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Degenerate orbital effect in a three-orbital periodic Anderson model
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The competition between the Ruderman-Kittel-Kasuya-Yosida effect and Kondo effect is a central subject of
the periodic Anderson model. By using the density matrix embedding theory, we study a three-orbital periodic
Anderson model, in which the effects of degenerate conduction orbitals, via the local magnetic moments, number
of electrons, and spin-spin correlation functions, are investigated. From the phase diagram at half filling, we
find there exist two different antiferromagnetic phases and one paramagnetic phase. To explore the difference
between the two antiferromagnetic phases, the topology of the Fermi surface and the connection with the standard
periodic Anderson model are considered. The spin-spin correlation functions yield insight into the competition
between Ruderman-Kittel-Kasuya-Yosida interaction and Kondo interaction. We further find there exist “scaling
transformations,” and by applying them to the data with different hybridization strength, all the data collapses.
Our calculations agree with previous studies on the standard periodic Anderson model.
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I. INTRODUCTION

The accessible of clean interfaces between transition metal
oxides provides new opportunities for electronics [1,2]. The
reason is that most of the traditional electronic devices
are fabricated with semiconductor materials, whose behav-
iors are more predictable since the electron-electron interac-
tions are not dominant. Both transition metal oxides and rare
earth compounds are considered as strongly correlated mate-
rial, since the transition metal oxides include elements which
have partially filled d orbitals, while lanthanides and actinides
compounds have partially filled f orbitals. Successful fabri-
cations of the layered superlattices of heavy fermion mate-
rial [3–5] made a step towards strongly correlated electronic
devices, and triggered many interesting studies on layered f -
electron systems [6–11]. However, several fundamental prob-
lems still exist, in both theoretical and computational aspects.

One of the fascinating questions is what occurs at the
interface of the normal metal and strongly correlated insulator.
The answer is the Kondo proximity effect by dynamical mean
field theory (DMFT) [12], and Kondo screening embraces
both sides of the interface by determinant quantum Monte
Carlo (DQMC) [13]. Two neighboring conduction electron
layers and one localized electron layer is considered to de-
scribe this problem [10,11]. Meanwhile the correlated layers
sandwiched between normal metallic layers [14] and an even
more complex structure [15] is another interesting problem.
In order to understand more about this problem, we start with
a quasi-two-dimensional model. The model includes three
layers, and the electrons in the correlated layer is allowed to
hop to the other two conduction layers.

In the context of the periodic Anderson model (PAM),
the model we studied could be interpreted as two orthogonal
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conduction orbitals and one localized orbital on each site.
Therefore besides the connection with the layered f -electron
system, our work is related to the traditional degenerate orbital
problem in the fields of heavy fermions. It was pointed out that
the multiorbital effect plays an essential role in some uranium-
based compounds [16], and PAM which includes degenerated
f orbitals has been studied by DMFT [17]. Moreover it
was suggested that multiorbital conduction electrons may be
relevant to the heavy-fermion behavior of 3d transitional metal
compounds LiV2O4 [18]. Apart from the degenerate orbital
effect, the model is also connected with the multichannel
Kondo problem. Various mechanisms of non-Fermi-liquid be-
havior were discussed based on a multichannel Kondo lattice
model [19]. Compared with the Kondo lattice model, the PAM
includes charge degree of freedom, so the physics in it would
be more rich.

By employing the density matrix embedding theory
(DMET) [20,21], we study a three-orbital PAM in this paper.
We calculate local magnetic moments, number of electrons,
and spin-spin correlation functions to understand the physics
in the model. In the following we will describe the model first,
give a brief introduction to the method, present our results in
detail, and in the end we make a summary and conclusion.

II. MODEL AND METHODS

We consider a three-orbital PAM on a two-dimensional
square lattice, the Hamiltonian is the following:

H = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) − t

∑
〈i j〉σ

(d†
iσ d jσ + H.c.)

+V1

∑
iσ

(c†
iσ fiσ + H.c.) + V2

∑
iσ

(d†
iσ fiσ + H.c.)

