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The extended Falicov-Kimball model is analyzed exactly for finite temperatures in the limit of large
dimensions. The onsite, as well as the intersite, density-density interactions represented by the coupling constants
U and V , respectively, are included in the model. Using the dynamical mean field theory formalism on the Bethe
lattice we find rigorously the temperature-dependent density of states (DOS) at half-filling. At zero temperature
(T = 0), the system is ordered to form the checkerboard pattern and the DOS has the gap �(εF ) > 0 at the Fermi
level, if only U �= 0 or V �= 0. With an increase of T , the DOS evolves in various ways that depend both on U and
V . If U < 0 or U > 2V , two additional subbands develop inside the principal energy gap. They become wider
with increasing T and at a certain U - and V -dependent temperature TMI they join with each other at εF . Since
above TMI the DOS is positive at εF , we interpret TMI as the transformation temperature from insulator to metal.
It appears that TMI approaches the order-disorder phase transition temperature TOD for |U | = 2 and 0 < U � 2V ,
but otherwise TMI is substantially lower than TOD. Moreover, we show that if V � 0.54, then TMI = 0 at two quasi-
quantum-critical points U ±

cr (one positive and the other negative), whereas for V � 0.54 there is only one negative
U −

cr . Having calculated the temperature-dependent DOS, we study thermodynamic properties of the system start-
ing from its free energy F and then we construct the phase diagrams in the variables T and U for a few values of
V . Our calculations give that inclusion of the intersite coupling V causes the finite-temperature phase diagrams to
become asymmetric with respect to a change of sign of U . On these phase diagrams we detected stability regions
of eight different kinds of ordered phases, where both charge order and antiferromagnetism coexist (five of them
are insulating and three are conducting) and three different nonordered phases (two of them are insulating and
one is conducting). Moreover, both continuous and discontinuous transitions between various phases were found.
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I. INTRODUCTION

Correlated electron systems exhibit many diverse and inter-
esting properties as, e.g., charge and magnetic ordering, super-
conductivity, mixed valence, metal-insulator phase transition,
etc. [1–11]. Unfortunately, it is very difficult to find complete
solutions even for simple models that describe these systems,
therefore, many issues are not yet explained satisfactorily
[12–16].

One of a few methods of reliable studying of strongly
correlated fermion systems is the dynamic mean field theory
(DMFT) [15–19], which is the exact theory in the limit of high
dimensions (D → +∞) or, equivalently, of large coordination
number. And one of a few models for which this method can
be used to achieve accurate results in the thermodynamic limit
is the Falicov-Kimball model (FKM) [16,20–30], sometimes
referred to as the simplified Hubbard model. Recently, the
FKM has been also investigated by a cluster extension of the
DMFT [31–33]. The simplest version of the FKM describes
spinless electrons interacting with localized ions via only the
local (onsite) Coulomb coupling U .
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So far, the FKM has been used to describe various effects,
such as crystal formation, mixed valence, metal-insulator
phase transition, and so on, e.g., Refs. [2,15,16,20]. In partic-
ular, in Refs. [29,30] there were analyzed exactly properties
of this model (in D → ∞) related to the order-disorder phase
transition caused by a rise of temperature T and the associated
to it insulator-conductor transition. The results reported in
[29] show that the rising T causes an evolution of the density
of states (DOS) consisting, e.g., in formation of additional
bands within the main energy gap. It turns out that above
a certain U -dependent temperature TMI(U ), 0 � TMI(U ) �
TOD(U ), where TOD(U ) is the order-disorder transition tem-
perature, the DOS at the Fermi level ρ(εF ) becomes positive
(in the ordered phase). Moreover, it was fixed there the
value Ucr , which points out the quasi-quantum-critical point,
for which TMI(Ucr ) = 0, what means that if U = Ucr , then
ρ(εF ) > 0 for any T > 0 (the details are also discussed in the
subsequent sections of this work).

The results obtained for the simplest FKM have prompted
us to investigate the extended FKM (EFKM), which, in addi-
tion to the local interactions, also includes nonlocal couplings
represented by the Coulomb’s repulsion force V between
electrons located on neighboring sites of the crystal lattice.
As it is well known, in some systems this effect can be quite
significant and sometimes it can lead even to a change in
nature of the metal-insulator phase transition [34–36].
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The effects of Coulomb’s interactions between electrons
located on neighboring lattice sites have already been in-
tensively investigated for the extended Hubbard model, e.g.,
Refs. [35–44] and references therein, while for the EFKM
only very few results have been reported so far [34,45–49]. As
far as we know, exact results for the EFKM were only reported
in Refs. [34,45,46] for D → ∞, but Refs. [45,46] only refer
to the limiting cases of U → 0 and U → ∞ and they did not
attain the lowest temperatures.

In our previous work [34] we obtained the exact solution
of the EFKM, but only in the ground state and discussed a
few properties at infinitesimally small temperatures. In this
work we report our exact results also for the EFKM, but those
obtained at finite temperatures. This paper can be also viewed
as an extension of the work [29], where the simplest version of
the FKM was investigated at finite temperatures. Our findings
end up with the resulting phase diagram of the EFKM at finite
temperatures for a wide range of interaction parameters U
and V .

Here, we need to emphasize that the inclusion of repulsion
between electrons located on neighboring sites significantly
increases the level of difficulty in studying the system. This is
because in the ordered phase all calculated physical quantities
are then expressed not only explicitly by order parameter d ,
as it is in the case of the simplest version of the FKM, but also
by additional d-dependent parameter d1(d ), which for given
d has to be determined from the self-consistent equation (all
details and the precise definitions of parameters d and d1 are
given in the next paragraphs). In the ground state the task is
relatively simple because then d = 1, and for given values of
U and V parameter d1 has a certain fixed value. But, at finite
temperature it becomes challenging, as then both d and d1

depend on T .
The rest of the paper is organized as follows. In Sec. II the

model considered is introduced (Sec. II A), and the equations
for Green’s functions are determined with dynamical mean
field theory (Sec. II B). Section III is devoted to a discussion
of analytical (Sec. III A) and numerical solutions at T > 0,
including phase diagrams of the model (Sec. III B). Finally,
in Sec. IV the results of this work are summarized and the
conclusions are provided.

II. MODEL AND METHOD

A. Extended Falicov-Kimball model

Here, we study the same Hamiltonian Ĥ as was used in
Ref. [45] and then in Ref. [29] on the Bethe lattice. It includes
electrons’ kinetic energy term Ĥt , Coulomb interaction terms
(onsite ĤU and intersite ĤV ), and also Ĥμ term representing
an influence of the chemical potential. Thus, the considered
Hamiltonian has the following form:

Ĥ = Ĥt + ĤU + ĤV + Ĥμ, (1)

where

Ĥt = t√
Z

∑
〈i, j〉

(ĉ+
i↓ĉ j↓ + ĉ+

j↓ĉi↓), ĤU = U
∑

i

n̂i↑n̂i↓,

ĤV = 2V

Z

∑
〈i, j〉,σ,σ ′

n̂iσ n̂ jσ ′ , Ĥμ = −
∑
i,σ

μσ n̂iσ ,

with Z being the coordination number. n̂iσ = ĉ+
iσ ĉiσ is the

occupation number and ĉ+
iσ (ĉiσ ) denotes the creation (annihi-

lation) operator of an electron with spin σ = ↑,↓. Electrons
with spin σ = ↑ (↓) are localized (itinerant), that is why here
we call them ions (electrons), respectively. The prefactors in
Ĥt and ĤV have been chosen such that they yield a finite and
nonvanishing contribution to the free energy per site in the
limit Z → ∞. 〈i, j〉 denotes the sum over nearest-neighbor
pairs. At half-filling, i.e., for n = 1 (n = 1

L

∑
i,σ 〈n̂iσ 〉, L is

the number of lattice sites) the chemical potential μ for the
both types of electron is given by μ ≡ μσ = 1

2U + 2V (and
nσ = 1

2 for both σ = ↑,↓, nσ = 1
L

∑
i 〈n̂iσ 〉) [45].

