. Foerster, Elimination, in electronic structure calculations,
of redundant orbital products, J. Chem. Phys. 128, 034108
(2008).

[22] J. C. Slater, Wave functions in a periodic potential, Phys. Rev.
51, 846 (1937).

[23] O. K. Andersen, Linear methods in band theory, Phys. Rev. B
12, 3060 (1975).

[24] D. D. Koelling and G. O. Arbman, Use of energy derivative
of the radial solution in an augmented plane wave method:
Application to copper, J. Phys. F: Met. Phys. 5, 2041 (1975).

245149-9

https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1016/0079-6816(82)90001-6
https://doi.org/10.1016/0079-6816(82)90001-6
https://doi.org/10.1016/0079-6816(82)90001-6
https://doi.org/10.1016/0079-6816(82)90001-6
https://doi.org/10.1088/0034-4885/70/1/R01
https://doi.org/10.1088/0034-4885/70/1/R01
https://doi.org/10.1088/0034-4885/70/1/R01
https://doi.org/10.1088/0034-4885/70/1/R01
https://doi.org/10.1103/PhysRevB.82.125102
https://doi.org/10.1103/PhysRevB.82.125102
https://doi.org/10.1103/PhysRevB.82.125102
https://doi.org/10.1103/PhysRevB.82.125102
https://doi.org/10.1126/science.aam9598
https://doi.org/10.1126/science.aam9598
https://doi.org/10.1126/science.aam9598
https://doi.org/10.1126/science.aam9598
https://doi.org/10.1103/PhysRevB.96.235414
https://doi.org/10.1103/PhysRevB.96.235414
https://doi.org/10.1103/PhysRevB.96.235414
https://doi.org/10.1103/PhysRevB.96.235414
https://doi.org/10.1103/PhysRevA.34.29
https://doi.org/10.1103/PhysRevA.34.29
https://doi.org/10.1103/PhysRevA.34.29
https://doi.org/10.1103/PhysRevA.34.29
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.66.085111
https://doi.org/10.1103/PhysRevB.66.085111
https://doi.org/10.1103/PhysRevB.66.085111
https://doi.org/10.1103/PhysRevB.66.085111
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1103/PhysRevB.83.245122
https://doi.org/10.1103/PhysRevB.83.245122
https://doi.org/10.1103/PhysRevB.83.245122
https://doi.org/10.1103/PhysRevB.83.245122
https://doi.org/10.1103/PhysRevB.69.085111
https://doi.org/10.1103/PhysRevB.69.085111
https://doi.org/10.1103/PhysRevB.69.085111
https://doi.org/10.1103/PhysRevB.69.085111
https://doi.org/10.1103/PhysRevB.79.201104
https://doi.org/10.1103/PhysRevB.79.201104
https://doi.org/10.1103/PhysRevB.79.201104
https://doi.org/10.1103/PhysRevB.79.201104
https://doi.org/10.1103/PhysRevB.49.16214
https://doi.org/10.1103/PhysRevB.49.16214
https://doi.org/10.1103/PhysRevB.49.16214
https://doi.org/10.1103/PhysRevB.49.16214
https://doi.org/10.1063/1.2821021
https://doi.org/10.1063/1.2821021
https://doi.org/10.1063/1.2821021
https://doi.org/10.1063/1.2821021
https://doi.org/10.1103/PhysRev.51.846
https://doi.org/10.1103/PhysRev.51.846
https://doi.org/10.1103/PhysRev.51.846
https://doi.org/10.1103/PhysRev.51.846
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1088/0305-4608/5/11/016
https://doi.org/10.1088/0305-4608/5/11/016
https://doi.org/10.1088/0305-4608/5/11/016
https://doi.org/10.1088/0305-4608/5/11/016


J. A. BUDAGOSKY AND E. E. KRASOVSKII PHYSICAL REVIEW B 99, 245149 (2019)

[25] D. Singh, Ground-state properties of lanthanum: Treatment of
extended-core states, Phys. Rev. B 43, 6388 (1991).

[26] E. E. Krasovskii, Accuracy and convergence properties of the
extended linear augmented-plane-wave method, Phys. Rev. B
56, 12866 (1997).