+ E f

∑
iσ

f †
iσ fiσ + U

∑
i

n f
i↑n f

i↓, (1)
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(a) (b)

FIG. 1. The noninteracting dispersion relations on the square
lattice when Ef = 0 and V1 = V2 = V = 1.0t . (a) Standard PAM
which has one conduction orbital and one localized orbital on each
site; the hybridization between the two orbitals open a gap. (b) Three-
orbital PAM, which has two conduction orbitals and one localized
orbital on each site. The shape of the upper band (black line) and the
lower band (red line) is the same as the standard PAM. The black
dashed line is the Fermi level at half filling.

where c†
iσ (ciσ ) and d†

iσ (diσ ) are the creation (annihilation) op-
erators of the two conduction orbitals on site i with spin σ , and
f †
iσ ( fiσ ) is the creation (annihilation) operators of localized

orbital. t is the hopping integral between nearest-neighboring
conduction orbitals, E f is the on-site energy of the localized
orbital ( f state), which defines the relative position of the f
state with respect to the Fermi energy of the conduction orbital
(c state). V1(V2) is the hybridization strength between c(d)
and f states on the same site, and U is the on-site Coulomb
repulsion of the f states.

In the noninteracting case, the Hamiltonian in the momen-
tum space could be written as

H0 =
∑
k,σ

(c†
kσ d†

kσ f †
kσ )

⎛
⎝εk 0 V1

0 εk V2

V1 V2 E f

⎞
⎠

⎛
⎝ckσ

dkσ

fkσ

⎞
⎠, (2)

where ε(k) = −2t (coskx + cosky) is the dispersion relation
of the conduction band. Diagonalizing the noninteracting
Hamiltonian H0 yields three bands:

E (k) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
E f + ε(k) +

√
(E f − ε(k))2 + 4V 2

1 + 4V 2
2

]
ε(k)
1
2

[
E f + ε(k) −

√
(E f − ε(k))2 + 4V 2

1 + 4V 2
2

]
.

(3)
We plot the dispersion relation in Fig. 1. As comparison the

dispersion of the standard PAM is shown in the left panel. The
hybridization between the conduction orbital and localized
orbital results in two different bands, and produces a gap
between the two bands (black and red). It is not difficult to
prove that the gap always exists no matter how the parameters
change. The dispersion relation of the three-orbital PAM is
similar, except there is an additional band in the middle of the
other two bands. The additional band is shown as the blue line
in the right panel of Fig. 1. It can be proved that the blue band
is always in the middle of the black and red bands. The shape
of the black band and the red band is similar to the ordinary
PAM. The dispersion of the additional band is the same as
the conduction band, because it is a linear combination of the
two conduction orbitals. At half filling the ordinary PAM is
insulating, while the three-orbital PAM is metallic.

Ever since it was developed DMET [20,21] has been
applied to several different areas, including the standard
Hubbard model [22], the Hubbard-Holestein model [23],

FIG. 2. In the DMET the square lattice is first divided into
clusters (1 × 2 here), and one of the clusters is chosen as impurity
sites (the red sites); the rest of the blue sites of the lattice are
considered environment sites. The bath orbitals, core orbitals, and
virtual orbitals are linear combinations of orbital environment sites.
The impurity orbitals and bath orbitals constitute active space.

which contains electron-phonon interaction, cuprates [24,25],
the single impurity Anderson model [26], as well as quantum
molecules [27,28]. Besides ground-state static properties, dy-
namic properties such as spectral function [29] could be de-
rived, as well as the nonequilibrium dynamics [30]. For more
details of the methods, please refer to the thesis, Ref. [31].

In a DMET calculation, the lattice sites are first divided
into different clusters as shown in Fig. 2. The clusters are
chosen to tile the whole lattice, and they are always the unit
cells of the lattice in order to keep the translation invariance.
The example of a 1 × 2 cluster is displayed in Fig. 2.

An auxiliary system with Hamiltonian h is then introduced:

h =h0 + v, (4)

where h0 is the one-body term in H , and v is the correlation
potential within the cluster. In the particle number conserving
case (no superconducting phase) v has the form,

v =
∑

C

∑
i, j∈C

vi jσ c†
iσ c jσ , (5)

where C is one of the clusters that is within dashed circles
in Fig. 2. h is the block diagonal since v is only within the
cluster, and v is a replacement of local interaction.