Note that in this work the model is analyzed on the Bethe
lattice, which is an alternate one, i.e., it can be divided into two
equivalent sublattices. We take t as an energy unit, i.e., t = 1,
and basically interaction couplings U and V , temperature kBT
(kB denotes the Boltzmann constant), gap at the Fermi energy
�(εF ), and energies ε are given in units of t . Nevertheless,
for a clarity, t will be explicitly given in some expressions
(similarly like in Ref. [34]). We also assume that V interaction
is repulsive, i.e., V > 0.

B. Dynamical mean field theory

The dynamical mean field theory (DMFT) enables exact
studies of the correlated electron systems, including EFKM,
in the high-dimension limit [15–19,29,34]. Moreover, it was
proven that the nonlocal interaction term V can be treated
at the Hartree level because the exchange (Fock) and the
correlation energies due to the intersite term are negligible in
that limit [50–53].

The basic quantity calculated within the DMFT is the
retarded Green’s function G(z), which is defined for the com-
plex z with Im(z) > 0. Due to the fact that we are dealing with
the system composed of two sublattices, we need to determine
two Green’s functions G+ and G− separately for “+” and “−”
sublattice. Here, we use the Green’s functions derived by van
Dongen for the EFKM on the Bethe lattice in the limit of large
dimension [45]. The formulas [for t = 1 and at half-filling
(i.e., for μ = U/2 + 2V )] have the following forms:

G+(z) = z + v + 1
2Ud − G−(z)[

z + v + 1
2U − G−(z)

][
z + v − 1

2U − G−(z)
] ,

G−(z) = z − v − 1
2Ud − G+(z)[

z − v + 1
2U − G+(z)

][
z − v − 1

2U − G+(z)
] ,

(2)

where v = V (d + d1). In such an approach we have
two parameters d and d1, which need to be determined
self-consistently. d stands for the order parameter (because
it is obtained by minimalization of the free energy), which is
equal to the difference in mean occupancies of the localized
electrons on sublattices + and −:

d = n+
↑ − n−

↑ , (3)

whereas d1 is the difference of the mean occupancies of the
itinerant electrons on the both sublattices:

d1 = n+
↓ − n−

↓ . (4)
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In the above definitions nα
σ := 〈n̂iσ 〉 for any i ∈ α, where

α = +,− denotes the sublattice index. In fact, d and d1 are
not independent quantities, as for a given temperature T and
for a given parameter d the value of d1 can be determined
unambiguously (excluding the case of coexistence of two
phases at the first-order transition points, as it is discussed
further). However, d needs to be found from the condition for
a minimum of the free energy.

Notice that due to the equivalence of two sublattices in the
Bethe lattice the solution with parameters d and d1 is equiva-
lent to the solution in which the parameters have the opposite
signs (i.e., in which they are equal to −d and −d1, respec-
tively). As a consequence, in the rest of the paper, we consider
the solutions with d � 0 only. With such a choice, as it will
be shown further, solutions with both signs of d1 can be found
depending on values of the interactions and the temperature.

The mentioned parameters can be associated to charge
polarization �Q and staggered magnetization mQ by the fol-
lowing relations:

�Q = 1
2 (d + d1) and mQ = 1

2 (d − d1), (5)

which create a different, but equivalent, set of parameters. For
d > 0 one gets that �Q > 0 and mQ > 0 because d > |d1| for
any finite value of U or V (for d = 0 one always gets d1 = 0,
hence, also �Q = 0 and mQ = 0). For calculations presented
in this work it is not relevant which combination [(d, d1) or
(�Q, mQ)] is used. Note also that any of d, d1, �Q, and mQ

reflect breaking of the system in the ordered phases mentioned
below. Additionally, a use of d and d1 ensures a simple cor-
respondence to previous works on the FKM [17,27–29,54,55]
and the EFKM [34,45].

At T = 0, i.e., for d = 1, the solutions of the set of equa-
tions (2) can be written in a simple analytical form because
then the system reduces to the quadratic equation for G+(z)
or G−(z). The formulas for G±(z) at the ground state have the
following form:

G±(z) = 4z2 − A2 −
√

(4z2 − A2)(4z2 − A2 − 16)

4(2z ± A)
, (6)

where A = 2V (1 + d1) − U . Their analyses are reported in
Ref. [34]. However, finding solutions of (2) at arbitrary
temperature T > 0 is equivalent to finding of roots of the
polynomial: of the third rank in the disordered phase (when
d = 0 and d1 = 0, G+ = G−, and it is independent on V )
[29,46,56,57] and of the fifth rank in a general case, when
0 < d < 1. So, even though we have no simple analytical
formulas for G±(z) when T > 0, we are able to get very
precise numerical values on G+(z) and G−(z) for any T and
any values of U and V .

For V = 0, the formulas on G+ or G− and their analysis in
the whole temperature region are provided in Ref. [29]. In a
general case of V � 0 one needs to solve the following fifth
rank polynomial equation on G+ [if we know G+ then we can
find G− from Eq. (2)]:

W (G+) := a0 + a1G+ + a2(G+)2 + a3(G+)3

+ a4(G+)4 + a5(G+)5 = 0. (7)

Coefficients a0, a1, a2, a3, a4, and a5 are functions of
z, U, V, d , and d1. Since the explicit expressions for these

coefficients are rather lengthy, we present them in the Ap-
pendix A.

As can be seen from formula (2), the entire temperature
dependence of the Green’s functions, and thus also some other
characteristics of the system that are expressed by them, such
as, e.g., the DOS and the energy gap at the Fermi level, comes
merely from the temperature dependence of parameters d (T )
and d1(T ). Of course, all other thermodynamic characteristics
of the system also depend on these functions, in addition to
the explicit dependence on T . Therefore, our primary task is
to determine d (T ) and d1(T ).

The procedure of finding d (T ) and d1(T ) is as follows.
First, having determined G+ and G− we calculate the DOS
functions ρ+ and ρ− from the standard formulas

ρ±(U,V, d, d1; ε) = − 1

π
Im[G±(U,V, d, d1; ε + i0)]. (8)

Then, for given parameters U, V , and T we solve the self-
consistent equation for d1 [Eq. (4)], from which we get the
dependence of d1 as a function of d . Concentrations n±

↓
appearing in Eq. (4) are calculated from the expression

n±
↓ =

∫ εF

−∞

ρ±(U,V, d, d1; ε)

1 + exp[ε/(kBT )]
dε (9)

(in our case the Fermi level is located at εF = 0).
Next, we insert function d1(T, d ) into the expression for

free energy F given by Eqs. (15), (16), and (17) and, finally,
we minimize F over d , from where we get d (T ) and then also
d1(T ) from Eqs. (4) and (9).

III. RESULTS

The model predicts the existence of a variety of ordered
and nonordered (NO) phases. The full phase diagram of the
model is quite complex. In particular, the diagram exhibits
five distinguishable regions in which an ordered insulator
occur (COI1, COI2, and COI3 with d1 > 0; AFI1 and AFI2

with d1 < 0). Three distinguishable regions of ordered metal
are also present (COM1 and COM2 with d1 > 0; AFM with
d1 < 0). Note that in these ordered phases both a charge
order and an antiferromagnetic order exist simultaneously,
i.e., �Q �= 0 and mQ �= 0 [excluding U → −∞ and V → +∞
limits (U < 2V ), where mQ → 0 as well as U → +∞, where
�Q → 0]. Moreover, the nonordered metal (NOM) is found
to be stable is some range of the model parameters. This
NOM is not the Fermi liquid phase due to a huge scattering
rate that is maintained even when approaching the ground
state (for details for the FKM see Refs. [16,46,58]). Finally,
two separated ranges of the model parameters are determined,
where the nonordered insulator (denoted here as NOI) occurs.
In the NOM and the NOI phases d = 0 and d1 = 0 (or �Q = 0
and mQ = 0, equivalently). One should be also aware of the
fact that the NOI of the FKM has a quite different nature than
the Mott insulator described by the HM [16,59].