[27] H. Jiang, R. I. Gómez-Abal, X.-Z. Li, C. Meisenbichler, C.
Ambrosch-Draxl, and M. Scheffler, FHI-gap: A GW code based
on the all-electron augmented plane wave method, Comput.
Phys. Commun. 184, 348 (2013).

[28] C. Friedrich, S. Blügel, and A. Schindlmayr, Efficient imple-
mentation of the GW approximation within the all-electron
FLAPW method, Phys. Rev. B 81, 125102 (2010).

[29] D. Nabok, A. Gulans, and C. Draxl, Accurate all-electron G0W0

quasiparticle energies employing the full-potential augmented
plane-wave method, Phys. Rev. B 94, 035118 (2016).

[30] T. Kotani and M. van Schilfgaarde, All-electron GW ap-
proximation with the mixed basis expansion based on the
full-potential LMTO method, Solid State Commun. 121, 461
(2002).

[31] C. Friedrich, M. C. Müller, and S. Blügel, Band convergence
and linearization error correction of all-electron GW calcu-
lations: The extreme case of zinc oxide, Phys. Rev. B 83,
081101(R) (2011).

[32] E.-N. Foo and J. J. Hopfield, Optical absorption and energy loss
in sodium in the Hartree approximation, Phys. Rev. 173, 635
(1968).

[33] E. E. Krasovskii and W. Schattke, Semirelativistic technique for
k · p calculations: Optical properties of Pd and Pt, Phys. Rev. B
63, 235112 (2001).

[34] G. Michalicek, M. Betzinger, C. Friedrich, and S. Blügel, Elim-
ination of the linearization error and improved basis-set con-
vergence within the FLAPW method, Comput. Phys. Commun.
184, 2670 (2013).

[35] E. E. Krasovskii, F. Starrost, and W. Schattke, Augmented
fourier components method for constructing the crystal poten-
tial in self-consistent band-structure calculations, Phys. Rev. B
59, 10504 (1999).

[36] E. E. Krasovskii and W. Schattke, Local field effects in optical
excitations of semicore electrons, Phys. Rev. B 60, R16251
(1999).

[37] M. Betzinger, C. Friedrich, S. Blügel, and A. Görling, Local ex-
act exchange potentials within the all-electron FLAPW method
and a comparison with pseudopotential results, Phys. Rev. B 83,
045105 (2011).

[38] P. Koval, D. Foerster, and D. Sánchez-Portal, Fully self-
consistent GW and quasiparticle self-consistent GW for
molecules, Phys. Rev. B 89, 155417 (2014).

[39] H. Jiang, Revisiting the GW approach to d- and f -electron
oxides, Phys. Rev. B 97, 245132 (2018).

[40] F. Aryasetiawan and K. Karlsson, Energy Loss Spectra and
Plasmon Dispersions in Alkali Metals: Negative Plasmon Dis-
persion in Cs, Phys. Rev. Lett. 73, 1679 (1994).

[41] A. Fleszar, R. Stumpf, and A. G. Eguiluz, One-electron exci-
tations, correlation effects, and the plasmon in cesium metal,
Phys. Rev. B 55, 2068 (1997).

[42] M. Cazzaniga, H.-C. Weissker, S. Huotari, T. Pylkkänen, P.
Salvestrini, G. Monaco, G. Onida, and L. Reining, Dynam-
ical response function in sodium and aluminum from time-
dependent density-functional theory, Phys. Rev. B 84, 075109
(2011).

[43] H. Ehrenreich and M. H. Cohen, Self-consistent field approach
to the many-electron problem, Phys. Rev. 115, 786 (1959).

[44] G. Lehmann and M. Taut, On the numerical calculation of the
density of states and related properties, Phys. Status Solidi B
54, 469 (1972).

[45] K. Utsumi and S. Ichimaru, Dielectric formulation of strongly
coupled electron liquids at metallic densities. VI. Analytic
expression for the local-field correction, Phys. Rev. A 26, 603
(1982).

[46] J. Sprösser-Prou, A. vom Felde, and J. Fink, Aluminum bulk-
plasmon dispersion and its anisotropy, Phys. Rev. B 40, 5799
(1989).

