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We investigate two-dimensional compactifications of three-dimensional fractonic stabilizer models. We find
the two-dimensional topological phases produced as a function of compactification radius for the X -cube model
and Haah’s cubic code. Furthermore, we uncover translation symmetry enrichment in the compactified cubic
code that leads to twisted boundary conditions.
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I. INTRODUCTION

The exploration of topological order in three dimensions
led to the surprising discovery of fracton models, whose
topological excitations have emergent mobility restrictions
[1–13]. A large class of these models can be realized by
local commuting projector Hamiltonians and obey lattice
definitions of topological order [14]. They are broken up into
type-I [15–28] and type-II categories [29–32] depending on
whether there are any string operators in the theory. Similar
phenomena have been observed in higher rank gauge theories
[33–50]. For a review of fracton lattice models and gauge
theories, see Ref. [51].

In this work, we explore the properties of fracton models
under compactification. Broadly speaking, compactification
starts from a d-dimensional manifold of the form Md−1 × S1,
and passes to the limit where the linear dimension of the
(d − 1) manifold Md−1 is much larger than the size of the
circle S1. The d-dimensional theory is thus reduced to a
(d − 1)-dimensional one, which is oftentimes easier to
analyze.

Previously, compactification has proven to be a very use-
ful tool for understanding topological phases that fall into
the framework of topological quantum field theory (TQFT)
[52–63], in both two and three dimensions. In 3D, compacti-
fication reduces complicated loop excitations to more familiar
pointlike anyons and allows for computation of the so-called
three-loop braiding statistics of loop excitations [64–66].
In fact, many known (3+1)D TQFTs, including Abelian
twisted Dijkgraaf-Witten gauge theories, can be completely
classified according to their behavior under compactification
[67]. In two dimensions, compactification was exploited in
the classification of symmetry-enriched topological phases
(SET) [68–70].

It is now widely recognized that fracton phases are sensi-
tive to more than just topology, with their properties depend-
ing on certain geometric structures of the underlying manifold
[71–79]. In this work, we only consider translation-invariant
fracton models defined on regular cubic lattices. For the
purpose of defining compactification, it is necessary to keep
track of the length of the system in the compactified direction

ẑ, which is well defined when there is translation symmetry
along ẑ. We find that type-I and type-II fracton models be-
have very differently under compactification. In particular, we
show that the fractal mobility constraint of type-II fractons
is mapped onto the interplay between translation symmetries
and topological order in the resulting (2+1)D model. This
further provides a method to distinguish different type-II
fracton models. For example, while Haah’s cubic code and the
renormalized cubic code B are closely related, as the latter was
obtained from entanglement renormalization of the former,
they are nevertheless distinct phases of matter [32], which
is reflected in the difference between their translation ac-
tions. Surprisingly, we also find that the compactified models
may exhibit subsystem symmetry-enriched topological order
[80–84], leading to spurious contributions to their topological
entanglement entropies [85–87].

The paper is laid out as follows: In Sec. II, we describe
some general features of compactifying 3D stabilizer models;
in Sec. III, we review the general structure of a compacti-
fied (3+1)D TQFT, giving the toric code as an example; in
Sec. IV, we turn to the compactification of type-I fracton mod-
els, with a focus on the X -cube model; in Sec. V, we present
the core results of the paper concerning compactification of
type-II fracton models, focusing on Haah’s cubic code; and
finally we conclude in Sec. VI. In the Appendix, we present
the data we have obtained by compactifying a large range of
fracton stabilizer models.

II. COMPACTIFYING TOPOLOGICAL CODES

We begin with some general comments on compactifying
topologically ordered lattice models.

Consider a 3D gapped lattice model defined on a spa-
tial manifold M2 × S1, where we take S1 to be the ẑ di-
rection with periodic boundary condition. Taking the limit
Lx, Ly → ∞ while keeping Lz fixed to a finite value produces
a 2D gapped lattice model. We follow the generally held
belief that all 2D gapped spin lattice models are described
by TQFTs and hence fall into stable phases labeled by
an anyon model (modular tensor category) together with a
consistent chiral central charge [88,89]. We also allow the
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possibility of “unstable” phases that are direct sums of the
stable phases that will instantaneously decohere into one of
the constituents. Physically, this corresponds to some kind of
spontaneous symmetry breaking. This happens whenever the
3D model supports nontrivial string operators that can wrap
the ẑ direction. In this case, the string operators wrapping
the S1 cycle become local operators in the 2D compactified
model. Generally speaking, these operators can acquire finite
expectation values, splitting the degeneracy between different
sectors labeled by eigenvalues of the string operators. For
models with zero correlation length (e.g., stabilizer codes), no
such splitting occurs and the resulting ground space is a direct
sum of all sectors.

For the infinite cubic lattice, our focus in this paper, we
may specify an arbitrary lattice vector when we compactify
a model. Hence, we may associate a function n{si}

�v to any
lattice vector �v and eigenvalues {si} of the string operators
that become local under compactification. This function takes
values in the space of 2D topological phases.

A. Structure theorems for stabilizer codes

From here on, we focus on translation-invariant stabilizer
Hamiltonians with topological order. These Hamiltonians are
specified by a choice of local Pauli stabilizer generators h(i)

which are given, up to a sign, by a tensor product of Pauli
X,Y, and Z matrices, where

X =
(

0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (1)

The stabilizer generators become the interaction terms

H =
∑

�v

(
1 − h(i)

�v
)
, (2)

where h(i)
�v indicates a local generator h(i) after translation

by a lattice vector �v; in fact, we can loosen this translation
invariance by including a �v-dependent sign factor. We require
the Hamiltonian to consist of commuting terms, be frustration
free, and satisfy the topological order condition defined in
Ref. [31]. We say that a stabilizer Hamiltonian is CSS [93,94]
if each generator h(i) consists exclusively of either Pauli X or
Z terms.

Starting with a translation-invariant 3D topological stabi-
lizer Hamiltonian, we can compactify it along a lattice vector
�v and fix the eigenvalues {si} of any string operators that
become local. This leaves us with a translation-invariant (up to
signs) 2D topological stabilizer Hamiltonian. We can then rely
on the existing rigorous classification of such models [90,92]
represented in Fig. 1 which ensures that they are equivalent,
up to a locality preserving Clifford unitary circuit, to a finite
number of copies of the 2D toric code [95] and some trivial
product state. If the stabilizer Hamiltonian is CSS, a Clifford
local unitary suffices [91]. This implies that, after fixing
out any local degeneracy, the complete topological phase-
invariant n{si}

�v for a compactified 3D topological stabilizer
model is simply the number of copies of 2D toric code it is
equivalent to.

There is a similar structure theorem for 1D stabilizer
models [31] that is useful for calculating the compactification

FIG. 1. Structure theorem [90–92]: a translation invariant topo-
logical stabilizer Hamiltonian in 2D is equivalent to copies of toric
code and a trivial state via a locality-preserving unitary. This can be
used to decompose a compactified 3D model (left) into copies of the
2D toric code (right).

of a 2D stabilizer Hamiltonian. This structure theorem states
that any translation-invariant 1D stabilizer model is equivalent
to copies of the 1D quantum Ising model and some trivial
product state.