In this paper all phases with d1 > 0, i.e., the phases with
dominant charge order (�Q > mQ), are named as charge-
ordered (CO) ones and all phases with d1 < 0, i.e., the phases
where antiferromagnetism dominates (mQ > �Q), are named
as antiferromagnetic (AF) ones (note that we assumed that
d � 0, cf. Sec. II B). The lower index (which can be 1, 2,
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and 3) labels the phases with the same properties (details are
given further in the text). We also introduced the denotations
NOIA and NOIB to distinguish two regions of the NOI occur-
rence for U < −2 and U > 2, respectively. In the following
sections we characterize the properties of each phase and
construct the full phase diagram of the model.

A. Exact formulas for finite temperatures

1. Density of states

In order to be able to perform accurate calculations, it is
extremely important to precisely determine the boundaries
of energy bands. In our case, this is possible thanks to the
polynomial form of the equation for the Green’s function, as
it is expressed in Eq. (7). Indeed, the simultaneous solution
of Eq. (7) and the equation dW (G+)/dG+ = 0, which can be
written explicitly as

dW (G+)

dG+ := a1 + 2a2(G+) + 3a3(G+)2

+ 4a4(G+)3 + 5a5(G+)4 = 0, (10)

allows us (at fixed values U, V, d , and d1) to obtain ener-
gies at which the edges of energy bands occur. Coefficients
a1, a2, a3, a4, and a5 are defined in the Appendix A.

The exact formula on the density of states (DOS) at the
Fermi level ρ(εF ) = [ρ+(εF ) + ρ−(εF )]/2 is expressed in
Eq. (11) below through parameters U, V, d , and d1:

ρ(εF ) =
⎧⎨
⎩

1
π

if U = 0 and (d + d1)V = 0,

1
π

∣∣∣ Im
√

w(U,V,d,d1 )
8[(d+d1 )V ]2−2U 2

∣∣∣ otherwise,
(11)

where

w(U,V, d, d1)

= U 2(U 4 − 4U 2 + 4d2) + 8(U 2 − 2)dU (d + d1)V

− 8(U 4 − 2U 2 − 2)[(d + d1)V ]2

− 32dU [(d + d1)V ]3 + 16U 2[(d + d1)V ]4. (12)

It applies throughout the entire temperature range, but only
through parameters d (T ) and d1(T ). Consequently, in the
disordered phase with d = 0 and d1 = 0 it does not change
with temperature. Notice also that, in a general case of any
value of ε, it is not possible to do determine expression for
ρ(ε) analogous to (11).

In Figs. 1 and 2, DOS functions ρ+(ε) and ρ−(ε) [ρ±(ε) ≡
ρ±(U,V, d, d1; ε) evaluated from Eq. (8)] in all found distin-
guishable ordered phases are presented for several represen-
tative values of the model parameters. The phases presented
in Fig. 2 can occur only if V > 0, whereas those shown in
Fig. 1 are present on the phase diagram also for V = 0 (cf.
also Refs. [29,30]). Note that ρ+(εF ) = ρ−(εF ) = 0 in all
insulating phases and the gap at the Fermi level �(εF ) is finite
(but small, and thus not clearly visible in the figures). At the
half-filling, it turns out that ρ+(ε) = ρ−(−ε) and the total
(resultant) DOS ρ(ε) = (1/2)[ρ+(ε) + ρ−(ε)] is symmetric,
but ρ+(ε) and ρ−(ε), when considered separately, are not
symmetric. The obvious observation is that in phases with
d1 > 0 the ρ+ has the larger weight than ρ− in the main band
below the Fermi level (the lower main band) due to the fact

FIG. 1. The itinerant electron densities of states ρ+ (solid line)
and ρ− (dotted line) in each sublattice (i) left column: for T =
0.15 and V = 0.1 in phases with d1 > 0: COI1 (U = −2.0, d =
0.949, d1 = 0.801), COM1 (U = −1.5, d = 0.698, d1 = −0.630),
and COI2 (U = −1.0, d = 0.724, d1 = 0.502), from the top, re-
spectively; (ii) right column: for T = 0.05 and V = 0.1 in phases
with d1 < 0: AFI1 (U = 1.6, d = 0.994, d1 = −0.701), AFM
(U = 1.3, d = 0.987, d1 = −0.630), and AFI2 (U = 1.0, d =
0.947, d1 = −0.524), from the top, respectively. The Fermi level
is located at ε = εF = 0. The gray shadows indicate schematically
the principal gap between the main (lower and upper) bands, where
the subbands appear at T > 0. In all insulators ρ±(εF ) = 0 and
�(εF ) > 0.

that n+
↓ > n−

↓ . Namely, ρ+ has lower weight in its upper main
band than in the lower main band. Likewise, ρ− has greater
weight in its upper main band than in the lower main band. In
all phases with d1 < 0, the relation between weights in main
bands is reversed.

FIG. 2. The itinerant electron densities of states ρ+ (solid line)
and ρ− (dotted line) in each sublattice for U = 0.16 and V = 0.1 for
phases with d1 > 0: COI3 (T = 0.040, d = 0.799, d1 = 0.051; left
panel) and COM2 (T = 0.047, d = 0.234, d1 = 0.013; right panel).
The Fermi level is located at ε = εF = 0. ρ±(εF ) = 0 and �(εF ) > 0
in the COI3.
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The behavior of the itinerant electrons in the phases col-
lected in Fig. 1 is associated with the specific features of
the subbands, which arise inside the principal energy gap
between the main bands (the region indicated by the gray
shadow in Fig. 1). These subbands can be present only at
T > 0 (i.e., for d < 1), whereas at T = 0 (i.e., for d = 1) the
DOS exhibits only two main bands separated by the principal
gap at the Fermi level (cf. Fig. 1 of Ref. [34]). In particular,
the characteristic feature of the COI1 which distinguishes it
from the COI2 is that ρ+ (ρ−) has lower (higher) weight in the
subband lying below εF than in the subband located above εF .
In contrast, in the COI2, ρ+ (ρ−) has lower (higher) weight
in the subband above εF than in the subband situated below
εF . The relation between weights in the subbands of ρ+ (or
ρ−) in the AFI1 is the same as in the COI2, whereas those in
the AFI2 are such as in the COI1. One can also say that in the
COI1 and the AFI1 the fillings of the main bands and of the
subbands are inverted for both ρ+ and ρ−, i.e., the weights in
ρ+ (ρ−) of the subbands below and above the Fermi level are
in the opposite relation than the weights in the main lower and
upper bands of ρ+ (ρ−).

The metallic behavior of the COM1 and the AFM is a
result of merging of the subbands near the Fermi level, as it
is visible in Fig. 1, but the precursors of the subbands can be
still visible in the DOSs of these phases (at least in the regions
of their occurrence in the neighborhood of boundaries with the
COIs or the AFIs, respectively, on the phase diagram). In these
metallic phases the continuous change from a case of inverted

subbands (in the COI1 and the AFI1, in the sense discussed
above) to a case of “noninverted” subbands (in the COI2 and
the AFI2) occurs. In higher temperatures, the central subband
with nonzero weight at εF can merge with the main bands (cf.
also Fig. 2 of Ref. [29]).

The DOSs in the COI3 and the COM2 are shown in Fig. 2.
In contrast to the DOSs discussed above, the structure of the
DOS in the COI3 consists only of two main bands and does not
exhibit any subbands (also at T > 0). The metallic behavior of
the COM2 is associated with closing of the gap between the
main bands.

To be rigorous, one should also add that for large |U | in
the COI1 and the AFI1 two additional subbands can appear in
the DOS, one below the lower main band and one above the
upper main band. Its precursors are visible in Fig. 1 (cf. also
Fig. 3 of Ref. [29]). In Fig. 1 of Ref. [29] the DOSs in the
nonordered phases, i.e., in the NOM and in the NOIs, are also
presented.

