
PHYSICAL REVIEW B 99, 245137 (2019)

Collective modes for helical edge states interacting with quantum light

Balázs Gulácsi* and Balázs Dóra
Department of Theoretical Physics and MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology

and Economics, 1521 Budapest, Hungary

(Received 20 February 2019; revised manuscript received 2 May 2019; published 20 June 2019)

We investigate the light-matter interaction between the edge state of a 2D topological insulator and quantum
electromagnetic field. The interaction originates from the Zeeman term between the spin of the edge electrons
and the magnetic field, and also through the Peierls substitution. The continuous U(1) symmetry of the system
in the absence of the vector potential reduces into discrete time reversal symmetry in the presence of the vector
potential. Due to light-matter interaction, a superradiant ground state emerges with spontaneously broken time
reversal symmetry, accompanied by a net photocurrent along the edge, generated by the vector potential of the
quantum light. The spectral function of the photon field reveals polariton continuum excitations above a threshold
energy, corresponding to a Higgs mode and another low energy collective mode due to the phase fluctuations of
the ground state. This collective mode is a zero energy Goldstone mode that arises from the broken continuous
U(1) symmetry in the absence of the vector potential and acquires finite a gap in the presence of the vector
potential. The optical conductivity of the edge electrons is calculated using the random phase approximation by
taking the fluctuation of the order parameter into account. It contains the collective modes as a Drude peak with
renormalized effective mass, which moves to finite frequencies as the symmetry of the system is lowered by the
inclusion of the vector potential.
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I. INTRODUCTION

Interaction between light and matter are the basis of wide
range modern technologies, including lasers, LEDs and com-
puters. From a theoretical point of view, even the simplest
quantum optical models describing light-matter interaction,
like the Dicke model [1], offer a variety of interesting phe-
nomena such as quantum phase transitions and quantum chaos
[2]. In the Dicke model a single mode of electromagnetic field
interacts with an ensemble of two level atoms. The ground
state of such a system is composed of unexcited atoms and
an unpopulated photon mode at weak coupling. However at a
critical coupling strength the atoms are collectively excited
and the photon mode becomes macroscopically populated,
coined superradiance. The recent realizations of this phase
transition has opened a way to studying other relating phe-
nomena [3–5] in the controlled environment of cold atomic
physics.

Subjecting quantum gases to cavity modes can produce
remarkable changes in both the atomic gas and the cavity field.
For instance, a driven Bose–Einstein condensate placed in a
cavity undergoes a quantum phase transition that corresponds
to the self-organization of atoms from homogeneous into a
periodically patterned distribution above a critical driving
strength and the cavity field acquires a nonzero expectation
value [6–9]. Due to cavity-induced long-range interactions
between atoms the Bose-Hubbard model inside a cavity
exhibits a rich phase diagram, the interacting bosons transition
from a normal phase to a superfluid phase and at even stronger
pumping a self-organized Mott insulator phase [10,11]. Many
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different proposals have been put forward to realize the
self-organization of more complex quantum phases reaching
from the Mott-insulator and disordered structures to phases
with spin-orbit coupling [12–15]. Fermionic quantum gases
inside a cavity can also exhibit superradiant phenomena and
can self-organize into topologically nontrivial phases [16].
The superradiant light generation in the transversely driven
cavity mode induces a cavity-assisted spin-orbit coupling
and opens a bulk gap at half filling for a degenerate Fermi
gas in a cavity. This mechanism can simultaneously drive
a topological phase transition in the system, yielding a
topological superradiant state [17–19].

In a topological phase, matter possesses exceptional prop-
erties such as edge or surface states that are protected from
small external perturbations [20,21]. These protected edge
states of topological insulators (TI) can serve as building
blocks of upgrading conventional computer physical memory,
a variety of spintronics devices and most of all realizing
practical quantum computers [22].

In the present work we are combining TIs with cavity
physics and investigate the interaction between a spin polar-
ized edge state of a quantum spin Hall insulator with linear
dispersion and a single mode of circularly polarized quantum
electromagnetic field inside a cavity. The spin Hall insulator
can be realized using either condensed matter [20] or cold
atomic setting [23]. The coupling between a condensed matter
realized topological insulator edge state and quantum light
field includes the Zeeman term and Peierls substitution. How-
ever, in ultracold bose and fermi gases, the charge neutrality
of the atoms requires us to engineer artificial vector potentials,
which act similarly to magnetic fields for charged particles
[24–27]. A single photon mode with fixed helicity can be re-
alized by selection from a ladder of cavity modes by placing a
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FIG. 1. Schematic illustration of a quantum spin Hall insulator
with spin filtered edge state placed inside an optical cavity. The
green ellipselike object represents the quantum spin Hall insulator
that supports the edge states, while the blue and red arrows the
spin-momentum locked electrons on the edge. The wave vector of the
cavity mode is perpendicular to the direction of the edge electrons.

dispersive element into the cavity such as a prism or nonlinear
dielectric material. The system might also be implemented
using circuit quantum electrodynamical systems [28].