The one-body Hamiltonian h is simple enough to be solved.
From the ground state |�〉 of h, the embedding basis could be
constructed. The sites in one of the clusters (the red sites in
Fig. 2) are chosen as the impurity orbitals. The remaining sites
(the blue sites in Fig. 2) are the environment orbitals. There
are several mathematically equivalent unitary transformations
after applying which environment orbitals are linearly com-
bined into bath orbitals (magenta energy levels in Fig. 2), core
orbitals (black energy levels), and virtual orbitals (gray energy
levels). Core (virtual) orbitals are completely full (empty),
thus only bath orbitals are entangled with impurity orbitals.
The core orbitals and bath orbitals constitute active space, and
the number of bath orbitals is at most the number of impurity
orbitals. The impurity Hamiltonian Himp is constructed as

Himp = PhP −
∑

i, j∈imp

vi jc
†
iσ c jσ + U

∑
i∈imp

n f
i↑n f

i↓, (6)

where P is the projection operator which projects the system
to the active space. The correlation potentials on the impurity
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orbitals are replaced by the on-site Coulomb interaction.
Since the impurity Hamiltonian Himp is only within the active
space, exact diagonalization and other computational expen-
sive methods could be used to solve the ground state |�〉 of
Himp. In this work we use the density matrix renormalization
group (DMRG) to solve the impurity model Himp.

The impurity model Himp includes a few impurity orbitals
as well as a few bath orbitals. The one-body terms in Himp

are of a general form, so the real space DMRG is not suitable
for this problem. Instead momentum space DMRG which is
widely used in quantum chemistry simulations is appropri-
ate. Our simulations are finished with the BLOCK quantum
chemistry DMRG package [32]. Since the cluster is chosen as
1 × 2, there are six impurity orbitals and six bath orbitals in
the impurity model. Thus in a DMRG calculation the impurity
model has 12 orbitals, and mostly 12 electrons. The precision
and computational cost of a DMRG calculation depends on
the number of states kept M. In most of our simulations
M = 3000 is enough, but near phase transition M = 10 000
is required.

The corresponding one-particle reduced density matrix (1-
PDM) of the ground state |�〉 of Himp is ρI , and the correlation
potential is updated through ρI . Our goal is to minimize the
difference between |�〉 and |�〉 (ground state of h). This is
accomplished by first downfolding |�〉 to the active space
|φ〉 = P|�〉, and the 1-PDM of |φ〉 is ρ0. Both ρI and ρ0

are dependent on the correlation potential v. However, ρI is
much more computational costly than ρ0. In the process of
updating the new correlation potential, ρI is fixed and only ρ0

is changed with the correlation potential v,

min
v

f (v) =
√∑

i j

∣∣ρI
i j (v0) − ρ0

i j (v)
∣∣2

. (7)

When the optimal v is found, it’s used to update the aux-
iliary Hamiltonian h and its ground state |�〉, the embedding
basis, the impurity model Himp, as well as the corresponding
|�〉 and ρI . Thus the self-consistent loop is formed.

In summary the DMET calculations proceed with the fol-
lowing steps:

(1) An initial guess of the correlation potential v0 is cho-
sen.

(2) Solve the auxiliary lattice Hamiltonian to obtain the
lattice wave function |�〉.

(3) The embedding basis is constructed from the lattice
wave function |�〉.

(4) Transform to the embedding basis, and add the inter-
action to get the impurity model Himp.

(5) Use the DMRG impurity solver to compute the ground
state |�〉 of the impurity model, and calculate the correspond-
ing 1-PDM ρI .

(6) Update the correlation potential v to minimize the
difference of ρI and ρ0.

(7) Go back to step (2) until the correlation potential v

converges.
The local observables such as local magnetic moment and

the number of electrons are extracted directly from 1-PDM of
|�〉. Other observables such as ground-state energy and spin-
spin correlation are calculated from 2-PDM of |�〉.

FIG. 3. Ground-state phase diagram when U = 8t ; it is symmet-
ric with respect to Ef = −U/2. There are three different phases: the
paramagnetic (PM) phase and two antiferromagnetic phases (AF1
and AF2). The phase transitions from the AF2 phase to the other
two phases are first order, and marked as the red solid and blue solid
lines. The phase transition between the AF1 phase and the PM phase
are continuous, and marked as the blue dashed line. Within the AF2
phase there’s a Kondo region, in which nf ≈ 1.0. The gray scale is
x = |nf − 1.0|.