B. Calculating the 2D topological order

We now outline how to analyze the 2D stabilizer models
obtained via compactification. For the remainder of the paper,
we consider compactifying along a spatial axis, usually cho-
sen to be ẑ. Technically, we pass from 3D to 2D by grouping
all the qubits along a single column in the ẑ direction, which
is being compactified, onto a single lattice site. Thus, a 3D
model with Q qubits per site is mapped to a 2D model with
QLz qubits per site, where Lz is the compactification radius.
Next, we fix the eigenvalue of any string operators wrapping
the ẑ direction by adding a term proportional to them to the
Hamiltonian. By the structure theorem, we know that this
2D stabilizer code is equivalent to a number n{si}

Lz
of toric

codes. Hence, we can find a basis of 2n{si}
Lz

anyonic excitations
that generate all others via fusion. These anyons appear at
the ends of 2n{si}

Lz
string operators that can be organized into

anticommuting pairs. The commutation matrix of these string
operators, defined below, determines the S matrix invariant of
the relevant topological phase [96,97]. Half the rank of the
commutation matrix is equal to the number of toric codes and
hence in this case it is a complete invariant. It furthermore
does not suffer from spurious contributions, due to subsystem
symmetries, which may afflict attempts to extract the number
of copies of toric code from a topological entanglement
entropy calculation [87].

To calculate the number of anticommuting string operator
pairs in a 2D stabilizer model we consider two overlapping
striplike subregions of the 2D lattice, one horizontal and
one vertical, as shown in Fig. 2. We search for Pauli string
operators in these subregions that may only create excitations
at their end points. These are included in the kernel of the
excitation map with closed boundary conditions along the
length of the strips, and open boundary conditions at the ends,
where closed boundary conditions correspond to including
stabilizer generators that cross the boundary, and open bound-
ary conditions do not.

We label the generating set of Pauli string operators found
on the horizontal (vertical) strip by Sh

i , i = 1, . . . , N (Sv
j , j =

1, . . . , N ′). However, many of these strings may create triv-
ial anyons, i.e., in the vacuum sector. To address this,
we construct the commutation matrix C, which is defined
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FIG. 2. A section of a 2D stabilizer model is shown, with circles
depicting the qubits. Two strips are shown, with solid blue bars on
the ends denoting open boundary conditions and thin lines denoting
closed boundary conditions. Half the rank of the commutation matrix
between operators on the strips gives the number of copies of toric
code.

elementwise by

Ci, j =
{

0 if
[
Sh

i , Sv
j

] = 0 ,

1 if
[
Sh

i , Sv
j

] �= 0 .
(3)

The Z2 rank of C is the number of independent pairs of
anticommuting string operators. For these string operators
to anticommute the anyons, they create must be nontrivial.
Hence, half of the rank gives the number of copies of 2D toric
code equivalent to the model, as each copy contributes two
independent string operator generators. Therefore, if the 2D
stabilizer model has been obtained from a compactification
specified by Lz, {si}, we have

n{si}
Lz

= 1
2 rank C . (4)

C. Calculating the action of translation

Calculating the action of translation upon the anyons re-
quires more detailed information about the topological order.
We first isolate a basis of string operators that move a generat-
ing set of anyons from those that create topologically trivial
excitations. This is achieved by bringing the commutation
matrix into Smith normal form

UCV = D , (5)

where U and V are invertible (unimodular) matrices and D
is the Smith normal form, which is diagonal. Since we are
working over Z2, the nonzero entries of D consist of rank C
entries of 1 along the diagonal. Hence, we can truncate U
to its first rank C rows, call this Ū , and V to its first rank C
columns, call this V̄ , and we have

ŪCV̄ = 1rank C . (6)

The rows of Ū specify products of string operators Sh
i that

give a basis for the horizontal strip: S̄h
i , i = 1, . . . , rank C.

Similarly, the columns of V̄ specify a conjugate basis for the
vertical strip: S̄v

j , j = 1, . . . , rank C, satisfying

[
S̄h

i , S̄v
j

] =
{

0 if i �= j ,

2S̄h
i S̄v

j if i = j .
(7)

For CSS code models, we can treat the Pauli X and Z strings
separately and this ensures that the string operators in our
basis move self-bosonic anyons. We have done so for all the
CSS code examples considered in this work.

The string operator basis we have found allows us to
calculate the action of translation in the horizontal direction
by simply shifting the vertical string operators over one site,
T −1

x S̄v
j Tx, and similarly for the vertical translations T −1

y S̄h
i Ty.

This is because we can use the modularity of anyon braiding
to identify the shifted vertical strings with the original basis
via their commutation relations with the unshifted horizontal
strings. To implement this, we form a new commutation
matrix given by

(Cx )i, j =
{

0 if
[
S̄h

i , T −1
x S̄v

j Tx
] = 0 ,

1 if
[
S̄h

i , T −1
x S̄v

j Tx
] �= 0 .

(8)

Taking the Smith decomposition, we find

UxCxVx = 1 = CxVxUx , (9)

and hence the change of basis matrix for the vertical strings,
VxUx, gives the generator of the translation action, T̄x, on the
anyons. Similar reasoning yields T̄y = VyUy.

The action of translation on the anyons is fully specified
by T̄x and T̄y in the examples we have considered. This is
because these matrices describe the permutation of anyons
by translation, and no symmetry fractionalization occurs in
the examples considered. However, it can be hard to inter-
pret these matrices directly. In the examples below, we have
focused on a simple invariant of the translation action: Oi,
the order of the permutation. That is, the smallest nonzero
solution to T̄ Oi

i = 1. These orders give the dimensions of the
smallest unit cell Ox × Oy one must take such that the coarse-
grained translation does not permute anyons. Moreover, for
an Lx × Ly system with periodic boundary conditions, if an Oi

does not divide Li the boundary conditions will be twisted.
This leads to a reduction in the ground-state degeneracy,

compared to the untwisted value 4n
{si }
Lz .

Under compactification, the remaining 3D translation sym-
metry along the ẑ direction is mapped to a ZLz on-site per-
mutation symmetry. Following the method above, we can
work out the action T̄z of this symmetry on the anyons in the
resulting 2D model and derive properties such as its order Oz.

III. COMPACTIFICATION OF TQFTS

In this section, we review the compactification of 3D
topological phases that are described by TQFTs. It is generally
believed, on physical grounds, that TQFTs in (3+1)D support
two types of excitations at low energy: particles and loops,
both of which are mobile. These excitations can be created
and moved by appropriate topological string and membrane
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operators, which can be locally deformed as long as their
boundary is kept fixed. By definition, topological invariance
ensures that the compactified (2+1)D theory will also be
a TQFT and that all choices of compactification direction
and radius lead to the same theory. The resulting (2+1)D
theory will generally not be stable but will correspond to a
cat state consisting of an unstable sum of multiple different
stable TQFTs. This is due to topologically nontrivial string
operators wrapping the compactified direction, which become
local operators in the compactified theory. We expect (un-
der a modularity assumption) that such compactified string
operators can be used to project onto a definite flux, or
string, excitation threading the compactified S1. Topologically
nontrivial membrane operators on a plane orthogonal to the
compactified direction become global symmetries of the re-
sulting (2+1)D model, and the compactified string operators
split the symmetry-breaking degeneracy. On the other hand,
membrane operators wrapping the compactification direction
become string operators for flux loops wrapping the compacti-
fied direction, which are mapped to pointlike particles. Hence,
the topological order after compactification is given by

(10)

where {s} denotes the eigenvalues of the string operators.
Assuming the original set of string excitations and dual string
operators was complete, each of the resulting 2D theories
should be stable. Hence, n{s}

�v = TO{s}
2D for arbitrary �v.

In the most general setting, it can be quite difficult to calcu-
late the resulting (2+1)D topological orders TO{s}

2D. However,
the answer is known for all twisted Dijkgraaf-Witten theo-
ries [52] (twisted quantum double models). This reduction
has proven useful for the calculation of many properties of
(3+1)D TQFTs, including the classification of loop defects,
and the computation of three-loop braiding statistics, and
generalizations thereof, which completely classify Abelian
Dijkgraaf-Witten theories [64–67].