[47] A. vom Felde, J. Sprösser-Prou, and J. Fink, Valence-electron
excitations in the alkali metals, Phys. Rev. B 40, 10181 (1989).

[48] C. H. Chen and J. Silcox, Direct nonvertical interband transi-
tions at large wave vectors in aluminum, Phys. Rev. B 16, 4246
(1977).

[49] K.-H. Lee and K. J. Chang, First-principles study of the optical
properties and the dielectric response of Al, Phys. Rev. B 49,
2362 (1994).

[50] J. Lindhard, On the properties of a gas of charged particles, K.
Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 1 (1954).

[51] H. Bross, Pseudopotential theory of the dielectric function of
Al-the volume plasmon dispersion, J. Phys. F: Met. Phys. 8,
2631 (1978).

[52] K. Sturm and L. E. Oliveira, Theory of a zone-boundary col-
lective state in Al: A model calculation, Phys. Rev. B 30, 4351
(1984).

[53] K. Sturm and L. E. Oliveira, Zone boundary collective states in
lithium and sodium, Europhys. Lett. 9, 257 (1989).

[54] N. E. Maddocks, R. W. Godby, and R. J. Needs, Bandstructure
effects in the dynamic response of aluminium, Europhys. Lett.
27, 681 (1994).

[55] S. Kaltenborn and H. C. Schneider, Plasmon dispersions in sim-
ple metals and Heusler compounds, Phys. Rev. B 88, 045124
(2013).

[56] M. Taut and K. Sturm, Plasmon dispersion constant of the alkali
metals, Solid State Commun. 82, 295 (1992).

[57] A. A. Quong and A. G. Eguiluz, First-Principles Evaluation of
Dynamical Response and Plasmon Dispersion in Metals, Phys.
Rev. Lett. 70, 3955 (1993).

[58] W. Ku and A. G. Eguiluz, Plasmon Lifetime in K: A Case Study
of Correlated Electrons in Solids Amenable to Ab Initio Theory,
Phys. Rev. Lett. 82, 2350 (1999).

[59] S. Huotari, C. Sternemann, M. C. Troparevsky, A. G. Eguiluz,
M. Volmer, H. Sternemann, H. Müller, G. Monaco, and W.
Schülke, Strong deviations from jellium behavior in the valence
electron dynamics of potassium, Phys. Rev. B 80, 155107
(2009).

[60] V. M. Silkin, A. Rodriguez-Prieto, A. Bergara, E. V. Chulkov,
and P. M. Echenique, Strong variation of dielectric response and
optical properties of lithium under pressure, Phys. Rev. B 75,
172102 (2007).

[61] A. Rodriguez-Prieto, V. M. Silkin, A. Bergara, and P. M.
Echenique, Energy loss spectra of lithium under pressure, New
J. Phys. 10, 053035 (2008).

[62] I. Errea, A. Rodriguez-Prieto, B. Rousseau, V. M. Silkin, and A.
Bergara, Electronic collective excitations in compressed lithium
from ab initio calculations: Importance and anisotropy of local-
field effects at large momenta, Phys. Rev. B 81, 205105 (2010).