2. Energy gap at the Fermi level

It appears that the energy gap at the Fermi level �(εF )
is a continuous function at T = 0 only within the interval
0 � U � 2V , but it is discontinuous both for U < 0 and for
2V < U . The continuity of �(εF ) at T = 0 for 0 � U � 2V
is due to the fact that no subbands are formed inside the
principal energy gap when the temperature is raised above
T = 0 (the COI3, cf. Sec. III A 1). Indeed, at T = 0 one has
�(εF )T =0 = |2V (1 + d1) − U | [34], but in the limit of T →
0+ we get the following formulas:

�(εF )T →0+ =
{|2V (1 + d1) − U | if 0 � U < 2V,

|(
√

[1 + 4U 2 − 4(1 + d1)UV + 4(1 + d1)2U 2V 2] − U 2 − 1)/U | if U < 0 or 2V < U .
(13)

And for the special case of U = 2V , when two ordered phases with two different energy gaps coexist at T = 0 (a point of a
discontinuous transition [34]), are two solutions:

�(εF ;U = 2V )T →0+ =
{

Ud1 if d1 > 0,

|(
√

1 + 4U 2 − 2(1 + d1)U 2 + (1 + d1)2U 4 − U 2 − 1)/U | if d1 < 0.
(14)

In the above formulas [i.e., Eqs. (13) and (14)], parameter d1

is taken at T = 0. The behavior of �(εF ) for a few represen-
tative values of V is illustrated in Fig. 3(a). Figure 3(b) shows
difference D� = �(εF )T →0+ − �(εF )T =0 as a function of U
for the same values of V .

It turns out that if U lies outside of the region 0 � U � 2V ,
then �(εF )T →0+ is always smaller than �(εF )T =0 and it
attains zero at the quasi-quantum-critical points U ±

cr . There are
two such points for V � 0.54, one positive (U +

cr ) and another
negative (U −

cr ), but there is only one negative U −
cr for V � 0.54

(cf. also Ref. [34]). At the first-order phase transition point at
T = 0, i.e., for U = 2V, �(εF )T →0+ exhibits discontinuous
jump, but �(εF )T =0 is continuous. For large positive U (i.e.,
U > U +

cr if V � 0.54 and U > 2V if V � 0.54, in the AFI1)
or large negative U (U < U −

cr , in the COI1), �(εF )T →0+ as a
function of U is a monotonic function of U increasing with
|U |. Then, difference D� is obviously zero for 0 � U � 2V
(in the COI3) and it exhibits discontinuity at U = 2V . It is

a monotonous function of U for U < 0 and U > 2V with a
change of slope at U ±

cr (if U +
cr exists).

In the general case of finite T , it is possible to precisely
determine the energy gap based on the knowledge of the edges
of energy bands, but before that we need to determine the
values of d (T ) and d1(T ) numerically.

3. Free energy

Total free energy F of the system per site is given by the
following expression:

F = Fel + Fions + U/4 + V, (15)

where

Fel =
∫ ∞

−∞

{
ρ(U,V, d, d1; ε) ln

[
1 + exp

(
− ε

kBT

)]}
dε

− V
(
1 − d2

1

)
/4 (16)
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FIG. 3. (a) Energy gap �(εF ) at the Fermi level as a function of
U at T = 0 [i.e., �(εF )T =0, dashed lines] and in the limit T → 0+

[i.e., �(εF )T →0+ , solid lines] for V = 0.1, V = 0.4, and V = 0.8 (as
labeled). (b) Difference D� = �(εF )T →0+ − �(εF )T =0 for the same
values of V is shown. The vertical dotted and dashed-dotted lines
correspond to location (at T = 0) of the quasicritical points (U ±

cr ) and
of the discontinuous transition for U = 2V , respectively (for each
value of V from the figure, correspondingly).

and

Fions = V (1 − d2)/4 + kBT

[
1 + d

2
ln

(
1 + d

2

)

+ 1 − d

2
ln

(
1 − d

2

)]
, (17)

where ρ(U,V, d, d1; ε) = (ρ+(ε) + ρ−(ε))/2 and ρ±(ε) ≡
ρ±(U,V, d, d1; ε) is expressed by Eq. (8).

Free energy F calculated using formulas (15), (16), and
(17) has a fundamental meaning here because only after its
minimization with respect to order parameter d we obtain
d (T ) and d1(T ) [from Eqs. (4) and (9)], that enter into all
physical characteristics of the system. On the basis of such de-
termined free energy we constructed finite-temperature phase
diagrams which we present in the next section. In these
diagrams, in the phases marked as insulators (conductors)
the condition ρF = 0 (ρF �= 0) is met. Note that the term

“insulator” is used to characterize the DOS with a gap at the
Fermi level. It is clear that, strictly speaking, such a system
would be insulating only at T = 0.

We still need to mention that we derived formula (16) by
generalizing the expression given for the FKM in Ref. [54].
Then, we have verified that this is equivalent to the expression
presented by Van Dongen in [45], but has a simpler form than
that in [45] and allow for greater precision of calculations
in the whole range of the model parameters and of temper-
ature, which is especially important near T = 0. This is a
consequence of the fact that in the formulation of this work
one does not do summation over Matsubara frequencies. Such
a summation is difficult to perform numerically because the
tails of the Green’s functions are vanishing slowly with the
frequencies. Certainly, both approaches are formally equiva-
lent, as it was shown in Ref. [60], but in practice the method
we use in this work enables us to calculate all relevant physical
quantities with any precision and at any temperature, what is
not the case when the summations over Matsubara frequencies
are performed (cf. Refs. [28,29] for the FKM).

B. Phase diagrams

In this section we will focus on the evolution of the phase
diagram of the model with increasing intersite interaction V .
On the diagram there are a variety of transitions, thus, we
discuss first an evolution of the order-disorder transitions
(Sec. III B 1). Next, we focus on transitions between metallic
and insulating ordered phases at lower temperatures (Secs.
III B 2 and III B 3). Finally, some dependencies of important
quantities at finite temperatures are presented (Sec. III B 4).

At the beginning let us briefly discuss the diagram
for model with V = 0. The detailed study of the phase
diagram of the FKM is contained in Refs. [29,30].
For V = 0 the phase diagram is symmetric with
respect to U = 0. However, for U < 0 quantities d
and d1 have the same signs (and the charge order
dominates over antiferromagnetism), whereas for U > 0
they have opposite signs (and the antiferromagnetic order is
dominant; note that we assumed that d � 0). To be precise,
for V = 0 the solution with d and d1 for U corresponds to the
solution with d and −d1 occurring for −U .

For V = 0 a continuous order-disorder transition between
the ordered and the nonordered phases occurs when T is
raised. At temperatures above the transition, two nonordered
phases can exist: the NOM for |U | < 2 and the nonordered
insulator for |U | > 2 (NOIA for U < −2 and NOIB for
U > 2). With an increase of |U |, the continuous NOM-NOIA

(NOM-NOIB) transformation occurs at U = −2 (U = 2),
respectively, and it is not dependent on temperature. To be
precise, this is the type of metal-insulator transition predicted
by Mott (e.g., Refs. [61–63]), but unlike Mott’s prediction that
the transition would be generically discontinuous [16,46,51].
The U dependence of the order-disorder transition temper-
ature TOD is shown in Fig. 4 (the first solid line from the
bottom is for V = 0). TOD is a nonmonotonous function of
U . It increases with increasing |U | starting from zero at
U = 0 to reach its maximal value of kBTOD ≈ 0.113 at |U | ≈
2.61. With further increase of |U | it decreases to zero for
U → +∞.
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FIG. 4. Temperature TOD of the order-disorder transition for dif-
ferent V (from 0.0 to 1.6 with a step of 0.1). Only second-order lines
are determined. The dotted line connects points at the boundaries,
where parameter d1 change its sign in the ordered phase below the
boundary (d1 > 0 on the left, d1 < 0 on the right). The dashed line
denotes kBT = 1/(2U ) dependence for large U . Note that for large
V (larger that V ≈ 0.7) the order-disorder transition is first-order one
for some range of U (not shown in this figure).