A. The 2D toric code

As a warmup, we consider compactifying the 2D toric
code. This example captures many of the essential features of
compactifying a TQFT and is relevant for the type-I example
to follow.

The 2D Toric code model is commonly defined with one
qubit per edge of a square lattice. Here, we group a pair of
qubits from orthogonal, adjacent edges onto each site. The lo-
cal stabilizer generators in the Hamiltonian are then given by

ZI − II
| |

ZZ − IZ

XI XX
| |

II − IX
. (11)

The logical operators on a torus are given by anticommuting
pairs of string operators X̄î, Z̄ ĵ , where î �= ĵ ∈ {x̂, ŷ}. One pair
of representative logical operators is given by

X̄x̂ =
∏

x

IX(x,0) , Z̄ŷ =
∏

y

IZ(0,y) , (12)

and the other is defined similarly.

Under compactification along the ŷ direction, we obtain
two copies of the 1D quantum Ising model, up to local unitary.

To see this, we make use of the structure theorem in
one dimension which states that any translation invariant 1D
stabilizer model is equivalent to copies of the 1D quantum
Ising model and some trivial product state. This reduces
the problem to counting the number of local-nonlocal pairs
of logical operators in the compactified model. Since the
compactification of 2D toric code along one direction maps
two out of the four logical string operators to local logical
operators, the topological ground-space degeneracy reduces
to an unstable symmetry-breaking degeneracy. The remaining
two logical operators map to global spin-flip symmetries for
two copies of the Ising model and this is consistent with the
fourfold ground-state degeneracy of the 2D toric code.

B. The 3D toric code

For the next example, we consider the 3D toric code.
Similar to the 2D toric code, we have grouped three qubits
onto each lattice site, and the stabilizer generators are given by

(13)

Representative logical operators on a torus are generated by
three anticommuting membrane-string operator pairs X̄î, Z̄î,
where î = x̂, ŷ, ẑ. A representative pair is given by

X̄x̂ =
∏
y,z

X II(0,y,z), Z̄x̂ =
∏

x

ZII(x,0,0) , (14)

and similarly for ŷ and ẑ.
Compactifying the ẑ direction makes Z̄ẑ into a local logical

operator that anticommutes with a global symmetry given by
X̄ẑ. The compactification further maps X̄x̂, X̄ŷ into nontrivial
string operators, while Z̄x̂, Z̄ŷ remain nontrivial string opera-
tors, and their commutation relations are preserved. Moreover,
these generate all the logical operators, up to stabilizers. To
make a precise identification with copies of toric code, we
need to be slightly more careful and study the superselection
sectors. We find a basis of two inequivalent superselection
sectors for a fixed eigenvalue of Z̄ẑ. These are represented by
a compactified string excitation that consists of Z-stabilizer
violations wrapping the ˆ̂z direction and a single X -stabilizer
violation. This, combined with the anticommutation of the
aforementioned string operators that move these anyons, iden-
tifies the resulting (2+1)D phase as equivalent to a direct sum
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of two toric codes,

TCcomp
3D

∼= TC2D ⊕ TC2D . (15)

For this example, and the 2D example above, translation
acts trivially.

IV. COMPACTIFICATION OF TYPE-I FRACTON MODELS

In this section, we consider the compactification of type-I
fracton models, treating the X -cube model as a prototypical
example. According to their definition [7], type-I fracton mod-
els feature some completely immobile pointlike excitations
(i.e., fractons) alongside other excitations that are mobile in
one or more directions. This includes lineons, which can move
only in one direction, and planons, which can move in two
directions. Moreover, the fractons should not be composites
of mobile excitations that can move in different directions. In
type-I models, there can be an extensive number of inequiva-
lent string operators in the direction of compactification that,
after being mapped to local operators, lead to an extensive
number of symmetry-breaking sectors.

A. X -cube model

The stabilizer generators for the X -cube model [7] are
given by

(16)

Here, we have grouped three qubits onto each vertex, similar
to the 3D toric code example. We consider this model on
an Lx × Ly × Lz cuboid with periodic boundary conditions.
To enumerate the logical operators, let us first define anti-

commuting pairs X̄ î
k̂,�

, Z̄ ĵ
k̂,�

, where î �= ĵ �= k̂ ∈ {x̂, ŷ, ẑ} and
� = 0, . . . , Lk − 1, along intersecting pairs of noncontractible
loops as follows,

X̄ x̂
ẑ,� =

∏
x

X II(x,0,�), Z̄ ŷ
ẑ,� =

∏
y

ZII(0,y,�) , (17)

and similarly for other permutations of x̂, ŷ, ẑ. This set of
operators is overcomplete due to the relations∏

�

X̄ î
k̂,�

=
∏

�

X̄ k̂
î,�, Z̄ î

ĵ,0 = Z̄ î
k̂,0

. (18)

Removing X̄ x̂
ẑ,0, X̄ ŷ

ẑ,0, X̄ ŷ
x̂,0, Z̄ x̂

ẑ,0, Z̄ ŷ
ẑ,0, Z̄ ẑ

x̂,0, and replacing

Z̄ x̂
ẑ,� 
→ Z̄ x̂

ẑ,0Z̄ x̂
ẑ,�, Z̄ ŷ

ẑ,� 
→ Z̄ ŷ
ẑ,0Z̄ ŷ

ẑ,�, (19)

where � > 0, and

X̄ x̂
ŷ,0 
→ X̄ x̂

ŷ,0

Lx∏
i=1

X̄ ŷ
x̂,i , (20)

we arrive at a complete set of (2Lx + 2Ly + 2Lz − 3) logical
operator pairs. We remark that this basis has been chosen such
that the 2(Lz − 1) logical operator pairs with a ẑ subscript are
deformable in the xy plane.

Under compactification along the ẑ direction, all logical
operators with a ẑ superscript become local. Hence, (Lx +
Ly − 1) logical Z̄ operators become local, while their anti-
commuting X̄ partners are mapped to rigid subsystem symme-
tries. Similarly, (Lx + Ly) logical X̄ operators become local,
while their anticommuting logical Z̄ partners become linear
subsystem symmetries. After fixing out the extensive, local
degeneracy due to subsystem symmetry breaking, by fixing
eigenvalues {si} of the logical operators with a ẑ superscript,
we are left with (2Lz − 2) logical operator pairs that are
deformable in 2D. These correspond to the string operators
of (Lz − 1) copies of toric code wrapping the torus. Hence,
each symmetry-breaking sector of the compactified X -cube
model is local-unitary equivalent to (Lz − 1) copies of toric
code, where Lz is the compactification radius. That is,

n{si}
Lz

= TC⊗(Lz−1)
2D . (21)

We have verified these facts numerically using the anticom-
muting string operator calculation explained in Sec. II.

In this case, the translations T̄x, T̄y, act trivially on the
copies of toric code but nontrivially on the symmetry-breaking
sectors. On the other hand, T̄z acts nontrivially on both the
copies of toric code and the symmetry-breaking sectors.

The results of this compactification provide several signa-
tures that differentiate the X -cube model from a decoupled
stack of 2D toric code layers. The clearest signature is in the
constant correction −1 to the number of toric codes occur-
ring as Lz is increased. This constant correction, as shown
above, is reflected in the subsystem symmetry breaking under
compactification. It is also consistent with the fact that one
can disentangle a copy of 2D toric code from two layers of
the X -cube model via a local unitary [75]. In fact, for each
lattice direction of compactification, one gets a −1 constant
correction and hence is related to the total −3 correction in the
number of logical operator pairs in the 3D model. From the 2D
toric code example in Sec. III, we also see that the pattern of
subsystem symmetry breaking in the compactified X cube is
subtly different than that occurring in compactified layers of
2D toric code. It would be interesting to use similar signatures
from compactification to identify and classify nontrivial type-I
models in the future.