The structure of this paper is as follows: In Sec. II, we
introduce the Hamiltonian of our system, illustrate its prop-
erties, and then use mean field theory to determine its ground
state. In Sec. III, we focus on the photon field, calculate its
spectral function by taking Gaussian fluctuations into account
on top of the mean field solutions, and discuss its properties.
In the last section we investigate the frequency dependent
optical conductivity along the edge to reveal the subtle effect
of light-matter interaction on electronic transport.

II. THE MODEL

Our system consists of spin-momentum locked edge elec-
trons of a quantum spin Hall insulator with linear momentum
and a single mode of circularly polarized quantum electro-
magnetic field of a cavity, see Fig. 1. Treating the cavity field
as having its own quantum dynamics enables us to describe
the system in equilibrium and as such the use of concepts like
the existence of a ground state are justified [18].

The light-matter interaction originates from the Zeeman
term between the edge spins and magnetic field and from
another term through the Peierls substitution. The full Hamil-
tonian of the system is

H = ωa†a +
∑

p

2vpSz
p + gA√

L

∑
p

(a + a†)Sz
p

+ g√
L

∑
p

(aS+
p + a†S−

p ), (1)

where the first term is the energy of the cavity mode: ω

being the photon frequency, a† creates a photon with pos-
itive helicity. The second term of Eq. (1) describes the
spin polarized edge electrons with Sz

p = 1
2 (c†

p↑cp↑ − c†
p↓cp↓),

where c†
pσ creates an edge electron with momentum p and

spin σ = (↑,↓), v is the Fermi velocity (h̄ = 1). Since the
edge Hamiltonian is linear in momentum the electromagnetic
field’s vector potential appears due to the Peierls substitution

which is characterized by the third term with gA = ev√
ωε0

=√
g̃A

ω
the coupling strength of this interaction and L being

the dimensionless length of the edge, which is defined as
the number of edge sites times the lattice constant which is
taken to be unity. The number of electrons that occupy the
edge state and interact with the quantum light is therefore
proportional to L. The last one is the Zeeman term with

g = geμB

2c

√
ω
ε0

= √
g̃ω, where ge is the effective g factor of the

edge electrons, μB is the Bohr magneton, c the speed of light,
ε0 is the vacuum permittivity, and finally, S+

p = c†
p↑cp↓, S−

p =
c†

p↓cp↑. A detailed derivation of the Hamiltonian is done in
the Appendix. We assume that the Zeeman coupling is always
stronger than the vector potential interaction: gA < g, which
is satisfied if the photon frequency is ω > meffcv, with meff
effective edge electron mass. The topological insulator that
supports our linear edge state must have a band gap W , and
throughout the calculations we assume the energies to be
much smaller than this band gap so the effects of the insu-
lator’s bulk states can be neglected. It is important to remark
that the absence of a counter-rotating term [2] in Eq. (1) is the
result of the electromagnetic field being circularly polarized.
Furthermore, the wave vector of the cavity mode is assumed to
be perpendicular to the direction of the topological insulator’s
edge state. A term identical to the vector potential term can
also be generated if the propagation direction of the quantum
light has an angle of incidence θ with the edge state. The
coupling strength of this term is then g sin θ and the coupling
strength of the Zeeman term becomes gcos θ .

Let us first discuss the case when gA = 0, which makes
Eq. (1) an inhomogeneous Dicke model [29]. Without gA

the Hamiltonian exhibits U(1) symmetry, indeed eiφ(a†a+∑
p Sz

p)

leaves the Hamiltonian invariant and the total number of
excitations N = a†a + ∑

p Sz
p is a constant of motion. Time

reversal is the other symmetry of the system without gA, using
T = eiπ (a†a+∑

p Sy
p)K, where K is complex conjugation, the

Hamiltonian is unchanged:

T
(
a, a†, p, S±

p , Sz
p

)
T −1 = ( − a,−a†,−p,−S±

p ,−Sz
p

)
.

Reintroducing gA destroys the U(1) symmetry which
means that the total number of excitations are no longer
conserved. Since T leaves the vector potential term invari-
ant, the sole symmetry of the full system is time reversal.
Furthermore, the system is integrable when U(1) symmetry
is present and its mean field solution coincides with the exact
solution [30]. One can argue that if we integrate out the photon
degree of freedom, the resulting effective electron-electron in-
teraction has the form −g̃L−1 ∑

p,p′ S+
p S−

p′ which describes an
infinite range and constant strength interaction that makes the
mean field results in the thermodynamic limit (L → ∞) exact.
The same argument holds when gA �= 0. After integrating out
the photon field it yields an effective interaction:

Heff = − g̃

L

∑
p,p′

S+
p S−

p′

−
√

g̃g̃A

ωL

∑
p,p′

(
S+

p Sz
p′ + Sz

pS−
p′
) − g̃A

ω3L

∑
p,p′

Sz
pSz

p′ ,

(2)
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FIG. 2. The contourplot for the total ground-state energy. In panel (a) gA = 0, the energy exhibits a mexican hat structure with ϕ ∈ [0, 2π ]
one can sweep through the ground-state manifold with no energy cost. In panel (b) ρgA = 0.1 the minimum bends toward the real axis when
ϕ = 0 and π , so tunneling between the two degenerate ground states will require a finite amount of energy. The other parameters used:
ρW = 100, ρω = 1, ρg = 1.

which also describes infinite range and constant strength inter-
actions between electrons, therefore the mean field solution in
the thermodynamic limit is still exact. The last term in Eq. (2)
is a ferromagnetic coupling between electron spins mediated
by the vector potential of the cavity field, as we will see this
results in a generated photocurrent along the edges.