245149-10

https://doi.org/10.1103/PhysRevB.43.6388
https://doi.org/10.1103/PhysRevB.43.6388
https://doi.org/10.1103/PhysRevB.43.6388
https://doi.org/10.1103/PhysRevB.43.6388
https://doi.org/10.1103/PhysRevB.56.12866
https://doi.org/10.1103/PhysRevB.56.12866
https://doi.org/10.1103/PhysRevB.56.12866
https://doi.org/10.1103/PhysRevB.56.12866
https://doi.org/10.1016/j.cpc.2012.09.018
https://doi.org/10.1016/j.cpc.2012.09.018
https://doi.org/10.1016/j.cpc.2012.09.018
https://doi.org/10.1016/j.cpc.2012.09.018
https://doi.org/10.1103/PhysRevB.81.125102
https://doi.org/10.1103/PhysRevB.81.125102
https://doi.org/10.1103/PhysRevB.81.125102
https://doi.org/10.1103/PhysRevB.81.125102
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1016/S0038-1098(02)00028-5
https://doi.org/10.1016/S0038-1098(02)00028-5
https://doi.org/10.1016/S0038-1098(02)00028-5
https://doi.org/10.1016/S0038-1098(02)00028-5
https://doi.org/10.1103/PhysRevB.83.081101
https://doi.org/10.1103/PhysRevB.83.081101
https://doi.org/10.1103/PhysRevB.83.081101
https://doi.org/10.1103/PhysRevB.83.081101
https://doi.org/10.1103/PhysRev.173.635
https://doi.org/10.1103/PhysRev.173.635
https://doi.org/10.1103/PhysRev.173.635
https://doi.org/10.1103/PhysRev.173.635
https://doi.org/10.1103/PhysRevB.63.235112
https://doi.org/10.1103/PhysRevB.63.235112
https://doi.org/10.1103/PhysRevB.63.235112
https://doi.org/10.1103/PhysRevB.63.235112
https://doi.org/10.1016/j.cpc.2013.07.002
https://doi.org/10.1016/j.cpc.2013.07.002
https://doi.org/10.1016/j.cpc.2013.07.002
https://doi.org/10.1016/j.cpc.2013.07.002
https://doi.org/10.1103/PhysRevB.59.10504
https://doi.org/10.1103/PhysRevB.59.10504
https://doi.org/10.1103/PhysRevB.59.10504
https://doi.org/10.1103/PhysRevB.59.10504
https://doi.org/10.1103/PhysRevB.60.R16251
https://doi.org/10.1103/PhysRevB.60.R16251
https://doi.org/10.1103/PhysRevB.60.R16251
https://doi.org/10.1103/PhysRevB.60.R16251
https://doi.org/10.1103/PhysRevB.83.045105
https://doi.org/10.1103/PhysRevB.83.045105
https://doi.org/10.1103/PhysRevB.83.045105
https://doi.org/10.1103/PhysRevB.83.045105
https://doi.org/10.1103/PhysRevB.89.155417
https://doi.org/10.1103/PhysRevB.89.155417
https://doi.org/10.1103/PhysRevB.89.155417
https://doi.org/10.1103/PhysRevB.89.155417
https://doi.org/10.1103/PhysRevB.97.245132
https://doi.org/10.1103/PhysRevB.97.245132
https://doi.org/10.1103/PhysRevB.97.245132
https://doi.org/10.1103/PhysRevB.97.245132
https://doi.org/10.1103/PhysRevLett.73.1679
https://doi.org/10.1103/PhysRevLett.73.1679
https://doi.org/10.1103/PhysRevLett.73.1679
https://doi.org/10.1103/PhysRevLett.73.1679
https://doi.org/10.1103/PhysRevB.55.2068
https://doi.org/10.1103/PhysRevB.55.2068
https://doi.org/10.1103/PhysRevB.55.2068
https://doi.org/10.1103/PhysRevB.55.2068
https://doi.org/10.1103/PhysRevB.84.075109
https://doi.org/10.1103/PhysRevB.84.075109
https://doi.org/10.1103/PhysRevB.84.075109
https://doi.org/10.1103/PhysRevB.84.075109