V. COMPACTIFICATION OF TYPE-II FRACTON MODELS

In this section, we turn our attention to type-II fracton
models, focusing on the canonical example: the cubic code.
By their definition [7], type-II fracton models do not have any
string operators, and thus all nontrivial particle excitations are
immobile. In such models, isolated excitations can be created
at the corners of fractal operators. For example, in the cubic
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C

FIG. 3. Regions used to calculate the topological entanglement
entropy.

code [2], a fractal operator exists with support on a Sierpinski
tetrahedron.

Since there are no string operators in a type-II model,
no local logical operators can occur after compactification.
Hence, the resulting 2D models will be topologically ordered.
The compactification of a translation-invariant type-II stabi-
lizer model in the ẑ direction is then simply characterized by
the number of toric codes it is equivalent to as a function of
length, nLz .

The quantity nLz has to be calculated on a model-to-model
basis, but it does satisfy a simple bound that depends upon
the locality of the stabilizer generators. Let’s consider com-
pactification of a type-II stabilizer model where the support
of each stabilizer generator is a single cube. One can show
that the number of copies of Toric code as a function of
compactification radius Lz is upper bounded i.e. nLz � 2Lz.
This is achieved by considering the topological entanglement
entropy (TEE) computed via the Kitaev-Preskill prescription
of tripartite information I (A, B,C), given by

SA + SB + SC − SAB − SBC − SAC + SABC ,

on the regions shown in Fig. 3. More generally for any
2D translation-invariant topological stabilizer model, with Q
qubits per site and Q independent generators per plaquette
which only act on the sites at the corners, we have nLz � Q. In
fact, when there are no relations among the generators, and the
plaquette stabilizers generated by them act nontrivially on all
corners, then we find the value of I (A, B,C) to be saturated,
i.e., Q = −I (A, B,C). One would expect this to determine
nLz , as it was argued in Ref. [98] that nLz = −I (A, B,C).
However, it has recently been realized [85–87] that spurious
contributions to the TEE may cause nLz � −I (A, B,C). We
find that this behavior occurs for the cubic code example
below. For this reason, we use the more careful approach
described in Sec. II to calculate nLz accurately.

The anyons in a compactified type-II model descend from
immobile fracton excitations in 3D, raising the following
question: How does the fractonic immobility manifest in
the 2D compactified model? We find that the immobility
is reflected in the 2D model as a nontrivial enrichment of
the topological order by on-site and translation symmetries.
These symmetries descend from the translation symmetries
of the 3D model in the ẑ, and x̂, ŷ directions, respectively.
The immobility of fractons in 3D implies that translates of a
nontrivial excitation are topologically distinct and therefore

a pair of such excitations cannot be created by a string
operator. In other words, the action of translation symmetry
must change the topological superselection sectors of the
fracton excitations. Descending to 2D, via compactification,
this implies that translations permute the anyon types. In
contrast to the 3D type-II model, the action of translation on
its 2D compactification must have a finite order [99]. This can
be understood as originating from some operators in 3D that
wrap around the compactified direction and pairwise create a
nontrivial topological excitation and some translate of it. Such
an operator would not exist purely in the 3D bulk without the
compactified boundary condition. For example, let Ox denote
the order of T̄x in the compactified model, and then some
string operator in 2D can create any excitation along with its
translation by T Ox

x . We remark that for CSS codes the action of
translation is restricted to permuting excitations of the X sta-
bilizers among themselves, and similarly for the Z stabilizers.

A. Cubic code

The main example we consider is the cubic code, which
is known to be a type-II stabilizer model [2], i.e., it has no
string operators and all nontrivial excitations are immobile.
The generators of the stabilizer group are given by

(22)

and their translations. See Fig. 4 for the patterns of excitations
that are created on the dual cubic lattice by local operators.
The remainder of this section focuses on the compactification
of the above model.

1. Compactified topological order

We consider a family of 2D models produced by com-
pactifying the cubic code, following the procedure in Sec. II.
By the structure theorem presented there, the compactified
cubic code models are unitarily equivalent to some number nLz

copies of toric code. We have numerically calculated nLz for
a range of values Lz by finding pairs of anticommuting string
operators as explained in Sec. II. These results are presented
in Table I.

The numerical scaling of nLz fits a simple formula for Lz =
2i�, where 2 � | �, given by

nLz =
{

2Lz if 3 � |Lz ,

2Lz − 2i+2 if 3 |Lz .
(23)

In the next subsection, we prove that the above formula in fact
holds for all Lz explicitly, using the framework of polynomial
rings [5]. This scaling is substantially simpler than the scaling
of the ground-space degeneracy of the cubic code on an L ×
L × L 3D torus [31]. One may then ask the following: How is
it possible that the ground-space degeneracy of nLz copies of
toric code on an Lx × Ly torus matches the ground-space de-
generacy of the cubic code on an Lx × Ly × Lz 3D torus? The
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FIG. 4. Excitation patterns of stabilizers located on the vertices
of the dual cubic lattice, which are created by local operators on pairs
of qubits inside each cube: (a) XI , (b) IX , (c) XX , (d) IX–XI along
ẑ, and (e) IX–XX–XI along ẑ.

answer lies in the nontrivial action of translation symmetry on
the nLz toric codes contained in the compactified cubic code.
Further details are given in the following subsections.

To build intuition for the scaling of nLz , we first notice that
an adjacent pair of plaquettes, each having 2Lz stabilizers, can
support 24Lz excitations, including vacuum. If these excita-
tions are all topologically distinct, i.e., there are no nontrivial
string operators confined to the pair of plaquettes, then the
pair of plaquettes can support all the charge sectors of 2Lz

copies of toric code. If we suppose that the pair of plaquettes
still support all sectors when they also support nontrivial
string operators, we can find the topologically inequivalent
sectors by modding out the relations introduced by those
string operators.

The simplest case with nLz � 2Lz occurs when n3 = 2,
which was studied in detail in Ref. [87]. To provide an ex-
planation, we direct the reader’s attention to Fig. 4(e), which
shows an excitation pattern created by a local operator. For
compactified boundary conditions with Lz = 3, the operator
in Fig. 4(e) allows an excitation to hop between stabilizers
related by a ẑ translation. Modding out by these relations,
we find 24 inequivalent sectors on the pair of plaquettes. Fur-
thermore, under compactifed boundary conditions, combining
the operators in Fig. 4(e) with Figs. 4(a) and both 4(a) and
4(b), we find two diagonal hopping operators for each type of
excitation on any plaquette. Hence, we find a model equivalent
to two copies of toric code with T̄x, T̄y acting as layer swap and
T̄z acting trivially. This agrees with the numerical results.

More generally, whenever 3|Lz, one can find string opera-
tors on a column by taking products of operators similar to that

TABLE I. As a function of compactification radius Lz we list:
R/2 half the rank of the commutation matrix C, which equals the
number of copies of toric code nLz , for the compactified cubic code.
The order Ox = Oy is the order of the translation actions T̄x, T̄y. The
order Oz is the order of the on-site symmetry T̄z.