A. Mean field theory

In the thermodynamic limit the photon field becomes
macroscopically occupied [31]: 〈a〉 = √

nLeiϕ , the system is
in a superradiant phase. The mean field description means that
we replace the bosonic operators with their mean value and
then the Hamiltonian in Eq. (1) becomes:

HMF = ωnL +
∑

p

(c†
p↑ c†

p↓)

(
εp �

�∗ −εp

)(
cp↑
cp↓

)
, (3)

where εp = vp + gA
√

n cos ϕ and � = g
√

neiϕ . Equation (3)
is easily diagonalized by the Bogoliubov transformation:(

cp↑
cp↓

)
=

(
cos ϑ eiϕ sin ϑ

−e−iϕ sin ϑ cos ϑ

)(
dp+
dp−

)
, (4)

where tan 2ϑ = −|�|/εp and Eq. (3) becomes:

HMF = ωnL +
∑
p,α

Eα (p)d†
pαdpα. (5)

Here, α = ±1 and Eα (p) = αEp with:

Ep =
√

(vp + gA
√

n cos ϕ)2 + g2n. (6)

The mean field parameters (n, ϕ) which are understood as
the mean photon number density and the phase of the order
parameter, respectively, can be calculated by minimizing the
total ground-state energy (Egs). At half filling the α = −1
band is fully populated and the ground-state energy with W

cutoff energy and ρ = 1/vπ 1D density of states is:

Egs

L
= ωn − 1

L

∑
p

√
ε2

p + |�|2

= −ρW 2

2
+

(
ω − ρg2

A

2
cos2 ϕ

)
n

− ρ|�|2
4

(
1 + ln

4W 2

|�|2
)

. (7)

With gA = 0 the energy exhibits a mexican hat structure
in the Re〈a〉 − Im〈a〉 space, see Fig. 2, the phase remains
undetermined, and the ground state is infinitely degenerate
due to U(1) symmetry. When gA �= 0 the mexican hat structure
develops two minima along Re〈a〉 and the minimum energy
appears when cos2 ϕ = 1. The ground state is now doubly
degenerate due to time reversal symmetry which is sponta-
neously broken in the emerging superradiant phase.

By carrying out the minimalization of Eq. (7) we find the
phase and mean photon number density to be:

ϕ = mπ, m ∈ Z

n = 4W 2

g2
exp

(
2ρg2

A − 4ω

ρg2

)
. (8)

The mean photon number density as the function of the
Zeeman coupling g is always strictly positive: n(g) > 0. Since
we assume the vector potential coupling strength is always
smaller than the Zeeman coupling (g > gA), the photon num-
ber density has a maxima at ρgmax =

√
4ρω − 2ρ2g2

A with
nmax = 2ρW 2 exp(−1)/(2ω − ρg2

A), see Fig. 3. Detecting the
photon number can be achieved by various quantum nonde-
molition measurements [32,33], for example subjecting the
field to a quasiresonant beam of Rydberg atoms and measur-
ing the resulting phase shift of the atomic wave function [34].
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FIG. 3. The mean photon number density as the function of the
Zeeman coupling. The parameters used: ρω = 1, ρgA = 0.1.

The conventional Dicke model of two level atoms predicts
a phase transition at a critical coupling constant [2]. On the
other hand, considering the effects of the vector potential
as a diamagnetic term, it can be shown that the condition
for a stable superradiant phase is never satisfied due to the
Thomas-Reiche-Kuhn sum rule for atomic systems [35–37].
This is known as a no-go theorem. The main differences
between our model and the conventional Dicke model is that
the edge electrons have linear dispersion while the Dicke
two level atoms have a constant energy difference between
levels and the fact that here the vector potential appears as a
linear term while the diamagnetic term is quadratic. The Dicke
critical coupling constant is proportional to the square root of
the energy difference between the atomic levels, for linearly
dispersive two level systems this critical value reduces to
zero. Equation (8) shows us that for arbitrary small g > 0 and
for every gA the photon states are macroscopically occupied:
〈a†a〉 = nL, thus our system is always in its superradiant
phase as nothing prevents the phase transition from occurring.