https://doi.org/10.1103/PhysRev.115.786
https://doi.org/10.1103/PhysRev.115.786
https://doi.org/10.1103/PhysRev.115.786
https://doi.org/10.1103/PhysRev.115.786
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1103/PhysRevA.26.603
https://doi.org/10.1103/PhysRevA.26.603
https://doi.org/10.1103/PhysRevA.26.603
https://doi.org/10.1103/PhysRevA.26.603
https://doi.org/10.1103/PhysRevB.40.5799
https://doi.org/10.1103/PhysRevB.40.5799
https://doi.org/10.1103/PhysRevB.40.5799
https://doi.org/10.1103/PhysRevB.40.5799
https://doi.org/10.1103/PhysRevB.40.10181
https://doi.org/10.1103/PhysRevB.40.10181
https://doi.org/10.1103/PhysRevB.40.10181
https://doi.org/10.1103/PhysRevB.40.10181
https://doi.org/10.1103/PhysRevB.16.4246
https://doi.org/10.1103/PhysRevB.16.4246
https://doi.org/10.1103/PhysRevB.16.4246
https://doi.org/10.1103/PhysRevB.16.4246
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1088/0305-4608/8/12/022
https://doi.org/10.1088/0305-4608/8/12/022
https://doi.org/10.1088/0305-4608/8/12/022
https://doi.org/10.1088/0305-4608/8/12/022
https://doi.org/10.1103/PhysRevB.30.4351
https://doi.org/10.1103/PhysRevB.30.4351
https://doi.org/10.1103/PhysRevB.30.4351
https://doi.org/10.1103/PhysRevB.30.4351
https://doi.org/10.1209/0295-5075/9/3/012
https://doi.org/10.1209/0295-5075/9/3/012
https://doi.org/10.1209/0295-5075/9/3/012
https://doi.org/10.1209/0295-5075/9/3/012
https://doi.org/10.1209/0295-5075/27/9/008
https://doi.org/10.1209/0295-5075/27/9/008
https://doi.org/10.1209/0295-5075/27/9/008
https://doi.org/10.1209/0295-5075/27/9/008
https://doi.org/10.1103/PhysRevB.88.045124
https://doi.org/10.1103/PhysRevB.88.045124
https://doi.org/10.1103/PhysRevB.88.045124
https://doi.org/10.1103/PhysRevB.88.045124
https://doi.org/10.1016/0038-1098(92)90644-O
https://doi.org/10.1016/0038-1098(92)90644-O
https://doi.org/10.1016/0038-1098(92)90644-O
https://doi.org/10.1016/0038-1098(92)90644-O
https://doi.org/10.1103/PhysRevLett.70.3955
https://doi.org/10.1103/PhysRevLett.70.3955
https://doi.org/10.1103/PhysRevLett.70.3955
https://doi.org/10.1103/PhysRevLett.70.3955
https://doi.org/10.1103/PhysRevLett.82.2350
https://doi.org/10.1103/PhysRevLett.82.2350
https://doi.org/10.1103/PhysRevLett.82.2350
https://doi.org/10.1103/PhysRevLett.82.2350
https://doi.org/10.1103/PhysRevB.80.155107
https://doi.org/10.1103/PhysRevB.80.155107
https://doi.org/10.1103/PhysRevB.80.155107
https://doi.org/10.1103/PhysRevB.80.155107
https://doi.org/10.1103/PhysRevB.75.172102
https://doi.org/10.1103/PhysRevB.75.172102
https://doi.org/10.1103/PhysRevB.75.172102
https://doi.org/10.1103/PhysRevB.75.172102
https://doi.org/10.1088/1367-2630/10/5/053035
https://doi.org/10.1088/1367-2630/10/5/053035
https://doi.org/10.1088/1367-2630/10/5/053035
https://doi.org/10.1088/1367-2630/10/5/053035
https://doi.org/10.1103/PhysRevB.81.205105
https://doi.org/10.1103/PhysRevB.81.205105
https://doi.org/10.1103/PhysRevB.81.205105
https://doi.org/10.1103/PhysRevB.81.205105