III. RESULTS

We have run the DMET calculations of the three-orbital
PAM on a two-dimensional square lattice. The lattice size in
our calculation is 200×200. We mainly focus on the physics
at half filling, and in our simulation t = 1, U = 8.

A. Order parameter and phase diagram

First we focus on the symmetric case when V1 = V2 = V .
The ground-state phase diagram at half filling is shown in
Fig. 3, and it’s symmetric with respect to E f = −U

2 . In the
case of E f = −U

2 , the Fermi energy of the conduction bands
is zero which is just in the middle of the two energy levels
of the f orbital (−U

2 and U
2 ). Away from the axis of E f =

−U
2 , considering the particle-hole symmetry, all the physical

quantities map to each other. From Fig. 3 we can see the
paramagnetic (PM) phase and two different antiferromagnetic
phases (AF1 and AF2). The magnetic transition is shown
as blue lines in Fig. 3. From the AF1 phase the magnetic
transition is continuous, while from the AF2 phase it is first
order. In Fig. 3 the continuous magnetic transition is displayed
as the blue dashed line, and the first-order magnetic transition
is the blue solid line. The phase transition between the two
magnetic orders is of first order, and displayed as the red solid
line in Fig. 3. It is a Lifshitz transition which is accompanied
by the reconstruction of the Fermi surface. We will discuss
this in more detail later. Inside the AF2 phase, there’s a
Kondo region. In the Kondo region the occupation number
of electrons on the f orbital n f is 1, and so are the nc and nd .
It’s worth mentioning that the term “Kondo region” doesn’t
mean Kondo effect takes place; we just follow the nomination
in literature [33].
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FIG. 4. By varying Ef , the results when V = 0.1, V = 0.5, V =
1.0, and V = 1.5 are displayed in black, red, blue, and magenta.
(a) The occupation number of f orbitals. (b) The local magnetic
moment of f orbitals.

Now we discuss how the phase diagram is determined. We
have calculated the local magnetic moments and the number
of electrons, and they are shown in Fig. 4. The definitions of
those physical quantities are

mα
i = 〈

nα
i↑ − nα

i↓
〉
, nα

i = 〈
nα

i↑ + nα
i↓

〉
. (8)

Here nα
iσ is the number of spin σ electrons of α orbitals on site

i. As we mentioned before, m f
i and n f

i are symmetric with
respect to E f = −U

2 , due to the particle-hole symmetry. In
order to display more details we only plotted the data when
E f > −U

2 . At half filling nc
i + nd

i + n f
i = 3.0, considering

nc
i = nd

i in the symmetric case, so only n f
i is plotted.

At small value of V , there are mainly five regions: (i) max-
imally occupied f states where n f = 2, when E f < E (0)

c −
U ; (ii) first mixed valence region where 1 < n f < 2, when
E (0)

c − U < E f < E (1)
c − U ; (iii) Kondo region where n f =

1, when E (1)
c − U < E f < E (1)

c ; (iv) second mixed valence
region where 0 < n f < 1, when E (1)

c < E f < E2
c ; (v) empty

f states where n f = 0, when E f > E (2)
c . The E (0)

c (E (2)
c ) is

the lowest (highest) energy level of the conduction band, and
E (1)

c is the Fermi energy of the conduction band. In Fig. 4(a)
only the Kondo region (−8 < E f < 0) and the second mixed
valence region (0 < E f < 4) are shown. As the hybridization
strength V increases the two mixed valence regions expand,
and at the same time the other three regions shrink. The Kondo
region becomes smaller and smaller as V increases, and for
V ≈ 1.20 it becomes a point and only the symmetric point
E f = −4 belongs to the Kondo region. At the symmetric point
E f = −4, n f = 1 no matter how the hybridization strength V
changes.

The antiferromagnetic long-range order is formed in the
Kondo region when the value of V is small. If V is fixed,
and E f goes away from the symmetric axis, the magnetic
transition to a paramagnetic phase takes place in the mixed
valence region. It’s obvious in Fig. 4 that there exists a
sizable jump in both local magnetic moment and number of
electrons when V = 0.5 and V = 1.0 (the red and blue lines in
Fig. 4). This is due to the occurrence of the Lifshitz transition.
Even though there have been several studies of the Lifshitz
transition on PAM [34–36], it happening at half filling is still
unusual [37].