1. Properties of the ground state

In the emerging superradiant ground-state time reversal
symmetry is spontaneously broken. This fact is proven by the
magnetic properties of this state. Indeed using the Bogoliubov
transformation, we get the spin expectation values as

〈Sx〉 = 1

L

∑
p

〈
Sx

p

〉 = − 1

2L

∑
p

|�| cos ϕ√
ε2

p + |�|2
,

〈Sy〉 = 1

L

∑
p

〈
Sy

p

〉 = 1

2L

∑
p

|�| sin ϕ√
ε2

p + |�|2
,

〈Sz〉 = 1

L

∑
p

〈
Sz

p

〉 = − 1

2L

∑
p

εp√
ε2

p + |�|2
. (9)

The magnetization along the x and z axis are nonzero and their
measured value would determine ϕ. The calculations show us

that the magnetization is proportional to the gap |�|:

〈Sx〉 = −ρ

2
|�| ln

2W

|�| cos ϕ,

〈Sy〉 = 0,

〈Sz〉 = −ρ|�|gA

2g
cos ϕ. (10)

The finite 〈Sz〉 also means that a net photocurrent is generated
along the edge through the magnetoelectric effect [38]. Us-
ing the edge Hamiltonian H = ∑

p 2vpSz
p and introducing a

vector potential A to the momentum as an external drive, we
can determine by varying H with respect to A that the current
density operator is:

j(q) =
∑
p,q

ev(c†
p+q↑cp↑ − c†

p+q↓cp↓)e−iqr . (11)

The current operator for q = 0 is j = 2ev
∑

p Sz
p, hence:

〈 j〉 = 2ev〈Sz〉 = −evρ|�|gA

g
cos ϕ. (12)

The photocurrent is zero when gA = 0 which means that the
vector potential generates it. This follows from the fact that
in Eq. (1) the vector potential term is similar to an effective
magnetic field. Furthermore, we showed earlier that after
integrating out the photon field it yields us a vector potential
mediated ferromagnetic coupling between spins, which leads
to nonzero expectation value for the magnetization. The di-
rection of the photocurrent is determined by the phase ϕ, with
cos ϕ = (−1)m.

III. PHOTON FIELD

After detailing the effects of the cavity on the material,
now we turn to the photon field and how it changes due
to the interaction with the edge electrons. To this end, we
will study the fluctuations over the mean field parameters
which conveniently reveals the validity range of the mean field
results [39]. We previously presented a physical argument
for this, as the effective interactions between electrons have
infinite range the mean field results must be exact. Now we
make a quantitative argument as well. Following Ref. [39]
and making use of coherent state path integral formalism
we introduce φ as a complex field for the photons and ψpσ

Grassmann fields for the edge electrons. The partition function
can be computed as

Z = Tre−βH =
∫

Dφ

∫
Dψ e−S (13)

with action

S =
∫ β

0
dτ φ̄(∂τ + ω)φ +

∑
p

η̄pMpηp = Sph + Sel ,

where η̄p = (ψ̄p↑ ψ̄p↓) is a spinor and the matrix

Mp =
(

∂τ + vp + gA√
L

Reφ g√
L
φ

g√
L
φ̄ ∂τ − vp − gA√

L
Reφ

)
.

245137-4



COLLECTIVE MODES FOR HELICAL EDGE STATES … PHYSICAL REVIEW B 99, 245137 (2019)

Because of superradiance we rescale the photon field φ →√
Lφ and integrate out the electron fields. The partition func-

tion becomes

Z =
∫

Dφ

∫
Dψ e−S =

∫
Dφ e−LSeff (14)

with effective action

Seff =
∫ β

0
dτ φ̄(∂τ + ω)φ − 1

L
ln

(∫
Dψ e−Sel

)
. (15)

If we proceed and try to find the minima of this action
(S0) with δSeff/δφ̄ = 0 we arrive at the mean field results
Eq. (8) as φ = √

neiϕ . The next step is expanding the effective
action around the mean field results to second order which is
equivalent to studying the fluctuations around the mean field
parameters: Seff = S0 + S2(δφ̄, δφ). With this expansion the
partition function becomes

Z =
∫

Dφ e−LSeff = e−LS0

∫
Dφ e−LS2 . (16)

Here the e−LSO term contributes to the mean field result for
the free energy. The remaining functional integral gives us the
second order correction to the free energy:

F ∝ ln Z = FMF + 1

L
ln det D−1, (17)

where D−1 is the inverse of the Green’s function of the
photons. It appears because it is the kernel of the action cor-
rection S2 and the determinant appears because the functional
integral has a simple Gaussian integral form. Since the mean
field parameters minimize the effective action this means that
det D−1 should be positive. In the thermodynamic limit (L →
∞) the correction vanishes thus making the mean field results
exact and the superradiant phase as the ground state stable.
We will see that D−1 has zero eigenvalues which describe the
Goldstone modes of this system [40], however these modes do
not contribute to the free energy in the thermodynamic limit.

A. Green’s function of the photons

Instead of calculating the kernel of the second order correc-
tion to the effective action, we construct the photon Green’s
function with diagram technique. Introducing the fluctuations
over the mean field parameters we modify Eq. (3) with a →
〈a〉 + a:

H = ωa†a +
∑

p

(c†
p↑ c†

p↓)

(
εp �

�∗ −εp

)(
cp↑
cp↓

)

+ gA√
L

∑
p

(
a + a†

)
Sz

p + g√
L

∑
p

(aS+
p + a†S−

p ), (18)

where the first row is the unperturbed mean field Hamiltonian
and the second row is understood as the perturbation. In the
Nambu space (a a†) the photon Green’s function is

D(τ ) = −
〈
Tτ

(
a(τ )a†(0) a†(τ )a†(0)
a(τ )a(0) a†(τ )a(0)

)〉
. (19)

The appearance of anomalous terms are evident from the
perturbation as it contains single creation and annihilation
photon operators. Because of this, first order diagrams have
no contribution and the first nonvanishing terms come from
second order diagrams, which are single fermion loops.