At low temperatures (below TOD line) the model exhibits
six long-range-ordered phase, in which the orders (charge and
antiferromagnetic) can coexist with the metallic or insulating
behavior [two ordered metals: COM1 and AFM (for U < 0
and U > 0, respectively); or four charge-ordered insulators:
COI1 and COI2 (for U < 0) as well as AFI1 and AFI2 (for
U > 0)]. The COM1 (AFM) can exist only for 0 < |U | < 2
and T > 0. The regions of their occurrence divide the regions
of the ordered insulator occurrence into two separated areas
[the COI2 (AFI2) for 0 < |U | <

√
2 and the COI1 (AFI1) for

|U | >
√

2]. The COI1 and the COI2 for U < 0 (the AFI1

and the AFI2 for U > 0) are differentiated by behavior of
a capacity of the main lower band and a capacity of the
lower subband, lying inside the main energy gap just be-
low the Fermi level (cf. Ref. [30]). At U −

cr (V = 0) = −√
2

[U +
cr (V = 0) = √

2] the COM1 (AFM, respectively) exist at
any infinitesimally small (but finite) T > 0. There are so
called quasicritical points at T = 0 [34].

For V �= 0 the phase diagram loses its symmetry with
respect to U = 0 and it needs to be discussed for negative as
well as positive onsite interactions. Nevertheless, for V �= 0
at temperatures above the order-disorder transition, one can
distinguish three regions of the nonordered phases: two
nonordered insulators: NOIA for U < −2 and NOIB for
U > 2, as well as the NOM for −2 < U < 2. It turns out
that the boundaries between nonordered phases do not depend
either on T or on V . This is a consequence of the fact that
G±(z) are dependent on V only through the term v = V (d +
d1) [cf. Eq. (2)] and d = d1 = 0 in the NOM, the NOIA, and
the NOIB.

At the phase diagram for V > 0, two new regions appear
for U � 0 (cf. Figs. 5, 6, and 7). One is that of the COI3

extending from the ground state (in the range 0 � U < 2V at
T = 0). Another one is a region of the COM2, which appears

FIG. 5. The finite-temperature phase diagram for V = 0.1. Solid
and dashed lines denote second-order (continuous) and first-order
(discontinuous) transitions, respectively. Each region is labeled by
name of a phase, which is stable in the particular region (details
in text of Sec. III B). To determine the diagram free energies of
all solutions found were compared. Dashed-dotted lines denote the
metal-insulator transformations, which are continuous but they are
not phase transitions in the usual sense (details in text of Sec. III B 4).

for 0 < U < Uc at finite temperatures between regions of the
COI1 and NOM and is separated from that of the COM1. Uc

is the value of U interaction for the bicritical point, where
two second-order lines COM2-NOM and AFM-NOM and one
first-order line COM2-AFM merge together (it is explicitly
denoted in Figs. 6 and 7). Notice that Uc < 2V . The bicritical
point is found for intersite repulsion smaller than V ≈ 0.7.
The detailed discussion of the evolution of the phase diagram
with increasing V is contained below.

FIG. 6. The diagram for V = 0.5. The figure presents details
of the phase diagram in the neighborhood of first-order transition
associated to a change of sign of d1 parameter. The vertical dashed-
dotted line indicates the location of the bicritical point. The features
of the diagram do not change in a range of 0 < V < 0.54. Other
denotations as in Fig. 5.
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FIG. 7. The diagram for V = 0.6 and U > 0 (cf. Fig. 10). The
region of the AFI2 disappeared. The region of the COM2 is very thin.
The vertical dashed-dotted line indicates the location of the bicritical
point. Other denotations as in Fig. 5.

1. Order-disorder transition

Figure 4 presents temperatures TOD of the order-disorder
transition for several values of V obtained within an as-
sumption that the transition is continuous. The diagram is
determined by comparing energies of the ordered phases (with
d = 0.04 and both signs of d1 determined self-consistently)
and the NO phase. Decreasing T or U (starting from the
region of nonordered phase) with a small step the first
point, when the free energy of the ordered phase is smaller,
determines the continuous boundary. In Fig. 4 the line of
points is also indicated, where parameter d1 in the ordered
phase changes its sign (d1 > 0 on the left and d1 < 0 on
the right). As we will show below for large V (larger than
V ≈ 0.7), the order-disorder transition is also first-order one
in some range of intermediate values of U (temperatures of
such a transition are not shown in Fig. 4). Notice that for
V � 1.5 temperature TOD(U ) for the continuous transition
exhibits reentrant behavior [e.g., the boundary for V = 1.6 is
Z shaped near U ≈ 1.9, it is slightly visible in Fig. 4 (cf. also
Fig. 9)].

For small V �= 0 the order-disorder transition is indeed a
continuous one for any U , but the boundary line is no longer
symmetric with respect to U = 0, however, it retains its two
maxima for both signs of U (Figs. 4 and 5). The local mini-
mum still exists between these two maxima, but it is located
at U > 2V . In the range 0 < |U | < 2, the transition occurs
between two metallic phases: for −2 < U < 0 between the
COM1 and the NOM, for 0 < U < Uc between the COM2

and the NOM, and for Uc < U < 2 between the AFM and
the NOM (Figs. 5 and 6). For larger |U |, i.e., for |U | > 2,
the transition line separates the regions of insulating phases:
for U < −2 the COI1 and the NOIA, whereas for U > 2
the AFI1 and the NOIB (e.g., Fig. 5). At the single point
U = 0 the transition is directly from the COI3 to the NOM
(in the neighborhood of the transition point, the COM1 and
the COM2 are also stable).

For larger values of V , the maximum of transition tempera-
ture TOD(U ) for U > 0 disappears, but the other one for U < 0

FIG. 8. The diagram for V = 1.0. The order-disorder COI3-
NOM transition (omitting the metallic phase) is discontinuous. The
dashed line denotes the second-order boundary from Fig. 4, which
is not a boundary between the phases with the lowest free energies.
Other denotations as in Fig. 5.

is present for any V (Figs. 4 and 7). The disappearance of
the maximum of TOD(U ) for repulsive U occurs at V ≈ 0.6.
In addition, the transition in some range of U changes its
order into first one (for the intersite repulsion larger than V ≈
0.7, Fig. 8) with the transition temperature higher than TOD

found with an assumption of the continuous transition. This
first-order transition is directly from the COI3 to the NOM,
without passing through the region of the COM2. With further
increase of V (for V larger than V ≈ 1.05), also discontinuous
COI3-NOIB transition appears with simultaneous disappear-
ance of the region of the AFM (Fig. 9). When V → +∞, the
result approaches to the CO-NO transition line for the atomic
limit of the model (n = 1, D → +∞) with an occurrence
of the first-order transition for 4/3 ln(2) < U/V < 2 and

FIG. 9. The diagram for V = 1.6. The region of the AFM disap-
peared. COI3-NOIB transition is present on the diagram. The dashed
line denotes the second-order boundary from Fig. 4, which is not a
boundary between the phases with the lowest free energies. Other
denotations as in Fig. 5.
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2/3 > kBT/V > 0 (the region of the AFI1 vanishes in this
limit) [64–66]. For any finite V , the second-order transition
for U > 0 with increasing T from the ordered phases with
d1 > 0 is only from the COM2 and can be to the NOM (as
shown for V = 1.6) or even to the NOIB (for larger V , not
shown in the figure). Note also that the reentrant behavior of
TOD for the second-order transition has been also found in the
atomic limit of the model [64,66]. Moreover, the second-order
transition temperature TOD, which is lower than the true TOD of
the first-order transition, was identified as the boundary of the
NO phase metastability inside the CO phase region [66,67].