Lz nLz = R/2 Ox = Oy Oz

1 2 2 1
2 4 4 2
3 2 2 1
4 8 8 4
5 10 30 5
6 4 4 2
7 14 126 7
8 16 16 8
9 14 126 9
10 20 60 10
11 22 682 11
12 8 8 4
13 26 2730 13
14 28 252 14
15 26 30 15
16 32 32 16
17 34 510 17
18 28 252 18
19 38 19418 19
20 40 120 20
21 38 126 21
22 44 1364 22

shown in Fig. 4(e). For 2 � |Lz, there are again two independent
string operators on each plaquette for each type of stabilizer.
Because of the bifurcating real-space renormalization group
flow of the cubic code demonstrated in Ref. [32], the number
of toric codes nLz doubles as we double Lz, i.e., n2Lz = 2nLz ,
which accounts for the value of nLz in the remaining cases of
Eq. (23) in which 2|Lz.

2. Copies of toric code from the polynomial framework

In this subsection, we compute the number of copies of
the 2D toric codes in the cubic code compactified in the z
direction by a periodic boundary condition of linear size Lz.
We employ the framework of polynomial rings developed in
Ref. [5], but for the sake of brevity we do not introduce the
formalism here. The no-strings rule of the cubic code implies
that the compactified code is exact. By the classification
theorem of exact CSS codes, the number nLz of embedded
toric codes is half the dimension of the torsion submodule of
cokerε [91, V.13]. Therefore, our starting point is the formula

nLz = dimF2

F2[x±, y±, z±](
1 + x + y + z, 1 + xy + yz + zx, zL

z + 1
) .

(24)

As always, we lift the coefficient field to its algebraic closure
F ⊃ F2. The ring in this equation has a finite F dimension.
So, it is isomorphic to the finite direct sum of localizations
at maximal ideals (x − a − 1, y − b − 1, z − t − 1), where
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a, b, t ∈ F \ {1} are arbitrary; the constant 1 is inserted for
convenience in notation later.

Put L = 2i� where � is odd. In order for the localized ring
not to vanish, the constants a, b, t has to be chosen to “satisfy”
the ideal. In particular, a + b + t = 0, ab + bt + ta = 0, and
(1 + t )� + 1 = 0. So, a = ωt and b = ω2t where ω is either
one of the two third roots of unity. Since a, b, t �= 1, the
constant t is further restricted so that t �= 1, ω, ω2. Put m =
(u − a, v − b), where a �= 1, b �= 1 and a + b = t �= 1. We
can make substitutions x → u + 1, y → v + 1, z → 1 + x +
y = 1 + u + v so that

nLz =
∑
m

dimF F[u, v]m/Jm

where

Jm = (u2 + uv + v2, (1 + u + v)L + 1)m

= (
u2 + uv + v2, u2i + v2i + t2i)

m

= (
u2 + uv + v2, uv2i−1 + (n + 1)v2i + t2i)

m
. (25)

The second line follows from the first because the equation
zLz + 1 factorizes into linear factors raised to power 2i, but the
localization at m singles out only one factor. The third line
uses u2i = uv2i−1 + iv2i

mod u2 + uv + v2 for any integer
i � 0.

Suppose t �= 0. Then, Jm is equal to (u − ω2v, (ω2 + 1 +
i)v2i + t2i

)m, so such m contributes to the sum by 2i. If � is
not a multiple of 3, then there are 2(� − 1) such m. If � is a
multiple of 3, then there are 2(� − 3) such m because we have
to exclude the third roots of unity.

Suppose t = 0. Then, a = b = 0, i.e., m = (u, v). Then,

Jm = (
u2 + uv + v2, uv2i−1 + (i + 1)v2i)

(u,v).

Regardless of whether i is even or odd, one can show that
{u2 + uv + v2, uv2i−1 + (i + 1)v2i

, v2i+1} is a Gröbner basis
for J in the degree term order. We see that (2i + 1) + (2i −
1) = 2i+1 contributes to the sum.

Therefore,

nLz =
{

2i2(� − 1) + 2i+1 = 2Lz if 3 � |Lz,

2i2(� − 3) + 2i+1 = 2Lz − 2i+2 if 3 |Lz.

(26)

3. Translation symmetry enrichment

As alluded to above, the immobility of the topological
sectors in the cubic code is reflected in the symmetry-
enriched topological order of the compactified models. The
relevant symmetries are the translations: Tx, Ty, and Tz which
are mapped to translation and on-site symmetries under
compactification, respectively. The nontrivial action of the
translation symmetries on the compactified models leads to
symmetry-twisted boundary conditions that remarkably allow
the ground-space degeneracy of nLz copies of toric code on
an Lx × Ly torus to match the ground-space degeneracy of the
cubic code on an Lx × Ly × Lz 3D torus.

The action of Tx, Ty, and Tz on the anyons in compactified
cubic code takes the form of a permutation that does not mix
e excitations of the X stabilizers with m excitations of the Z

stabilizers. In fact, because of symmetries of the cubic code
Hamiltonian, we find that the action of the translation sym-
metries simplifies further. The symmetry of reflection across
the x̂ ± ŷ planes implies Tx and Ty act on the anyons in an
isomorphic way. The further symmetry given by a combined
spatial inversion, on-site swap, and Hadamard, implies that
the action of any Ti on the e sector is isomorphic to the same
Ti symmetry acting on the m sector. Hence, we focus our
attention on the action of Tx and Tz on the e sector. These
actions are specified by nLz × nLz binary matrices T̄x and T̄z

that describe the action of Tx and Tz on the basis of e string
operators found using the approach covered in Sec. II.

While we have explicitly calculated the matrices T̄x and
T̄z for Lz � 22, they are only unique up to a change of
basis for the anyons and are not enlightening when presented
in raw form. For this reason, we focus on an important
gauge-invariant quantity of the symmetry-enriched topologi-
cal phase: the orders Ox = Oy and Oz of the translation actions
within the automorphism group of the anyons; see Sec. II. The
values of Oi are tabulated in Table I.

The orders of permutation in the x̂ and ŷ directions have a
clear physical interpretation: Ox × Oy is the minimal coarse-

grained unit cell for which translation symmetries T Ox
x , T

Oy
y

act trivially on the anyons. In other words, on a torus with
Ox � |Lx or Oy � |Ly the boundary conditions are twisted by a
nontrivial translation action. For nLz copies of toric code on an
Lx × Ly torus with twisted boundary conditions, i.e., at least
one of Lx mod Ox or Ly mod Oy are nonzero, the ground-
state degeneracy is reduced to <4nLz . In fact the ground-space
degeneracy is known to be given by the number of T Lx

x -
symmetric T

Ly
y defects, or vice versa [99]. Hence, the compli-

cated behavior of the cubic code’s ground-space degeneracy
on a 3D torus can be understood via the symmetry-enriched
topological order of the compactified model.

Observe in Table I that the order of translation Ox is
doubled as the compactification radius Lz is doubled. This,
in fact, holds in general, which we will proceed to prove.
To achieve this, we make use of the following formula for
log2 of the ground-space degeneracy of the cubic code on an
L1 × L2 × L3 torus [31]

d =
{

2l1+1d1 − 1 if l1 = l2 ,

2l1+1d1 otherwise.
(27)

In the above, without loss of generality, l1 � l2 � l3 indicates
the number of factors of 2 in the prime factorizations of
L1, L2, L3, and

d1 = degx gcd((1 + x)�1 + 1, (1 + ωx)�2 + 1,

(1 + ω2x)�3 + 1)F, (28)

where �i = 2−li Li, 1 + ω + ω2 = 0 and F is the algebraic
closure of F2. In particular, if L1 = L2 = L3 then l1 = l2.

Proposition 1. For any value Lz = 2lz�z, consider O :=
Ox = Oy = 2oO′, where 2 � | �z, O′. Then, o − lz = 1.