Evaluating these loops in Matsubara frequency space using
Dyson’s equation we arrive at the inverse Green’s function for
the photons:

D−1(iωn) = D−1
0 (iωn) − � =

(
K1 K2

K∗
2 K∗

1

)
,

K1 = iωn − ω + 1

L

∑
p

[
4g2

A|�|2 + g2
(
iωnεp + ε2

p + E2
p

)
Ep

(
4E2

p + ω2
n

)
− 2ggA|�|(2εp − iωn)

Ep
(
4E2

p + ω2
n

) ]
tanh

(
βEp

2

)
,

K2 = 1

L

∑
p

4g2
A|�|2 − g2�2 − 2ggA�εp

Ep
(
4E2

p + ω2
n

) tanh

(
βEp

2

)
.

(20)

Since we are interested in the properties of the ground state of
this system we make the T → 0 limit and obtain the retarded
Green’s function as the analytic continuation of Eq. (20).

B. Photon spectral function

The spectral function, defined as the complex part of the
trace of the retarded Green’s function, is:

A(�) = − 1

π
ImTrD(�). (21)

Carrying out the analytic continuation of Eq. (20) (iωn →
� + iη, with η = 0+) yields us the following integrals:

1

L

∑
p

−4|�|2
Ep

(
(� + iη)2 − 4E2

p

) = ρ f0(�),

1

L

∑
p

εp

Ep
(
(� + iη)2 − 4E2

p

) = 0,

1

L

∑
p

ε2
p

Ep
(
(� + iη)2 − 4E2

p

) = ρ

4
f2(�) − ω

2g2
+ ρg2

A

4g2
.

(22)

The complete forms of f0 and f2 are given in the Appendix.
The properties of these complex valued functions reveal in-
formation about the nature of the photon spectral function
in Eq. (21). The real parts of f0 and f2 go to unity when �

tends to zero: lim�→0 f0,2(�) = 1. Furthermore, they have
vanishing imaginary part when � < 2|�| and this sets the
threshold energy for continuum polariton excitations for � >

2|�|. Indeed, using the integrals in Eq. (22) the resulting
spectral function is zero for frequencies below 2|�|, except
for a well defined �0 value:

A(� < 2|�|) ∝ Im(F (�) − iη)−1 = π |F ′(�0)|−1δ(� − �0).
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FIG. 4. The real root of F (�0) = 0 as the function of increasing
vector potential coupling strength (gA). This is understood as the
energy requirement for phase fluctuations and as the energy of the
gapped Goldstone mode. The parameters used: ρω = 1, ρg = 0.4.
The inset figure is the spectral weight of the Goldstone mode as
the function of the Zeeman coupling with parameters: ρW = 100,

ρω = 1.

Here �0 is the real root of the function F (�) defined as:

F (�) =
(

ρg2
A

2
− ρg2

A f0(�) + ρg2

2
f2(�) − ρg2

4
f0(�)

)2

−
(

ρg2
A f0(�) − ρg2

4
f0(�)

)2

−�2

(
1 − ρggA

2|�| f0(�)

)2

. (23)

Taking gA → 0 in F (�) results in �0 = 0. When gA = 0
the ground state is infinitely degenerate as seen in Fig. 2 due
to U(1) symmetry and one can sweep through this ground state
manifold with no energy cost. This gives rise to a zero energy
Goldstone mode which is understood as the phase fluctuation
of the superradiant condensate and this appears in the spectral
function:

A(� < 2|�|) = 6ρg2|�|2
12|�|2 + (ρg2)2

δ′(�) = A0δ
′(�). (24)

The spectral weight of the Goldstone mode vanishes with
g. Since the gap depends on g according to Eq. (8) it has
a maxima (A0,max) at the solution of ln 48W 2

x(x−ω) = 4ω
x for x =

ρĝ2
max and vanishes as g increases. This is shown in the inset of

Fig. 4. In the presence of a nonzero gA phase fluctuations will
require a finite amount of energy, thus making the Goldstone
mode gapped which is described in �0, see Fig. 4.

In the � > 2|�| case the complex part of the functions f0

and f2 are nonzero and we get the polariton excitations and
their spectral weight in the spectral function A(� > 2|�|),
which is measurable by the absorption coefficient of the
cavity. Without interactions the spectral function has the form
A(�) = δ(� − ω) with the bare ω cavity mode. In Fig. 5, it is
noticeable that this mode is shifted down from ω because of

ρg̃

Ω
/
ω
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FIG. 5. The contour plot of the spectral function ln(ωA(�)) as
the function of the Zeeman coupling ρg̃ with gA = 0.1. The energy
of the Goldstone mode �0 is shown as the red solid line in the � <

2|�| regime. The white dashed line denotes the minimum excitation
energy 2|�|, above which the polariton continuum is formed. The
parameters used: ρW = 100, ρω = 1.

gA and with increasing g it gets damped as ∼ρg2. Eventually
it renormalizes into smaller frequencies before hitting the
optical gap at � = 2|�|, where the spectral function exhibits
a square root singularity. Apart from shifting ω for small
g the vector potential coupling does not have significant
contribution to the nature of the polariton continuum.