In order to understand how the Lifshitz transition occurs,
we plotted the band structure of the two antiferromagnetic

AF1 AF2

PM

X

X

(a)

(d)

(f )

(e)(c)

(b)

(g)

FIG. 5. (a) Band structure in the AF1 phase. (b) Band structure
in the AF2 phase. The dashed line is the Fermi level at half filling.
(c) The first Brillouin zone of the square lattice, and the gray shaded
region is the first Brillouin zone when antiferromagnetic order is
present. (d) The upper right quarter of the Brillouin zone. The band
structure are plotted from M to 	, 	 to X , and X to M as the arrows
indicated. (e) The Fermi surface in the PM phase. (f) The Fermi
surface in the AF1 phase. (g) The Fermi surface in the AF2 phase
(slightly away from half filling).

phases in Fig. 5. As we mentioned in the previous sec-
tion, in a DMET calculation, the correlation potential is
self-consistently determined. Adding a converged correlation
potential to the noninteracting part of the Hamiltonian, and
diagonalizing the auxiliary Hamiltonian, the band structure
could be derived. The presence of antiferromagnetic order
makes the unit cell twice than before, so the first Brillouin
zone of the reciprocal lattice becomes half of the nonmagnetic
case. The bigger square in Fig. 5(c) is the first Brillouin zone
(	 point is in the center) in the PM phase, and the gray shaded
smaller square is the first Brillouin zone in the presence of
antiferromagnetic order. Figure 5(d) is a quarter of the upper
panel with all the high symmetry point marked. From Fig. 5(c)
we know the Brillouin zone is folded along two neighboring
X points. The band structure repeats itself along the dashed
line of Fig. 5(c). So there are six bands in the band dispersion
figures of the two AF phases. Figures 5(a) and 5(b) are the
band structure of the AF1 and AF2 phases, and the Fermi
level at half filling is displayed as the dashed line. The AF1
phase has a hole-type Fermi surface around the 	 point. The
topology of the AF1 phase is the same as the PM phase.
However, the AF2 phase is rather different. At half filling,
it’s in a semimetal phase, since the X point and the middle
point between the 	 point and M point have “Dirac cone.”
Please note the Fermi surface in Fig. 5(g) is the Fermi surface
slightly away from half filling. The Fermi surface of the AF1
and AF2 phases is similar to the previous Kondo lattice model
studies [38,39]. The AF1 phase has a hole-type large Fermi
surface, and the AF2 phase has an electron-type small Fermi
surface (at half filling the AF2 phase is in a semimetal phase,
and there’s only “Fermi line”). The difference between the
three-orbital model and the standard two-band model is that
two bands are crossing the Fermi energy level instead of one
band.
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FIG. 6. The spin-spin correlation functions as a function of Ef in
left panels, and as a function of V in the right panels. (a) and (b) The
magnetic correlation between intrasite f orbital and c orbital. (c) and
(d) The magnetic correlation between neighboring f orbitals.

B. Spin correlations and Kondo singlet

The magnetic physics of the PAM can be characterized
by the spin-spin correlations. We study the spatial spin-spin
correlation functions, and the definitions are

Cf c(r = 0) = 〈
m f

i mc
i

〉 = 〈(
n f

i↑ − n f
i↓

)(
nc

i↑ − nc
i↓

)〉
,

Cf f (r = 1) = 〈
m f

i m f
j

〉 = 〈(
n f

i↑ − n f
i↓

)(
n f

j↑ − n f
j↓

)〉
, (9)

where Cf c(r = 0) measures the magnetic correlations be-
tween the localized orbital f and conduction orbital c on
the same site. While Cf f (r = 1) measures the correlations
of localized orbital f between neighboring sites. To explore
the magnetic property the hybridization V is fixed first. The
results are displayed in the left panel of Fig. 6. Starting from
the symmetric point at E f = −4 the system evolves from the
AF2 phase to the PM phase directly when V = 1.0. In the AF2
phase the correlation function Cf c(r = 0) is almost constant,
and it drops to zero gradually in the PM phase. Moreover
there’s a kink at the magnetic transition point. While the
behavior of Cf f (r = 1) is rather similar to the local magnetic
moment. Its absolute value decreases slowly in the AF2
phase, and after a finite step, it approaches to zero gradually.
Apart from the discontinuous of n f and m f , the jump here
is other evidence that the transition from the AF2 phase to
the PM phase is first order. Meanwhile the absolute value of
Cf c(r = 0) is smaller when V = 0.3 and V = 0.5. The reason
is the hybridization strength V increases the antiferromagnetic
spin-spin interaction between f and c orbitals. The system
undergoes all the three phases when V = 0.3 and V = 0.5.
The absolute value of Cf c(r = 0) increases slightly in the
AF2 phase. It mainly decreases in the AF1 phase, and of
course comes to zero eventually in the PM phase. However,
the minimum point of the Cf c(r = 0) curve is not the Lifshitz
transition point. Unlike the order parameter there’s no sudden
change when entering in a new phase.