ALL-ELECTRON PRODUCT BASIS SET: APPLICATION … PHYSICAL REVIEW B 99, 245149 (2019)

[63] I. Loa, K. Syassen, G. Monaco, G. Vankó, M. Krisch, and
M. Hanfland, Plasmons in Sodium Under Pressure: Increasing
Departure from Nearly Free-Electron Behavior, Phys. Rev. Lett.
107, 086402 (2011).

[64] M. Attarian Shandiz and R. Gauvin, Density functional and
theoretical study of the temperature and pressure dependency
of the plasmon energy of solids, J. Appl. Phys. 116, 163501
(2014).

[65] J. Ibañez-Azpiroz, B. Rousseau, A. Eiguren, and A. Bergara,
Ab initio analysis of plasmon dispersion in sodium under pres-
sure, Phys. Rev. B 89, 085102 (2014).

[66] Z. Yu, H. Y. Geng, Y. Sun, and Y. Chen, Optical properties of
dense lithium in electride phases by first-principles calculations,
Sci. Rep. 8, 3868 (2018).

[67] M. Taut, Exchange-correlation correction to the dielectric func-
tion of the inhomogeneous electron gas, J. Phys.: Condens.
Matter 4, 9595 (1992).

[68] K. Karlsson and F. Aryasetiawan, Plasmon lifetime, zone-
boundary collective states, and energy-loss spectra of lithium,
Phys. Rev. B 52, 4823 (1995).

[69] I. A. Nechaev, V. M. Silkin, and E. V. Chulkov, Inclusion of the
exchange-correlation effects in ab initio methods for calculating
the plasmon dispersion and line width in metals, Phys. Solid
State 49, 1820 (2007).

[70] M. Urner-Wille and H. Raether, Anisotropy of the 15 eV
volume plasmon dispersion in A1, Phys. Lett. A 58, 265
(1976).

[71] E. Petri, A. Otto, and W. Hanke, Anisotropy of plasmon disper-
sion in Al: An electron correlation effect, Solid State Commun.
19, 711 (1976).

[72] W. Schülke, H. Nagasawa, S. Mourikis, and P. Lanzki, Dynamic
structure of electrons in Li metal: Inelastic synchrotron x-ray
scattering results and interpretation beyond the random-phase
approximation, Phys. Rev. B 33, 6744 (1986).

[73] K. Sturm, Band structure effects on the plasmon dispersion
in simple metals, Z. Phys. B: Condens. Matter Quanta 29, 27
(1978).

[74] W. Schülke, H. Nagasawa, and S. Mourikis, Dynamic Structure
Factor of Electrons in Li by Inelastic Synchrotron X-Ray Scat-
tering, Phys. Rev. Lett. 52, 2065 (1984).

245149-11

https://doi.org/10.1103/PhysRevLett.107.086402
https://doi.org/10.1103/PhysRevLett.107.086402
https://doi.org/10.1103/PhysRevLett.107.086402
https://doi.org/10.1103/PhysRevLett.107.086402
https://doi.org/10.1063/1.4898388
https://doi.org/10.1063/1.4898388
https://doi.org/10.1063/1.4898388
https://doi.org/10.1063/1.4898388
https://doi.org/10.1103/PhysRevB.89.085102
https://doi.org/10.1103/PhysRevB.89.085102
https://doi.org/10.1103/PhysRevB.89.085102
https://doi.org/10.1103/PhysRevB.89.085102
https://doi.org/10.1038/s41598-018-22168-1
https://doi.org/10.1038/s41598-018-22168-1
https://doi.org/10.1038/s41598-018-22168-1
https://doi.org/10.1038/s41598-018-22168-1
https://doi.org/10.1088/0953-8984/4/48/014
https://doi.org/10.1088/0953-8984/4/48/014
https://doi.org/10.1088/0953-8984/4/48/014
https://doi.org/10.1088/0953-8984/4/48/014
https://doi.org/10.1103/PhysRevB.52.4823
https://doi.org/10.1103/PhysRevB.52.4823
https://doi.org/10.1103/PhysRevB.52.4823
https://doi.org/10.1103/PhysRevB.52.4823
https://doi.org/10.1134/S1063783407100022
https://doi.org/10.1134/S1063783407100022
https://doi.org/10.1134/S1063783407100022
https://doi.org/10.1134/S1063783407100022
https://doi.org/10.1016/0375-9601(76)90094-3
https://doi.org/10.1016/0375-9601(76)90094-3
https://doi.org/10.1016/0375-9601(76)90094-3
https://doi.org/10.1016/0375-9601(76)90094-3
https://doi.org/10.1016/0038-1098(76)90902-9
https://doi.org/10.1016/0038-1098(76)90902-9
https://doi.org/10.1016/0038-1098(76)90902-9
https://doi.org/10.1016/0038-1098(76)90902-9
https://doi.org/10.1103/PhysRevB.33.6744
https://doi.org/10.1103/PhysRevB.33.6744
https://doi.org/10.1103/PhysRevB.33.6744
https://doi.org/10.1103/PhysRevB.33.6744
https://doi.org/10.1007/BF01354834
https://doi.org/10.1007/BF01354834
https://doi.org/10.1007/BF01354834
https://doi.org/10.1007/BF01354834
https://doi.org/10.1103/PhysRevLett.52.2065
https://doi.org/10.1103/PhysRevLett.52.2065
https://doi.org/10.1103/PhysRevLett.52.2065
https://doi.org/10.1103/PhysRevLett.52.2065