Proof. The proof is by contradiction: First, let us assume
o = lz. If we change the length of the periodic 2D lattice
directions from Lx = Ly = O, which implies lx = ly = lz = o,
to Lx

′ = Ly
′ = 2iO for any natural number i, which implies

lz = o < l ′
x = l ′

y = o + i, the degeneracy must change from
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2o+1d1 − 1 to 2o+1d1. Since the value of d1 does not depend
on lx, ly, lz, the degeneracy has decreased upon multiplying
Lx, Ly by 2i. However, the degeneracy should be maximal, and
constant, for all untwisted boundary conditions Lx = Ly =
nO, with n being a natural number. Hence, o �= lz.

Next, let us assume o − lz < 0. Then, similarly go-
ing from Lx = Ly = O with lx = ly = o < lz to Lx

′ = Ly
′ =

2lz−o+1O with lz < l ′
x = l ′

y = lz + 1 changes the degeneracy
from 2o+1d1 − 1 to 2lz+1d1. However, for L′

x and L′
y being

any positive integer multiples of the order O, the ground-
state degeneracy should not change. Thus, o − lz < 0 is not
consistent.

Finally, let us assume o − lz � 2. If we change lengths
from Lx = Ly = O to Lx

′ = Ly
′ = 2−iO, for 0 < i < o − lz we

go from lz < lx = ly = o to lz < l ′
x = l ′

y = o − i, while for i �
o − lz we go to l ′

x = l ′
y = o − i � lz. Thus, for 0 < i < o − lz,

the degeneracy does not change. This is not consistent with
O being the order of a nontrivial anyon permuting trans-
lation action. To see this, note that L′

x, L′
y < O corresponds

to twisted boundary conditions that must lead to a strictly
smaller ground-space degeneracy than the maximal value for
Lx = Ly = O.

The only consistent possibility remaining is o − lz = 1. �
Next, we argue that the order of the translation action

doubles upon doubling the compactification radius, O(2Lz ) =
2O(Lz ). Consider compactifying the cubic code with radius
Lz; the smallest torus corresponding to untwisted boundary
conditions is given by Lx = Ly = O(Lz ) which leads to a de-
generacy 4nLz . Doubling the compactification radius to 2Lz, we
have shown above that n2Lz = 2nLz . Then periodic boundary
conditions Lx = Ly = 2O(Lz ) lead to the maximal possible
degeneracy 42nLz and hence correspond to untwisted boundary
conditions. Therefore, 2O(Lz ) = kO(2Lz ) for a natural num-
ber k, and the above lemma implies 2 � |k. Furthermore, we
find that the ground-space degeneracy for compactification
radius Lz and Lx = Ly = O(Lz )/k is again maximal, 4nLz . This
implies k = 1, or else there would be a contradiction with
O(Lz ) being the order of a nontrivial translation action.

Proposition 2. Suppose Lz = 2i� with � odd. Then, we
have Ox = Oy � 2i+1(2k − 1) where k is the least common
multiple of 2 and the multiplicative order of 2 modulo Lz. In
particular,

Ox � 2i+1(2�−1 − 1), (29)

Ox = 2i+1� if � = 2n − 1 for n even, (30)

Ox � 2i+1�(� + 2) if � = 2n − 1 for n odd. (31)

We also have Oz = Lz if � �= 3 and Oz = 2i if � = 3.
Proof. For the above proposition, it suffices to assume

i = 0. We use the polynomial method [100] and Galois
theory [101]. Recall that the charge module for the com-
pactified cubic code is F2[x±, y±, z]/J , where J = (1 + x +
y + z, 1 + xy + yz + zx, z� − 1). The translation group acts
as the monomial multiplication. As noted earlier, Ox = Oy

from the symmetry x ↔ y. The order Ox is the minimum
positive integer such that xOx − 1 ∈ J . We estimate the order
Ox by considering the zeros of the ideal J . The first two

generators of J defines a variety of codimension 2, and the
compactification condition zL − 1 selects finitely many points
in this variety. Specifically, the first two generators define
two lines that are parametrized as (ω2 + ωt, ω + ω2t, t ) and
(ω + ω2t, ω2 + ωt, t ), where t is arbitrary, and ω ∈ F4 is a
third root of unity satisfying ω2 + ω + 1 = 0. The polynomial
z� − 1 is separable (no degenerate roots), and the variety will
be rational over the minimal extension field F2k over F2 that
contains all the �th root of unity, which form a cyclic group
Z/�Z, and ω. Every nonzero element of F2k is a root of
x2k−1 − 1, a power of which must belong to J . Localizing at
the points of the two lines, we see that (x2k−1 − 1)2 ∈ J . (Lo-
calization at (1,1,1) shows that x = 1 has twofold degeneracy.)
Thus, the order Ox is at most 2(2k − 1). It remains to compute
k for inequalities.

Since any automorphism of E over F2 should send a gener-
ator ζ of the group of all Lth root of unity to another generator,
the splitting field F2(ζ ) of z� − 1 has at most |(Z/�Z)×| =
ϕ(�) automorphisms over F2. In fact, since the automorphism
of a finite field of characteristic 2 is always a composition of
Frobenius map γ 
→ γ 2, the group Aut(F2(ζ )/F2) has order
k′ that is equal to the multiplicative order of 2 modulo �.
By Artin’s theorem, we see the extension degree [F2(ζ ) : F2]
equals k′, which divides ϕ(�) � � − 1. If k′ is even, then
F2(ζ ) already contains ω (since ω has degree-2 minimal
polynomial), and we have k′ = k � � − 1. If k′ is odd, then
F2(ζ ) does not contain ω and we have k = 2k′. Since L − 1
is even, in any case we have k|(� − 1). If � + 1 = 2n, then the
multiplicative order of 2 modulo � is n. This proves all the
inequalities.

Furthermore, if � + 1 = 2n with n even, then the x coor-
dinate of the two lines ranges over exactly all the nonzero
elements of F2n , and we see xm − 1 ∈ radJ if and only if m
is a multiple of n. This proves the lower bound in this special
case and hence the equality.

To compute Oz, we again look at the two lines. Since we
have to avoid x = 0 or y = 0 planes as the variables x and y
are invertible, the parameter t is not equal to any of ω,ω, 0,
but otherwise any value is allowed.

Localizing at maximal ideals m = (x − a, y − b, z − c),
where (a, b, c) �= (1, 1, 1), we immediately see that Jm con-
tains (z − c)m for m = 2i but not for 0 � m < 2i, The same is
true for m = (x − 1, y − 1, z − 1) thanks to the Gröbner basis
computation that we have performed in the course of comput-
ing nLz above. The “multiplicity” of any z coordinate is 2i.

If 3 does not divide �, then 0, ω± are not roots of z� − 1,
and so zm − 1 ∈ radJ for m = � but not for m < �. By the
multiplicity of the previous paragraph, Oz = Lz. If 3 divides
�, then z2 + z + 1 divides z� − 1 and the z coordinates take
values precisely among the roots of f (z) = (z� − 1)/(z2 +
z + 1). By the multiplicity, f (z)2i ∈ J and any smaller power
than 2i will invalidate the membership. It remains to find the
minimum m � 0 such that f (z)2i |(zm − 1). Let m = 2 jm′ with
m′ odd. For the multiplicity, we know j � i and f (z)|(zm′ −
1). The degree of f (z) is � − 2 which must be � m′, so
minimum m′ is one of � − 2, � − 1, �. If � = 3, then m′ = 1
is the minimum. If � > 3, then a root of f (z) is a primitive �th
root of unity which can be a root of zm′ − 1 only if m′ = �. �
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4. Translation defects

As mentioned above, the degeneracy due to twisted bound-
ary conditions on an Lx × Ly torus is equal to the number of

T Lx
x -symmetric T

Ly
y defects and vice versa [99]. By combin-

ing Eq. (23) with the degeneracy formula in Eq. (27) and
Lemma 1, we can compute a large range of ground-state
degeneracies and hence numbers of symmetric defects. Fix
a compactification radius Lz, and for Lx = Ly = O we have
d1 = 2−lz nLz . The degeneracy 2d for Lx = O/2i, Ly = O/2 j

specifies the number of T O/2i

x -symmetric T O/2 j

y defects as
follows:

d =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2lz+1d1 − 1 for i = 0, j = 1,

2lz+2−id1 − 1 for i = j > 0,

2lz+2−id1 for i > j > 0,

2lz+2− jd1 for j > i � 0, j > 1.