Next we check the results in the right panel of Fig. 6.
They are calculated by fixing E f and varying V continuously.
Different colors in the figures represent different values of E f .

FIG. 7. The hybridization parameter Vu defined in Eq. (10) to
characterize the Kondo screening. (a) Vu as a function of Ef . (b) Vu

as a function of V ; the dashed line is 1/3 ≈ 0.3333.

If the value of V is small, E f = −4, E f = 0.5, and E f = 6
correspond to the Kondo region, the second mixed valence
region, and empty f states. The behavior of Cf f (r = 1) is easy
to interpret. When E f = 6 the antiferromagnetic long-range
order never shows up, so it keeps to zero at all values of V .
For the other two values of E f , the long-range order is present
at small value of V , so there’s antiferromagnetic correlations
between neighboring f orbitals. As V increases, it becomes
to zero gradually. However, the Cf c(r = 0) curves are more
interesting. Although there’s no antiferromagnetic long-range
order when E f = 6, the antiferromagnetic correlation between
f and c orbitals increases monotonously as V increases, while
the situation when E f = 0.5 and E f = −4 is different. If the
long-range order presents, the absolute value of Cf c(r = 0)
increases rapidly. And in the PM phase it increases slightly
and then decreases very slowly. At large value of V , regardless
of the value of E f , the value of Cf c(r = 0) approaches −1/4
[dashed line in Fig. 6(b)]. This suggests that the paramagnetic
phase at large value of V is different from the phase when E f

is far away from the symmetric point.
The hybridization between conduction and localized or-

bitals is responsible for the creation of the Kondo singlet,
and in the mean field level the hybridization parameters are
introduced to qualify the formation of Kondo singlet [40,41].
In order to characterize the Kondo screening, a hybridization
parameter Vu is defined as

Vu = − 1
2 (Va + Vb), (10)

where Va and Vb are hybridization parameters defined on the
two sublattices A and B:

Va = 〈c†
iA↑ fiA↑〉 = 〈c†

iB↓ fiB↓〉,
Vb = 〈c†

iA↓ fiA↓〉 = 〈c†
iB↑ fiB↑〉. (11)

Now we discuss how the hybridization parameter Vu varies
with different parameters; the results are shown in Fig. 7.
Since the Kondo coupling J between the localized moment
and conduction electrons is proportional to the square of
hybridization strength V , it’s more and more likely to form
a Kondo singlet as V increases. The three different curves in
the left panel of Fig. 7 accord with the fact that the Kondo
effect dominates more as V increases. In both the AF1 phase
and AF2 phase the hybridization parameter Vu increases as E f

increases. This indicates the competition between the Kondo
effect and RKKY effect, as the RKKY effect becomes weak
as E f is away from the symmetric point. However, in the PM
phase Vu decreases as E f goes away from the symmetric point.
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FIG. 8. With the transformation in Eqs. (12) and (13), the data
of mα and nα when Ef = −1, V1 = V , and V2 = γV . The insets are
the data before the transformations. (a) Local magnetic moment of
c orbital. (b) Occupation number of electrons on c orbital. (c) Local
magnetic moment of f orbital. (d) Occupation number of electrons
on f orbital.

This is due to the number of electrons in f orbitals descending
as E f increases. Near the magnetic transition point Vu reaches
its maximum. If the AF1 phase is present, the maximum is
located in the AF1 phase; otherwise the maximum is in the
PM phase.

By fixing E f the hybridization parameter Vu increases as V
increases monotonously. At large value of V , the hybridization
parameter Vu approaches 0.5. In both the AF1 phase (E f =
0.5, V < 0.285) and AF2 phase (E f = −4, V < 1.325) the
hybridization parameter Vu increases rapidly. After entering
into the PM phase, the slope of Vu − V becomes smaller and
smaller. When the hybridization strength V is large enough Vu

approaches 1/3 ≈ 0.3333, which is plotted as a dashed line in
Fig. 7(b).