Finally, let us discuss the limit of large |U |, i.e., U → ∓∞.
The results for U → −∞, i.e., kBTOD → 2V (where the
COI1-NOIA transition is present) are in an agreement with
the results for the atomic limit of the model [64–66]. Notice
that the order-disorder line exhibits local maximum for some
U < 0 and for any finite V . The local maximum moves to
U → −∞ if V → +∞. In this limit, the transition tem-
perature decreases monotonously with increasing of U . The
local maximum for U > 0 exists only for V smaller than
V ≈ 0.6. For large positive U the transition temperature be-
haves as kBTOD ≈ 1/(2U ) and for U → +∞ it decreases
to TOD → 0 (the AFI1-NOIB transition). It is a result of an
equivalence of the EFKM with the Ising model for large
U > 0 with J ≈ t2/(2U ) in this limit (here, t is explic-
itly given) and kBTOD ≈ 1/(2U ) (kBT/J = 1 for the Ising
model).

2. Discontinuous transitions between ordered phases

In this section we focus on the first-order (discontinuous)
transitions between various ordered phases associated with
discontinuous change of d . In the model investigated in this
work, such transitions occur only between phases with dif-
ferent signs of d1, i.e, only between the CO and AF phases.
However, the criterion for the transition is equality of the free
energies of both phases (cf. Sec. III B 4). As it was mentioned
previously, for V = 0 the regions of the COI2 and the AFI2

are connected only by single point at U = 0 and T = 0.
For V �= 0, three new discontinuous transitions appear on the
phase diagram: COI3-AFI2, COI3-AFM, COM2-AFM. They
are mentioned in the sequence consistent with an increase of
temperature (cf. Figs. 5 and 6; in Fig. 5 this behavior is slightly
visible). Notice that the discussed here first-order transitions
can be found only for Uc < U < U +

cr with an increase of
temperature. The first-order boundary on the phase diagram is
a decreasing function of U . With increasing V the COI3-AFI2

line shrinks and at V ≈ 0.54 it totally vanishes (accompanied
with the disappearance of the AFI2 region, Fig. 7). The
further increase of V results in an appearance of COI3-AFI1

transition. Finally, the first-order line evolves into direct phase
transitions from COI3 to the nonordered phases (the NOM and
the NOIB) as described before in Sec. III B 1 (Figs. 8 and 9).
Notice that the discontinuous COI3-AFI1 boundary line is
still present on the diagram and it totally vanishes only in
V → +∞ limit.

3. Continuous metal-insulator transformations

On the phase diagram of the model also several continuous
metal-insulator transformations between the ordered phases

FIG. 10. The diagram for V = 0.6 and U < 0 (cf. Fig. 7). All
boundaries are continuous. Other denotations as in Fig. 5.

were found, namely,
(i) for U < 0: COI1-COM1 and COI2-COM1;
(ii) for U > 0: AFI1-AFM, AFI2-AFM, and COI3-COM2.
As one can notice, they occur only between phases with

the same sign of d1. However, the physics of the COI3-COM2

transformation is different than the other ones. Namely, it is
associated with a disappearance of the energy gap between
main (lower and upper) bands, whereas the rest of the trans-
formations are connected to closing the gap between subbands
inside the principal energy gap (cf. Sec. III A 1).

Here, we use the term “transformation” for the change
between an insulator [with ρ(εF ) = 0] and conductor [where
ρ(εF ) > 0] because this change is not accompanied by a
discontinuity of the first or second derivative of free energy,
and according to the convention it cannot be classified as a
phase transition of the first or second kind.

For U < 0 the evolution of the boundaries with V is not
very complicated. The region of the COM1 extends from the
ground state (precisely it occurs at any TOD > T > 0 for U =
U −

cr ) due to the fact of existence of the quasicritical point at
T = 0 and U = U −

cr (V ) < 0 for any V > 0 [34]. For small V ,
the temperature of the COI1-COM1 transformation decreases
with U from its maximal value at U = −2 [which is equal
to TOD(U = −2)] to zero at U −

cr (Fig. 5). With an increase of
V , the COI1-COM1 boundary changes its slope at V ≈ 0.268
[in that point U −

cr (V ≈ 0.268) = −2], and for larger V the
temperature of the transformation is an increasing function of
U (Fig. 10). Nevertheless, the area of the COM1 separates the
regions of the COI1 and the COI2 for any V . The COI1-COM1

transformation temperature is a nonmonotonous function of
U , increasing from zero at U −

cr to its maximal value and next
it decreases to the value equal TOD(U = 0).

The situation for U > 0 is more complex. For any V �= 0
the region of the COM2 phase appears for Uc > U > 0 and
T > 0 (cf., e.g., Fig. 5). The COI3-COM2 boundary line
decreases with U . The quasicritical point at T = 0 exists for
V � 0.54 [34] and thus the AFM can occur at any T > 0.
The AFI2-AFM boundary is a nonmonotonous function of U .
The region of the AFI2 disappears at V ≈ 0.54 (cf. Figs. 6
and 7) as a result of that the first-order COI3-AFI2 transition
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line and the line of quasicritical points merge at T = 0. The
AFI1-AFM boundary is an increasing function of U . The
region of the AFM moves toward higher temperatures and
shrinks with increasing V . With further increase of V , the
region of the AFM occurrence disappears (cf. Figs. 8 and 9).

For the discussion of the phase diagram to be complete,
one needs to mention also the COI2-COI3 transformation.
It is a continuous one between two insulating phases with
positive d1. It occurs at U = 0 for any V > 0 and its location is
not dependent on kBT (for V = 0 the boundary is reduced to a
point at T = 0). It is associated with vanishing of the subband
structure inside the main energy gap of the charge-ordered
insulator, as it was described in Sec. III A 1 [the lower (upper)
main band and the lower (upper, respectively) subband merge
together at U = 0]. At the transformation, no discontinuities
of d and d1, as well as ρ(εF ) and �(εF ), are found. Similarly
as for previously mentioned in this section metal-insulator
transformations, at COI2-COI3 boundary the derivatives of F
do also not exhibit standard behavior expected from second-
order transitions.

Please note that all transformations discussed in this sec-
tion occur between phases with the same order and are as-
sociated with continuous changes of d and d1 parameters.
They are defined by the behavior of quantity ρ(εF ), but at
the transformations no discontinuities ρ(εF ) and �(εF ) are
found. Thus, they are not phase transition in the usual sense
(e.g., there is no kink of free energy or entropy at the transition
point) similarly to the metal-insulator transition in the FKM
[29]. Nevertheless, one should underline that order-disorder
transitions (both continuous and discontinuous) found in
Sec. III B 1 as well as discontinuous transitions between var-
ious ordered phases collected in Sec. III B 2 are conventional
phase transitions. The details are included in Sec. III B 4,
where dependencies of thermodynamic parameters are shown
for a few exemplary boundaries discussed previously.

4. Changes of thermodynamic quantities at
the phase boundaries

Let us start this section from revisiting of the FKM [i.e.,
Eq. (1) with V = 0]. As we wrote at the beginning of Sec. III,
in all ordered phases both charge order and antiferromag-
netism coexist. It is not an obvious fact because the previous
works on the EFM [17,27–29,54,55] concentrated on the
analysis of the behavior of a difference of concentration of
immobile particles in both sublattices, i.e., parameter d in
this work [cf. Eq. (3)] and parameter d1 was not determined.
For V = 0 free energy F does not depend on parameter d1,
but it can be calculated from Eqs. (4) and (9). Parameters d
and d1 are presented as a function of temperature for U =
1.0 on the left panel of Fig. 11 (cf. also Figs. 5 and 6 of
Ref. [29]). This corresponds to AFI2-AFM-NOM sequence
of continuous transitions. The right panel of Fig. 11 presents
the parameters as a function of U for fixed kBT = 0.06 corre-
sponding to NOM-AFM-AFI1-NOIB sequence (cf. also Fig. 7
of Ref. [29]). Using relation (5), one can calculate charge
polarization �Q and staggered magnetization mQ, which are
also plotted in Fig. 11. All four discussed parameters change
continuously at the phase boundaries and they vanish to zero
at the order-disorder transition points.