IV. CONDUCTIVITY ALONG THE EDGE

Equipped with the photon Green’s function, we can eval-
uate the Kubo formula for the frequency dependent optical
conductivity along the edge. The density-density correlation
function, which is readily related to the optical conductivity,
can be investigated by shot noise measurements. In addition,
the optical conductivity can directly be probed by the ampli-
tude or phase modulation of the optical lattice [41,42] that
realizes the spin Hall insulator of our system.

The response for an external drive has two contributions:

σ = σKubo + σdia. (25)

The first is the direct result for the conductivity computed
from the Kubo formula:

σKubo = χ (�)

i�
, (26)

where χ is the current-current correlation function.

χ (τ ) = 〈Tτ j(τ ) j(0)〉 = 4e2v2
∑

p

〈
Tτ Sz

p(τ )Sz
p(0)

〉
. (27)

The second term in Eq. (25) is a diamagnetic term. By diago-
nalizing the Hamiltonian in the presence of an external vector
potential, the resulting spinor wave functions will depend on
the vector potential through the Peierls substitution. Calculat-
ing the expectation value of the current operator to first order
in the vector potential gives us the diamagnetic contribution in
the conductivity formula: σdia = −ρe2v2/(i�). This is akin to
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the origin of a diamagnetic term in graphene where the energy
dispersion is also linear [43,44].

We calculate the correlation function in Eq. (27) diagram-
matically in Matsubara frequency space. The diagrams we
need to consider are a single fermion loop and a collective
mode diagram [45]. Evaluation of the single fermion loop
gives us:

�0
zz(iωn) = −T

L

∑
p,νn

Tr[σ zG(iνn)σ zG(iνm − iωn)]. (28)

Here G is the electron Green’s function, using Eq. (4) and
Eq. (5) this reads as:

G(p, iνn) = 1

(iνn)2 − E2
p

(
iνn + εp �

�∗ iνn − εp

)
. (29)

The term �zz is related to the correlation function in Eq. (27)
as χ = v2�. Summing over the frequencies and momenta in
Eq. (28) and taking the temperature to zero, we get:

�0
zz(�) = ρ f0(�). (30)

To evaluate the collective diagram we need to construct the
RPA equations. Instead of using D0 the unperturbed photon
propagator and considering a connected RPA system of equa-
tions, we follow here a different approach. Since we already
calculated the full photon propagator in Eq. (20), we sum
up all the possible combinations that would appear from the
interaction term of Eq. (18). This immediately gives us the
correlation function:

�zz = �0
zz − g2

(
�0

z+Daa�
0
+z + �0

z+Daa†�0
−z + �0

z−Da†a�
0
+z + �0

z−Da†a†�0
−z

)
−g2

A

(
�0

zzDaa�
0
zz + �0

zzDaa†�0
zz + �0

zzDa†a�
0
zz + �0

zzDa†a†�0
zz

)
−ggA

(
�0

z+Daa�
0
zz + �0

z+Daa†�0
zz + �0

z−Da†a�
0
zz + �0

z−Da†a†�0
zz

)
−gAg

(
�0

zzDaa�
0
+z + �0

zzDaa†�0
−z + �0

zzDa†a�
0
+z + �0

zzDa†a†�0
−z

)
. (31)

The minus signs in front of the couplings come from the
definition of the photon propagator in Eq. (19). In Eq. (31)
there are four more frequency sums:

�0
ab(iωn) = −T

L

∑
p,νn

Tr[σ aG(iνn)σ bG(iνm − iωn)],

with a and b are z or ±. Doing the same procedure as in
Eq. (28) these cross correlations are:

�0
±z(�) = ∓�0

z∓(�) = ± ρ�

4|�| f0(�).

To summarize Eq. (31) we gather every term into a single
function:

�zz(�) = ρ[ f0(�) − C(�) f0(�)], (32)

and we arrive at the full optical conductivity formula:

σ (�) = ρe2v2

i�
[ f0(�) − 1 − C(�) f0(�)]. (33)

This expression is very similar to other conductivity formulas
for electron-phonon coupled systems calculated with RPA
[46,47].

Let us first examine the properties of the conductivity
through the function C when gA = 0. In this case we need to
consider the first row of Eq. (31), the function C has the form:

C(�) = − �2

4|�|2
f0(�) f2(�)

f2(�)( f2(�) − f0(�)) − 4
ρ2g4 �2 − iη

.