(32)

Since the compactified models are equivalent to copies
of toric code, they only support Abelian anyons. Hence,
all the T Lx

x translation defects have the same quantum di-
mension, as they are related by fusion with the anyons.
We recall that the total quantum dimension of any defect
sector is equal to that of the anyons [99]. This implies
that the number of T Lx

x defects, NLx , is related to their
common quantum dimension, δLx , via NLx δ

2
Lx

= 4nLz . Since
log2 NLx = d , where d is log2 of the ground-space degeneracy
of the cubic code on an Lx × O(Lz ) × Lz 3D torus, we have
log2 δLx = nLz − d/2.

Since NLx is the same as the number of anyon types that
are symmetric under a translation T Lx

x , we can compute it
directly from the dimension of the invariant subspace under
T̄ Lx

x . In particular, we have computed the number of unit
translation Tx defects in this way for the values of Lz listed in
Table I:

log2 N1 =
{

4 for 2 |Lz,

2 for 2 � |Lz.
(33)

Hence, the quantum dimensions δ1 fit the following formula
as a function of Lz:

log2 δ1 =
{

nLz − 2 for 2 |Lz,

nLz − 1 for 2 � |Lz.
(34)

Our above results for N1 imply that changing the peri-
odic boundary conditions of the cubic code slightly, from
O(Lz ) × O(Lz ) × Lz to [O(Lz ) + 1] × O(Lz ) × Lz, can result
in an extensive jump of the ground-space degeneracy, from
4nLz to N1. This provides an appealing interpretation for
the seemingly erratic behavior of the ground-space degen-
eracy of the cubic code on periodic boundary conditions
in terms of the better understood phenomena of translation
symmetry twisted boundary conditions of a 2D topological
order.

B. Cubic code B

Our second example is cubic code B [32], which is speci-
fied by the following generators:

(35)

This model was found from bifurcation of the original cu-
bic code under real-space entanglement-renormalization and
hence is also type II. More specifically, a local unitary circuit
U was found which is invariant under a coarse-grained trans-
lation group, generated by T 2

x , T 2
y , T 2

z , and satisfies

UHA(a)U † ∼= HA(2a) + HB(2a) . (36)

In the above, HA(a) denotes the original cubic code A Hamil-
tonian with lattice spacing a, HB(2a) denotes the B cubic
code Hamiltonian with lattice spacing 2a, and ∼= denotes
that the stabilizer group of two Hamiltonians is the same, up
to tensoring with ancilla qubits in the product state |0〉⊗N .
We remark that the equivalence ∼= does not imply that the
stabilizer generators on the left and right strictly match after
the removal of ancillas.

Cubic code B was further found to be self-bifurcating.
That is, under another local unitary circuit V , which respects
the coarse-grained translation group generated by T 2

x , T 2
y , T 2

z ,

Ref. [32] found

V HB(a)V † ∼= HB(2a) + H ′
B(2a) . (37)

For the compactification of cubic code B along the ẑ
direction, we have found

nB
Lz

= nA
Lz

,

OB(Lz ) = OA(Lz )/2 ,

log2 NB
1 = 4 . (38)

Hence, the cubic codes A and B lead to the same topological
phase under compactification. However, this does not imply
the original models lie in the same topological phase. On the
other hand, the translation symmetry-enriched phases after
compactification are different, but this is not yet sufficient to
show that the original models lie in different phases. This is
because one is allowed an arbitrary, finite coarse-graining step
when comparing the original models. An obvious first step is
to coarse grain the x̂ and ŷ directions of cubic code A by a
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factor of 2, to ensure the order of the translation actions match.
After this transformation, the symmetry-enriched topological
orders resulting from the compactification of cubic codes A
and B are still distinct. To see this, we consider the number of
unit translation defects for the compactified coarse-grained A
code, which equals the number of T 2

x translation defects for
the original compactified A code,

log NA
2 =

⎧⎪⎨
⎪⎩

8 for 4 |Lz,

6 for 2 |Lz, 4 � |Lz,

4 for 2 � |Lz.

(39)

No coarse graining in the ẑ direction can bring this into
agreement with NB

1 . However, this is still only a necessary
condition for the original cubic codes A and B to lie in distinct
phases.

It was shown in Ref. [32] that it is impossible to find
any coarse grainings of cubic codes A and B that make their
ground-space degeneracies agree for periodic boundary con-
ditions on all system sizes. Hence, they are distinct topological
phases of matter. From the point of view of compactification,
this implies that no coarse grainings can be made such that
cubic code A and B lead to the same symmetry-enriched
topological orders for all compactifications. In particular,
since the ground-space degeneracies cannot always be made
to match, even after an arbitrary coarse graining the number
of symmetric defects of all types in the compactified models
cannot be made to match.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have studied compactifications of
translation-invariant stabilizer models with fracton topologi-
cal order. We found that type-I fracton order is reflected by
a combination of topological order and symmetry breaking
in the compactified model that has a simple scaling with
the compactification radius. More interestingly, we found
that type-II fracton order manifests in the symmetry-enriched
topological order of the compactified model. The topological
order has a relatively simple scaling with the compactification
radius but is enriched in a complicated way by translation
symmetry. We have analytically and numerically studied var-
ious aspects of the compactification in detail for the 2D
and 3D toric code, X -cube model, and the cubic code. Our
results on the cubic code provide an understanding of the
model’s complicated ground-space degeneracy in terms of
twisted boundary conditions for copies of the 2D toric code
enriched by translation symmetry. In fact, such translation
symmetry enrichment can be also be found for type-1 models
like Yoshida’s model [4] under compactification. Along this
direction of the string operator, translation action is trivial
and varying the system size along it does not change the
ground-space degeneracy.

More generally, our results draw a connection between
fracton topological phases in 3D and translation symmetry-
enriched topological phases in 2D which may prove useful
for their classification.

Furthermore, we encountered nontrivial subsystem
symmetry-enriched phases in our study of the compactified

cubic code, which led to spurious contributions to the
topological entanglement entropy [98,102]; see Ref. [87] for
further details. The possibility of such spurious contributions
in two and three dimensions causes a complication for
proposals to extract information about fracton topological
orders from the scaling behavior of the entanglement entropy
[103–105].

It would be interesting to explore the implications of com-
pactification for decoding fracton topological codes [29,30].
While this may not be particularly useful for type-I models
[106], since type-II models remain topological codes under
compactification one may be able to apply techniques based
on the 2D toric code. In particular, it should be possible to
correct errors that are nonlocal in one spatial direction.

Another apparent future direction is the study of compact-
ification with different boundary conditions. Open boundary
conditions are particularly appealing due to their practical
relevance. It would also be interesting to study the anyons
and symmetry defects found after compactification as linelike
objects in the uncompactified model. We plan to explore these
directions in future work.