C. Nonsymmetric case V1 �= V2

We further consider the nonsymmetric case when V1 �= V2.
The hybridization strength V1 = V and V2 = γV1, and in the
following only V is varied continuously. It’s surprising that
the data with different hybridization ratio γ are all connected
with each other through a “scaling transformation.” After the
transformation all the data collapse just as the finite size
scaling.

The scaling transformation of local magnetic moment is

mc(V, γV ) = 2

1 + γ 2
m̄c

(√
1 + γ 2

2
V

)
,

md (V, γV ) = 2γ 2

1 + γ 2
m̄c

(√
1 + γ 2

2
V

)
,

m f (V, γV ) = m̄ f

(√
1 + γ 2

2
V

)
, (12)

where m̄α is the local magnetic moment on orbital α in
the case of V1 = V2 = V0, and the value of the hybridization

strength V0 is
√

1+γ 2

2 V . After the transformation mc and m f

are displayed in Figs. 8(a) and 8(c), and the insets are the orig-
inal data from simulation. Different ratio of the hybridization

FIG. 9. In the standard PAM V ′ = 1/
√

2 such that in the cor-
responding three-orbital model V1 = V2 = 0.5. (a) The ground-state
energy of the standard PAM as a function of occupation number, and
the lowest energy is marked with pentagons. (b) The f orbital local
magnetic moment as a function of Ef . (c) The number of electrons
on the g orbtial as a function of Ef .

strength are displayed with different colors, γ = 1, γ = 1.5,
γ = 2, and γ = 3 are black, green, red, and blue in Fig. 8. In
this model the only difference between orbital c and orbital d
is the hybridization strength. md is equivalent with mc through
γ → 1/γ , thus only mc is displayed.

However, the formula of the transformation for nc and nd

is a bit more complex:

nc(V, γV ) = 2

1 + γ 2
n̄c

(√
1 + γ 2

2
V

)
+ γ 2 − 1

γ 2 + 1
ng(V, γV ),

nd (V, γV ) = 2γ 2

1 + γ 2
n̄c

(√
1 + γ 2

2
V

)
− γ 2 − 1

γ 2 + 1
ng(V, γV ),

n f (V, γV ) = n̄ f

(√
1 + γ 2

2
V

)
. (13)

As in Figs. 8(b) and 8(d), after the transformation all the
data collapses. This behavior is quite similar to the finite size
scaling. Since the equivalence of orbital c and orbital d , as
well as nc + nd + n f = 3.0, only the results of nc and n f are
displayed.

In order to understand the physical meaning of ng, now
we consider the extreme case of V1 = 0 and V2 = V ′ ≡√

1 + γ 2V1. The d orbital and f orbital constitute a standard
PAM, and the c orbital is alone. To distinguish from previous
paragraphs, the c orbital is mentioned as the g orbital, and
the d orbital is mentioned as the e orbital. At half filling
still ne + n f + ng = 3.0. We simulate the system constituted
by standard PAM and one separated conduction band, and
keep the occupation number of electrons to half filling, the
results are presented in Fig. 9. The total ground-state energy
versus the number of ne + n f is shown in Fig. 9(a). Different
colors represent different E f . The value of V ′ is chosen that
the equivalent V1 = V2 = 0.5. In the AF2 phase the ground
state of the system constitutes e and f orbitals at half filling.
In the AF1 and PM phase as E f increase, the standard PAM is
less than half filling, and the electrons become more likely to
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FIG. 10. The spin-spin correlation functions when
Ef = −1, V1 = V , and V2 = γV . The data before the
transformations in Eq. (14) are displayed in the insets. (a) Magnetic
correlation function between intrasite c and f orbitals. (b) Magnetic
correlation function between c and f orbitals on neighboring sites.

stay in the g orbital. Figure 9(b) is the local magnetic moment
of the f orbital, and Fig. 9(c) is the occupation number of the g
orbital. All the results here are consistent with each other, and
they suggest how the Lifshitz transition occurs at half filling.
In the standard PAM the Fermi surface reconstruction happens
away from half filling [37].