FIG. 11. Dependencies of parameters d (solid line), |d1| (dashed
line), �Q (dotted line), and mQ (dashed-dotted line) for V = 0 (the
FKM) and for U = 1.0 as a function of temperature kBT (left panel)
and kBT = 0.06 as a function of onsite repulsion U (right panel).
Vertical dashed-dotted lines indicate the transitions. The locations
of the AFI2-AFM and AFM-AFI1 boundaries are determined by
vanishing of ρ(εF ), which dependence is not shown in the figure.

It is clearly seen that, even for V = 0, both �Q and mQ

are nonzero (what is equivalent to d �= |d1| and d, d1 �= 0).
This implies that both charge order and antiferromagnetism
exist simultaneously in the ordered phases of the FKM. Please
also note that for U > 0 and V = 0 parameter d1 < 0 and
thus �Q < mQ (the antiferromagnetic order dominates). For
V = 0 the model exhibits a symmetry and one can obtain the
results for −U simply by transforming d1 → −d1, �Q →
mQ, and mQ → �Q together with changing U → −U (d does
not change under the transformation). For U < 0 parameter
d1 > 0 and thus �Q > mQ (the charge order dominates over
antiferromagnetism).

For completing our discussion on the phase diagram of the
EFKM, we present a few quantities such as parameters d and
d1, DOS at the Fermi level ρ(εF ), and energy gap at Fermi
level �(εF ) as well as free energy F per site and entropy S =
− ∂F

∂T per site at finite temperatures for representative sets of
the model parameters.

In Fig. 12 the temperature dependencies of them are pre-
sented for U = 1.0 and 2.5 (and for V = 0.1). It is clearly
seen that both order-disorder transitions AFM-NOM and
AFI1-NOIB are the second-order transitions with the standard
behavior of order parameter d , which continuously decreases
with increasing temperature and goes to zero at the transition
point. The behavior of parameter |d1| is similar (notice that
d1 < 0, i.e., �Q < mQ, in the phases discussed). It should
be also noted that, obviously, both �Q and mQ [as a linear
combination of d and d1, Eq. (5)] also vanish continuously
at the transition temperature. Gap �(εF ) in both insulating
phases (i.e., AFI2 and AFI1) decreases with an increase of
kBT . One can distinguish two regions with different slopes,
but the boundary between them cannot be undoubtedly deter-
mined. It is a kind of smooth crossover between these differ-
ent behaviors. At the AFI2-AFM transformation �(εF ) goes
continuously to zero, whereas at the AFI1-NOIB transition it
gets the value of the gap in the NOIB. ρ(εF ) increases with
kBT inside the AFM from zero at the AFI2-AFM boundary
to the value of the ρ(εF ) in the NOM. At NOM it does not
change with further increase of temperature. Notice that at the
AFI2-AFM transformation, all discussed parameters change
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FIG. 12. Top panels: temperature dependencies of parameter d
(solid line), parameter |d1| (dashed line), DOS at the Fermi level
ρ(εF ) (dashed-dotted line), and energy gap at the Fermi level �(εF )
(dashed-dotted-dotted line). Lower panels: temperature dependen-
cies of free energy F per site and entropy S per site (as indicated).
Left panels are obtained for U = 1.0 (AFI2-AFM-NOM sequence of
continuous transitions) whereas right panels are obtained for U =
2.5 (continuous AFI1-NOIB transition); V = 0.1 (cf. Fig. 5). Vertical
dashed-dotted lines indicate the transitions. Note that the AFI2-AFM
transition is not a second-order transition in the usual sense.

continuously, thus, this boundary indeed is a continuous one
(just like another metal insulator) between phases with the
same signs of d1 (cf. Sec. III B 3).

Moreover, from the bottom panels of Fig. 12 it is clearly
seen that at the transition temperatures of the both order-
disorder transitions F and S are continuous, but the different
slope of S(T ) in ordered and nonordered phases is visible
(S has a kink at the transition point). It is associated with
the discontinuity of specific heat (c = 1

T
∂S
∂T ) as it should be

for the second-order transition with continuous change of the
order parameter (a discontinuity of the second derivative of
free energy). In contrast, at the AFI2-AFM transformation
there is no such behavior and thus one can conclude that
the continuous metal-insulator transformation is not a phase
transition in the usual sense [d (as well as d1), free energy
F , entropy S, and specific heat are continuous there] (cf. also
Ref. [29]).

Figure 13 presents the behavior of mentioned quantities
as a function of onsite interaction U in the neighborhood of
two discontinuous transitions: COI3-AFM and COI3-NOM.
One can notice characteristic features of the first-order tran-
sitions. Namely, in their neighborhood there is a region of
a coexistence of the two phases (indicated in the figure by
the gray shadow), where both solutions can coexist. In the
coexistence region one of them has a higher free energy
(the metastable phase) than the other (the stable phase) (cf.

FIG. 13. Top panels: U dependencies of parameter d (solid line),
parameter |d1| (dashed line), DOS at the Fermi level ρ(εF ) (dashed-
dotted line), energy gap at the Fermi level �(εF ) (dashed-dotted-
dotted line). Bottom panels: U dependencies of total free energy
F per site (solid line). The dotted lines indicate the dependencies
of mentioned quantities in the metastable phases. Left panels are
obtained for V = 0.6 and kBT = 0.085 (discontinuous COI3-AFM
transition, cf. Fig. 7), whereas right panels are obtained for V = 1.0
and kBT = 0.4 (discontinuous COI3-NOM transition, cf. Fig. 8).
Vertical dashed-dotted lines indicate the transitions. The gray shadow
indicates the coexistence regions in the neighborhood of the discon-
tinuous phase transitions.

the bottom panels of Fig. 13, where the free energies F of both
solutions are presented). The value of U at which energies of
the both phases are the same is the transition point (denoted
by vertical dashed-dotted lines in the figure). Moreover, in
these panels also the different slope of F (U ) in each phase
from both sides of the boundary is also visible. It indicates
that first derivative ∂F

∂U is discontinuous at the transition point
as expected for a first-order transition. These two first-order
transitions are associated with a discontinuous change of all
discussed quantities at the transition point, in particular, of
parameters d and d1 (cf. the top panels of Fig. 2). Note also
that in Fig. 13 the dependencies of mentioned quantities in
the metastable phases (i.e., in the phases, which energies are
not the lowest one for given set of model parameters) are also
shown (dotted lines).

The COI3-AFM transition is an example of the transition
between two ordered phases, at which d1 changes not only
discontinuously, but it even changes its sign (i.e., d1 > 0 in
the COI3 and d1 < 0 in the AFM; V = 0.6, kBT = 0.085,
cf. Sec. III B 2). At the transition the discontinuous change of
parameter d is not so high but it is also clearly visible (note
that it decreases with increasing U ). Obviously, �Q and mQ

also exhibit discontinuous jump at the transition point. �(εF )
is decreasing functions of U in the COI3, whereas ρ(εF )
slightly decreases with increasing U in the AFM.

Finally, the discontinuous COI3-NOM transition is an ex-
ample of the order-disorder transition, which can occur for V
larger than V ≈ 0.7. Parameters d and d1 as well as �(εF )
decrease with increasing U in the COI3 and, at the transition
point, they exhibit abrupt drop to zero in the NOM. It is worth
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to notice that ρ(εF ) in the NOM is decreasing function of U
due to the enhanced correlation between electrons.