When � → 0, C(0) = ρ2g4/(ρ2g4 + 16|�|2). By the
Kramers-Kronig relation, this implies a Dirac delta function at
the origin of the real part of the conductivity. Indeed making
the η → 0+ limit we get the Dirac delta in accordance with
Kramers-Kronig. This result clearly comes from the full
photon propagator and is absent from the single particle

contribution to the optical response, therefore the Goldstone
mode manifests itself in the conductivity formula as a Drude
peak:

σGoldstone = πρe2v2 ρ2g4

ρ2g4 + 16|�|2 δ(�). (34)

If we take the g → 0 then σGoldstone = πρe2v2δ(�), so it
becomes the conventional Drude weight [48]. This allows us
to introduce an effective mass due to light-matter interaction.
The Drude weight of the noninteracting system reads as
nee2/m, where ne is the particle number density of the edge
electrons and m is their mass. In the presence of interaction,
we rewrite the Goldstone conductivity as

σGoldstone = πnee2

m∗ δ(�), (35)

with effective mass:

m

m∗ = ρ2g4

ρ2g4 + 16|�|2 . (36)

The C function is a combination of the previously defined f0,2

functions, which indicates that the real part of the conductivity
must be zero for frequencies below 2|�|. The behavior of
Re(σ ) is shown in Fig. 6, with C = 0 the single particle term
has a square root singularity at frequency twice the gap. Con-
sidering the collective modes the square root singularity still
remains, however a portion of the weight of the conductivity
is transferred into the weight of the Goldstone mode, so that
the conductivity sum rule is not violated, indeed:∫ ∞

0
d� Re(σ (�)) = π

2
ρe2v2. (37)

Turning now to the case when gA is nonzero the function C is
given by Eq. (31). Notice that in Eq. (27) for convenience we
used a time ordered product instead of a commutator in the
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FIG. 6. The frequency dependent conductivity of the edges. The
solid black is the single particle result, the red contains the collective
terms with ρgA = 0, and the blue contains all terms with ρgA = 0.1.
The Goldstone peaks are also depicted; as gA is nonzero the peak
moves to frequency �0 and its weight increases. Further parameters:
ρω = 1, ρW = 100, ρg = 0.4.

Kubo formula. Unless the current operator possess a nonzero
expectation value [49], these two approaches give the same
result. However, in Eq. (12), the current operator has a finite
expectation value in the ground state, which means that our
result contains an extra term in Eq. (31), which is only present
in the time ordered product but should be absent from the
commutator:

−ρ2g4
A f0(�)

F (�) − iη
. (38)

This we must neglect [49]. The correct expression, in accor-
dance with the linear response commutator from the Kubo
formula, is:

C(gA,�) = − ρ f0(�)

F (�) − iη

[
g2�2

16|�|2
(
ρg2

A − 4ρg2
A f0(�)

+ ρg2 f2(�)
) + ρg2

Ag2( f2(�) − f0(�))

+ ggA�2

|�|
(

1 − ρggA

2|�| f0(�)

)]
. (39)

When � → 0 Eq. (39) vanishes and thus the Drude peak
disappears. However, the real part of the conductivity still
has a Dirac delta at the frequency where F (�) = 0, which
corresponds to the gapped Goldstone mode energy �0:

σGoldstone = πnee2

m∗ δ(� − �0), (40)

with effective mass that depends on the energy of the gapped
Goldstone mode:

m

m∗ = �0 f0(�0)2

16|�|2|F ′(�0)|
[
ρ2g4 f2(�0) + 16ρggA|�|

+ ρ2g2g2
A(1 − 16 f0(�0)))

]
. (41)

Instead of a dc conductivity we get a low frequency ac
one at �0. These results are very similar to the interband
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FIG. 7. The effective mass as the function of the Zeeman inter-
action strength is plotted and it resembles a step function. The arrow
indicates that the increase of gA shifts this step, thus the effective
mass becomes infinite at larger Zeeman coupling strength. This
means that the interaction involving the vector potential is making
the collective modes more stable at larger g. The parameters used:
ρω = 1, ρW = 100.

conductivity obtained when studying electron interaction with
Fröhlich phonons, there the resulting dc conductivity becomes
a low frequency ac due to Coulomb interactions [45].

In the absence of interactions, the real part of the conduc-
tivity of the edge electrons consists of only the bare Drude
peak with mass m. As the Zeeman interaction appears the
weight of this Drude peak decreases (m∗ increases) and the
real part of the conductivity is now nonzero for frequencies
over 2|�|. As g grows so does the effective mass and when the
coupling strength g is comparable with the photon frequency
(g ≈ ω) the effective mass renormalizes to nearly infinity, see
Fig. 7, thus making the collective modes in the conductivity
disappear. This means that the single particle description
of the conductivity is sufficient in this parameter range. In
addition to shifting the Drude peak to frequency �0, the
appearance of gA also decreases the effective mass m∗. This
can be seen in Fig. 6, as the conductivity curve when gA is
nonzero is always under the curve of the zero gA case. The
missing weight is transferred into the weight of the Goldstone
mode, due to the conductivity sum rule in Eq. (37), m∗ must
decrease. This means that the vector potential interaction
stabilizes the collective modes at stronger Zeeman couplings.
Figure 7 also supports this idea.