In a word the nonsymmetric case is related to the symmet-
ric case as long as V 2

1 + V 2
2 = V 2

0 . Both mα and nα are two
fermionic operators, and the above transformations are held
for all the data with a different ratio of hybridization strength.
Now we consider the four fermionic operators, such as the
spin-spin correlation functions. Still the transformations exist:

Cf c(r = 0) = 〈
m f

i · mc
i

〉 = C̄ f c(r = 0) = 2

1 + γ 2

〈
m̄ f

i m̄c
i

〉
,

Cf c(r = 1) = 〈
m f

i · mc
i

〉 = C̄ f c(r = 1) = 2

1 + γ 2

〈
m̄ f

i m̄c
j

〉
,

Cf d (r = 1) = 〈
m f

i · md
i

〉 = C̄ f d (r = 1) = 2γ 2

1 + γ 2

〈
m̄ f

i d̄d
j

〉
,

Cf f (r = 1) = 〈
m f

i · m f
j

〉 = C̄ f f (r = 1) = 〈
m̄ f

i m̄ f
j

〉
. (14)

The notations are the same as previous, and the results are
displayed in Fig. 10. We don’t want to bother the readers with
all the data, so only Cf c(r = 0) and Cf c(r = 1) are displayed.

IV. CONCLUSIONS

A number of theoretical and numerical works
[12,13,42–45] have examined the physics at the interface
of the Mott insulator and metal. Inhomogeneous DMFT
predicts fragile Fermi liquid appears in finite layers of the
Mott insulator sandwiched between metallic leads [14]. In
this paper, by introducing a three-orbital periodic Anderson
model, we have studied one insulator layer sandwiched
between two metallic layers with DMET.

The model we studied is a periodic Anderson model with
degenerate conduction orbitals. We start with the symmetric
case, when the two conduction orbitals have equal hybridiza-
tion strength with the localized orbital. We found there are
three different phases at half filling. When the hybridization
strength V is weak, the RKKY effect dominates, and the
ground state is in antiferromagnetic phase. As V increases
the Kondo effect becomes important, and the paramagnetic
phase appears. In the region when V is small, there exists two
different antiferromagnetic phases.

The phase transition between the two AF phases is the
Lifshitz transition, which is accompanied by the Fermi sur-
face reconstruction. From the band structure, we discussed
the topology of the Fermi surface. We further studied the
nonsymmetric case, and found the equivalence of the model
to another model. In the picture of the other model, the
mechanism of the Lifshitz transition is more clear. We also
studied the spin-spin correlation functions carefully. When
V is small, even though the Kondo effect is not that strong,
as E f is away from the symmetric point, the Kondo effect
becomes more important at first, then disappears as expected.
However, the quantization of the strength of Kondo screening
is not well defined; otherwise it will be interesting to unearth it
deeply.

Compared with the standard PAM, the phase diagram of
the three-orbital PAM is more rich at half filling. There is
only one antiferromagnetic phase at half filling in the standard
PAM [37], while there are two different antiferromagnetic
phases in the three-orbital model. If V < 0.75 both the AF1
and AF2 phases are present, and if V > 0.75 the AF1 phase is
absent. The Fermi surface is also different from the standard
model. Two bands are crossing the Fermi level in the three-
band model. Furthermore the AF2 phase is in a semimetal
phase at half filling. Away from half filling, the AF2 phase
enters into the metal phase. From the band structure, the phase
diagram of the three-orbital model would be more complex
away from half filling. Although with so many differences,
the three-orbital model has connections with the standard
PAM. It’s equivalent with the standard PAM along with a
noninteracting band.

Our work on the three-orbital PAM is a first step in the
applications of DMET to superlattice f electron models.
We only restricted ourselves at half filling. There will be
more exotic and fascinating phenomena far away from half
filling, such as complex magnetic order, unconventional su-
perconductivity, and exotic transport properties. The model
we studied here is too simple to describe any real materials.
The extra correlated layer drives the system into the semimetal
phase. But the semimetal phase only appears at half filling. It’s
difficult to predict any observable effects in experiments, with
only static zero temperature physical properties. The transport
properties and thermodynamics would be interesting, and they
will be the next step. Our results indicate the physics of
the quasi-two-dimensional model is different from that of
the standard model. In order to study more complex and
realistic systems, developing more powerful impurity solvers,
with high precision and low computational cost, will be
significant.
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