Note that a coexistence of both charge-order and antiferro-
magnetic order in ordered phases (for finite U ) is a specific
feature of systems, where the hopping integrals for electron
species are different (cf. also Refs. [68–71]). In the case of the
EFKM considered here, spin-↓ electrons can move so they are
“more delocalized” than the spin-↑ electrons (ions). Thus, if
there is an order (inhomogeneous distribution) of electrons in
the system, the difference of spin-↑ electron concentrations in
the sublattices (parameter d) needs to be larger than those of
mobile electrons with spin-↓ (parameter |d1|). The argument
is especially justified in the case of V = 0, i.e., in the case of
the FKM. This is totally different from the extended Hubbard
model with V > 0 at n = 1, where a phase only with charge
order (�Q �= and mQ = 0) or only with magnetic order (mQ >

0 and �Q =) exists, e.g., Refs. [72–74]. In particular, for
U > 0 the half-filled Hubbard model (V = 0) exhibits only
the antiferromagnetic order [15,75].

IV. CONCLUSIONS AND FINAL REMARKS

In this work we investigated the extended Falicov-Kimball
model [Eq. (1)] at half-filling (i.e., n = 1 or, equivalently,
n↑ = n↓ = 1/2) on the Bethe lattice within an approach which
captures properly the effects of the local electron correlations.
Both onsite U and intersite V terms are treated in the con-
sistent approach to give the rigorous results in the limit of
large dimensions. In this limit, the intersite term reduces to the
Hartree contribution. The main achievements of the research
contained in this work are as follows:

(i) Derivation of the exact expressions (part of them are
analytical) for the DOS, the energy gap at the Fermi level (for
insulators), and the free energy (expressed by parameters d
and d1) for the extended Falicov-Kimball model in the limit
of D → +∞.

(ii) Construction and analysis of the phase diagrams of the
model (they appeared to be quite rich) obtained within the
rigorous method for the whole range of interaction parameters
U and V as well as temperature T .

Once again, it appears that the relatively simple model
of correlated electrons, when it is solved exactly, provides
quite complicated phase diagrams with many ordered phases
detected on them. The differences between some of these
phases are related with additional parameters, that may not be
detected using approximate calculations. Perhaps this is why
sometimes phase transitions with hidden order parameters are
reported in scientific literature. On the other hand, the exact
solutions permit to distinguish very precisely various ordered
phases and to determine precisely of regions of their stability
in the space of their model parameters. In our case, for
example, such “hidden” parameters that enable to distinguish
some ordered insulating phases are weights of subbands of the
DOS located inside the principal energy gap.

It is worth emphasizing here that a thorough examination
of this system in the whole range of interaction parameters
U and V at any T was possible due to obtaining precise
expressions not based on the summation over the Matsubara
frequencies. It allowed us to investigate, e.g., a nonanalyticity
of the ground state and determine the quasicritical points

at T = 0. Moreover, by performing integration on the real
axis, the numerical results could be obtained (in practice)
with any precision. It would be not possible to attain this (in
reasonable computing time) if the method of summation over
Matsubara frequencies was applied due to the fact that the
Green’s functions vanish very slowly on the imaginary axis
[G(iωn) ∼ 1/ωn].

Our results show that taking into account even a small
Coulomb repulsive force V between electrons located on
neighboring sites is very important because it causes a quali-
tative change in some properties of the system. For example,
if 0 � U < 2V (and d1 > 0, precisely in the COI3 region),
then no additional subbands within finite temperatures arise
inside the main energy gap. They only arise when U < 0 (and
d1 > 0) or U > 2V (and d1 < 0). Whereas for V = 0 such
additional subbands arise for any U �= 0. The phase diagrams
for V > 0 at finite temperatures become asymmetric with the
conversion of U → −U and much more complex than that
with V = 0. In particular, for U > 0, the quasicritical quan-
tum point exists only when V < Vcr ≈ 0.54, while for U < 0
it exists for any value of V . A very interesting effect is also the
existence of the discontinuous phase transition associated with
a step change of d1 parameter from a positive to a negative
value (or vice versa). Moreover, various order-disorder and
metal-insulator transitions were found in the model.

Although our results are exact only in the limit of D → ∞,
they are also useful for finite dimensions. Indeed, there is a
qualitative similarity between the DOS of the cubic D = 3
system and the DOS of the Bethe lattice in the limit D → ∞
(in both these cases, the DOS close to its band edges has
the square-root-type behavior). On the other hand, some
Monte Carlo calculations performed for the FKM (see, e.g.,
Refs. [55,76]) show that in the square D = 2 systems sub-
bands appear inside the principal energy gap in a similar way
as it was observed for the Bethe lattice in the limit D → ∞.

Let us stress here that the decomposition of the system
into two sublattices and consideration only of such classes of
solutions work for the half-filling case only, when the number
of both localized and itinerant particles are equal to one-half
of the number of lattice sites. This is the rigorous result, not
an approximation, for any alternate lattice [14,77]. Out of
this symmetry point, e.g., in the system with a doping, one
deals with either phase separation (see, e.g., Refs. [25,54]) or
with higher periodic or even incommensurate phases, as it was
shown, for example, for 2D systems at T = 0 in Ref. [78].
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APPENDIX: COEFFICIENTS OF THE POLYNOMIAL
GIVEN IN EQ. (7)

Here are the coefficients a0, a1, a2, a3, a4, a5 given in
Eq. (7) that are obtained from the transformation of the system
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of Eqs. (2):

a0 = −2(4z2 − U 2)[8z3 + 4dz2U − dU (−4 + U 2) − 2z(4 + U 2)] + 4[48z4 + 32dz3U − U 2(−4 + U 2) − 8dzU (−2 + U 2)

− 8z2(6 + U 2)](d + d1)V − 16[8z3 + 12dz2U + 2z(−6 + U 2) − dU (−2 + U 2)][(d + d1)V ]2

+ 32(−2 − 4z2 + 4dzU + U 2)[(d + d1)V ]3 − 32(−6z + dU )[(d + d1)V ]4 − 64[(d + d1)V ]5, (A1)

a1 = 64z6 + 192dz3U − 48dzU 3 − 16z4(−8 + 3U 2) + U 2(16 + 16d2 − U 4) + 4z2(−32 − 8U 2 + 3U 4) − 8[16z5 + 56dz2U

− 2dU 3 − 8z3(−4 + U 2) + z(−32 + U 4)](d + d1)V + 4[−16(2 + z4) + 80dzU − 8(−1 + z2)U 2 + 3U 4][(d + d1)V ]2

+ 64[4z3 − dU + z(4 + U 2)][(d + d1)V ]3 − 16(8 + 4z2 + 3U 2)[(d + d1)V ]4 − 128z[(d + d1)V ]5 + 64[(d + d1)V ]6,

(A2)

a2 = 16{−16z5 − 20dz2U + 8z3U 2 + dU (2 + U 2) − z(−4 + U 4) + (−4 + 16z4 + 24dzU − 8z2U 2 + U 4)(d + d1)V

+ 4(8z3 − dU + 2zU 2)[(d + d1)V ]2 − 8(4z2 + U 2)[(d + d1)V ]3 − 16z[(d + d1)V ]4 + 16[(d + d1)V ]5}, (A3)

a3 = 8{48z4 + 24dzU +U 4 − 16z2(1 +U 2) − 8U (d − 2zU )(d + d1)V

− 16(−1 + 6z2 +U 2)[(d + d1)V ]2 + 48[(d + d1)V ]4}, (A4)

a4 = 32{−8z3 − dU + 2z(1 + U 2) − 2(−1 + 4z2 + U 2)(d + d1)V + 8z[(d + d1)V ]2 + 8[(d + d1)V ]3}, (A5)

a5 = 16{4[z + (d + d1)V ]2 − U 2}. (A6)

As one can notice, the coefficients are indeed expressed explicitly by z, interactions U and V , and parameters d and d1. It allows
us to determine the properties of the investigated system with very high precision.
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[34] R. Lemański, K. J. Kapcia, and S. Robaszkiewicz, Extended
falicov-kimball model: Exact solution for the ground state,
Phys. Rev. B 96, 205102 (2017).

[35] A. Amaricci, A. Camjayi, K. Haule, G. Kotliar, D. Tanasković,
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