V. CONCLUSION

Interaction between a circularly polarized quantum photon
field and spin Hall edge electrons leads to a stable superradiant
ground state at arbitrary Zeeman interaction strength. This
ground state spontaneously breaks time reversal symmetry
and a net photocurrent or equivalently magnetization along the
z axis through the magnetoelectric coupling is generated by
the vector potential part of the electromagnetic field. Above a
threshold energy, corresponding to a Higgs mode, continuum
polariton excitations emerge from the single cavity mode
and below the threshold a Goldstone mode arises from the
phase fluctuations of the ground state. Without the coupling
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to the vector potential this mode sits at zero energy due to
the broken continuous U(1) symmetry. The introduction of
the vector potential decreases the symmetry of the system
into discrete time reversal. This results in a gapped Goldstone
mode as phase fluctuations require a finite amount of energy
to connect the symmetry broken ground states. In an external
classical electromagnetic field, this Goldstone mode manifests
itself in the frequency dependent conductivity along the edges
and produces a low frequency dc/ac conductivity, depending
on the absence/presence of the vector potential term, re-
spectively. When the Zeeman coupling becomes comparable
with the photon frequency, these conductivity structures only
survive if the interaction involving the vector potential is
present. For larger frequencies, the conductivity is zero for
frequencies smaller than twice the gap and has a characteristic
square root singularity at the Higgs mode, � = 2|�|, and
vanishes for increasing frequencies. Finally, we remark that
the requirement for the observation of the superradiant phase
is that the temperature should be well below the gap size.
Similarly to other predictions made by mean field theory, the
transition temperature is always comparable to the gap size
[50] and as such for temperatures T � � the effects detailed
above should be observable.
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APPENDIX

1. Derivation of the Hamiltonian in Eq. (1)

Our system involves spin-momentum locked edge elec-
trons with linear momentum: εσ (p) = σvp, σ = ±1 and v is
the Fermi velocity. With the definition of c†

p,σ which creates
an edge electron with momentum p and spin σ , we have:

Hedge =
∑
p,σ

εσ (p)c†
pσ cpσ =

∑
p

vp(c†
p↑cp↑ − c†

p↓cp↓). (A1)

The edge electrons are placed inside a cavity (Fig. 1) that
is having its own quantum dynamics. We are interested in
the interaction of the edge electrons and a single mode of
quantum light with fixed helicity. The energy of the mode
is: Hfield = ωa†a, where ω and a denote the frequency and
annihilation operator of a photon with positive helicity, re-
spectively. The interaction arises from the magnetic part of
the electromagnetic field that interacts with the spin of an edge
electron. This is a Zeeman interaction:

HZ =
∑
α,β

∫
d3r �†

α (r)(geμBS · B(r))�β (r)

= g√
L

∑
p

(
aS+

p + a†S−
p

)
. (A2)

Here g = geμB

2c

√
ω
ε0

= √
g̃ω is the coupling constant of the

Zeeman term, we used:

�σ (r) = 1√
L

∑
p

cpσ eipr,

B(r) = i

c

√
ω

2ε0L
((ez × e+)aeikr − (ez × e∗

+)a†e−ikr )

S = 1

2
(σ x σ y σ z )T , S±

p = 1

2

∑
α,β

c†
p,α

(
σ x

α,β ± iσ y
α,β

)
cp,β .

(A3)

There is another interaction term present from the vector
potential of the quantum electromagnetic field due to the
Peierls substitution (p → p + eA):

HA =
∑
α,β

∫
d3r �†

α (r)
(
evσ z

α,βAx(r)
)
�β (r)

= gA√
L

∑
p

(a + a†)Sz
p. (A4)

The final Hamiltonian in Eq. (1) is therefore:

H = Hfield + Hedge + HA + HZ . (A5)

2. The complete forms of the functions f0;2 in Eq. (22)

The functions f0 and f2 can be calculated from Eq. (22)
with Eq. (6):

f0(�) = 1

ρL

∑
p

−4|�|2
Ep

(
(� + iη)2 − 4E2

p

)
= −2v|�|2

∫ W

−W
dp

1

Ep
(
(� + iη)2 − 4E2

p

) (A6)

and

f2(�) = 2ω

ρg2
+ g2

A

g2
+ 1

ρL

∑
p

4ε2
p

Ep
(
(� + iη)2 − 4E2

p

)
= 2ω

ρg2
+ g2

A

g2
+ 2v

∫ W

−W
dp

ε2
p

Ep
(
(� + iη)2 − 4E2

p

) .

(A7)

By carrying out the integration with respect to the momentum
p and disregarding terms that are the order or lower than W −1,
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we get the complete forms of f0 and f2 with �(x) Heaviside functions:

f0(�) = �(2|�| − �)4|�|2
�

√
4|�|2 − �2

arctg
�√

4|�|2 − �2
+ �(� − 2|�|)

×
[

2iπ |�|2
�

√
�2 − 4|�|2

− 4|�|2
�

√
�2 − 4|�|2

arth

√
�2 − 4|�|2

�

]

f2(�) = �(2|�| − �)

√
4|�|2 − �2

�
arctg

�√
4|�|2 − �2

+ �(� − 2|�|)

×
[√

�2 − 4|�|2
�

arth

√
�2 − 4|�|2

�
− iπ

√
�2 − 4|�|2

2�

]
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