Further examples of compactification

The Appendix contains numerical calculations of nLz , the
number of copies of toric code, for a wide range of fracton
stabilizer models that have been compactified in the three
lattice directions. It is clear that the scaling of nLz for TQFT,
foliated fracton, fractal, and type-II fracton, topological stabi-
lizer models is qualitatively different. The sorting of these 3D
topological stabilizers is discussed in detail in a forthcoming
work [107]. Our results demonstrate that compactification
can serve as a useful tool in the sorting and classification of
fracton topological orders. In Ref. [107], we go beyond this to
discuss the coarse sorting and classification of 3D topological
stabilizer models using tools such as the deformability of
logical operators and anticommuting logical operator pairs
supported on different configurations.
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APPENDIX: COMPACTIFICATION OF FURTHER
EXAMPLES

In this Appendix, we report our numerical calculations of
the number of copies of toric code as a function of compact-
ification radius along each axis. We consider a wide range
of fracton stabilizer models. The number of toric codes is
reported for the compactified model after all local symmetry-
breaking degeneracy has been lifted by adding 2D local oper-
ators to the compactified Hamiltonian. The models are labeled
CC0-17, which stands for cubic code 0-17 following the nota-
tion in Ref. [31] which differs slightly from Ref. [2]. We also
consider the 3D toric code, labeled 3D TC; Chamon’s model
[1,17], labeled Chm; another model found by Castelnovo and
Chamon [16] and also Yoshida [4], which we label Y; the
X -cube model and checkerboard model [7], labeled XC and
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TABLE II. Number of copies of toric code as a function of compactification radius Lz for compactification along ẑ.

Lz CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 HH-II

2 4 2 4 4 2 2 2 2 4 2 8

3 2 1 2 4 1 1 5 5 6 1 4

4 8 4 8 8 4 4 4 4 8 4 16

5 10 9 10 10 5 5 9 9 10 9 20

6 4 2 4 8 2 2 10 10 12 2 16

7 14 13 14 14 7 7 13 13 14 13 28

8 16 8 16 16 8 8 8 8 16 8 32

9 14 13 14 16 7 7 17 17 18 13 28

10 20 18 20 20 10 10 18 18 20 18 40

TABLE III. Number of copies of toric code as a function of compactification radius Lz for compactification along ẑ. The superscript ∗
denotes that CB* and HH-I* have been coarse grained by a factor of two.

Lz 3D TC Chm X-cube CB* HH-I* CC0 CC11 CC12 CC13 CC14 CC15 CC16 CC17 Y

2 1 2 1 2 4 8 4 4 4 2 4 2 4 0

3 1 4 2 4 8 12 4 6 2 6 6 5 2 0

4 1 6 3 6 12 16 8 8 8 3 8 4 8 0

5 1 8 4 8 16 20 10 10 10 10 10 9 10 0

6 1 10 5 10 20 24 8 12 4 10 12 10 8 0

7 1 12 6 12 24 16 14 14 14 14 14 13 14 0

8 1 14 7 14 28 32 16 16 16 11 16 8 16 0

9 1 16 8 16 32 36 16 18 14 18 18 17 14 0

10 1 18 9 18 36 40 20 20 20 18 20 18 20 0

TABLE IV. Number of copies of toric code as a function of compactification radius Ly for compactification along ŷ.

Ly CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 HH-II

2 4 2 2 2 2 2 4 2 2 2 8

3 2 1 1 5 5 5 6 5 5 1 4

4 8 4 4 4 4 4 8 4 4 4 16

5 10 9 9 9 9 9 10 9 9 9 20

6 4 2 2 10 10 10 12 10 10 2 16

7 14 13 13 13 13 13 14 13 13 13 28

8 16 8 8 8 8 8 16 8 8 8 32

9 14 13 13 17 17 17 18 17 17 13 28

10 20 18 18 18 18 18 20 18 18 18 40

CB respectively; and finally the so-called type-I and II spin
models in Ref. [108], labeled HH-I and HH-II respectively.
We remark that the checkerboard model is local unitary equiv-
alent to two copies of the X -cube model [77] and similarly
the HH-I model is mapped to two copies of the checkerboard
model by applying swap gates to half the sites. We also point
out that HH-II has not been shown to be a type-II model.

In the tables below, we group the fracton models that have
not (have) been previously shown to support a string operator,
i.e., the first table contains the type-II models, and some that
may be type-I, while the second contains TQFT and type-I
models and so on. We show our results for compactification in
the ẑ, ŷ, and x̂ directions, respectively. The quantity Li denotes

the compactification radius, and the superscript ∗ denotes
that CB* and HH-I* have been coarse grained by a factor
of 2. Tables II and III show number of copies of Toric code
compactification along ẑ, Tables IV and V, along ŷ direction
and tables VI and VII along x̂ direction.

We observe that the scaling behavior of the number of toric
codes in the compactified model is indicative of the model’s
type. For TQFT (3D TC), the number of 2D toric codes is
constant. For foliated type-I fracton orders (Chm, XC, CB,
HH-I), the number scales linearly. For type II and fractal type I
[107] (CC0-17, HH-II, Y), there is at least one direction where
the number fluctuates as it grows with the compactification
radius.
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TABLE V. Number of copies of toric code as a function of compactification radius Ly for compactification along ŷ. The superscript ∗
denotes that CB* and HH-I* have been coarse grained by a factor of two.

Ly 3D TC Chm X-cube CB* HH-I* CC0 CC11 CC12 CC13 CC14 CC15 CC16 CC17 Y

2 1 2 1 2 4 8 4 2 4 2 4 2 4 0
3 1 4 2 4 8 12 4 5 4 3 6 5 2 2
4 1 6 3 6 12 16 8 4 8 4 8 4 8 0
5 1 8 4 8 16 20 10 9 10 9 10 9 10 4
6 1 10 5 10 20 24 8 10 8 6 12 10 4 4
7 1 12 6 12 24 16 14 13 14 13 14 13 14 6
8 1 14 7 14 28 32 16 8 16 8 16 8 16 3
9 1 16 8 16 32 36 16 17 16 15 18 17 14 8
10 1 18 9 18 36 40 20 18 20 18 20 18 20 8

TABLE VI. Number of copies of toric code as a function of compactification radius Lx for compactification along x̂.

Lx CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 HH-II

2 4 4 2 2 2 4 2 2 2 2 8
3 2 2 1 3 5 2 5 5 5 1 4
4 8 8 4 4 4 8 4 4 4 4 16
5 10 10 9 9 9 10 9 9 9 9 20
6 4 4 2 6 10 4 10 10 10 2 16
7 14 14 13 13 13 14 13 13 13 13 28
8 16 16 8 8 8 16 8 8 8 8 32
9 14 14 13 15 17 14 17 17 17 13 28
10 20 20 18 18 18 20 18 18 18 18 40

TABLE VII. Number of copies of toric code as a function of compactification radius Lx for compactification along x̂. The superscript ∗
denotes that CB* and HH-I* have been coarse grained by a factor of two.

Lx 3D TC Chm X-cube CB* HH-I* CC0 CC11 CC12 CC13 CC14 CC15 CC16 CC17 Y

2 1 2 1 2 4 8 2 4 4 2 2 2 4 0
3 1 4 2 4 8 12 1 6 6 2 5 5 2 2
4 1 6 3 6 12 16 4 8 8 3 4 4 8 0
5 1 8 4 8 16 20 5 10 10 10 9 9 10 4
6 1 10 5 10 20 24 4 12 12 2 10 10 4 4
7 1 12 6 12 24 16 7 14 14 14 13 13 14 6
8 1 14 7 14 28 32 8 16 16 11 8 8 16 3
9 1 16 8 16 32 36 7 18 18 14 17 17 14 8
10 1 18 9 18 36 40 10 20 20 18 18 18 20 8
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